Knowledge (XXG)

Homogeneous coordinate ring

Source 📝

419:(more precisely, by thinking of φ as a matrix of homogeneous polynomials, the count of entries of that homogeneous degree incremented by the gradings acquired inductively from the right). In other words, weights in all the free modules may be inferred from the resolution, and the graded Betti numbers count the number of generators of a given weight in a given module of the resolution. The properties of these invariants of 537:, but not conversely: the property of projective normality is not independent of the projective embedding, as is shown by the example of a rational quartic curve in three dimensions. Another equivalent condition is in terms of the 767: 275:
the number of equations can be taken as the codimension; but the general projective variety has no defining set of equations that is so transparent. Detailed studies, for example of
662:
from a projective space of higher dimension, except in the trivial way of lying in a proper linear subspace. Projective normality may similarly be translated, by using enough
865: 772:
is considered as graded module over the homogeneous coordinate ring of the projective space, and a minimal free resolution taken. Condition
280: 505:; it is therefore small when the shifts increase only by increments of 1 as we move to the left in the resolution (linear syzygies only). 451: 137:
underlying the projective space). The choice of basis means this definition is not intrinsic, but it can be made so by using the
173:. The same definition can be used for general homogeneous ideals, but the resulting coordinate rings may then contain non-zero 702: 129:. The polynomial ring is therefore the homogeneous coordinate ring of the projective space itself, and the variables are the 974: 212: 95: 538: 439: 154: 546: 526: 208:
corresponds to the empty set, since not all homogeneous coordinates can vanish at a point of projective space.
431: 130: 283:, show the geometric interest of systematic techniques to handle these cases. The subject also grew out of 670: 566: 427: 272: 252: 354: 232: 924:, Transactions of the American Mathematical Society, Vol. 352, No. 6 (Jun., 2000), pp. 2569–2579. 834: 829: 284: 259:. In a classical perspective, such generators are simply the equations one writes down to define 28: 861: 817: 659: 570: 186: 174: 138: 83: 46: 39: 423:
in a given projective embedding poses active research questions, even in the case of curves.
895: 678: 663: 292: 178: 50: 562: 276: 240: 170: 113: 937:, Journal of the American Mathematical Society, Vol. 13, No. 3 (Jul., 2000), pp. 651–664. 853: 534: 435: 389: 215:
gives a bijective correspondence between projective varieties and homogeneous ideals
968: 954: 950: 385: 248: 236: 182: 58: 17: 569:. Alternatively one can think of the dual of the tautological line bundle as the 268: 134: 689:
as embedded is projectively normal. Projective normality is the first condition
426:
There are examples where the minimal free resolution is known explicitly. For a
311: 162: 565:, it is projectively normal if and only if each such linear system is a 646:. A non-singular variety is projectively normal if and only if it is 696:
of a sequence of conditions defined by Green and Lazarsfeld. For this
458:
defining the projective variety. In terms of the imputed "shifts"
381: 185:
these cases may be dealt with on the same footing by means of the
576:(1) on projective space, and use it to twist the structure sheaf 235:
techniques to algebraic geometry, it has been traditional since
291:
is supposed to become an algorithmic process (now handled by
654:≥ 1. Linear normality may also be expressed geometrically: 438:
in projective space the resolution may be constructed as a
392:
in any free resolution. Since this complex is intrinsic to
658:
as projective variety cannot be obtained by an isomorphic
762:{\displaystyle \bigoplus _{d=0}^{\infty }H^{0}(V,L^{d})} 251:
over the polynomial ring. This yields information about
669:
Looking at the issue from the point of view of a given
705: 454:
may be read off the minimum resolution of the ideal
255:, namely relations between generators of the ideal 761: 298:There are for general reasons free resolutions of 239:(though modern terminology is different) to apply 783:graded Betti numbers, requiring they vanish when 287:in its classical form, in which reduction modulo 666:to reduce it to conditions of linear normality. 353:is the irrelevant ideal. As a consequence of 8: 791:+ 1. For curves Green showed that condition 673:giving rise to the projective embedding of 380:is well-defined in a strong sense: unique 750: 731: 721: 710: 704: 271:there need only be one equation, and for 310:if the image in each module morphism of 846: 153:is assumed to be a variety, and so an 133:, for a given choice of basis (in the 7: 281:equations defining abelian varieties 722: 366:to a minimal set of generators in 25: 961:Vol. II (1960), pp. 168–172. 922:On Syzygies of Abelian Varieties 357:, φ then takes a given basis in 621:) map surjectively to those of 517:in its projective embedding is 816:= 0 was a classical result of 756: 737: 529:. This condition implies that 452:Castelnuovo–Mumford regularity 442:of Eagon–Northcott complexes. 1: 935:Syzygies of Abelian Varieties 549:on projective space, and its 306:. A resolution is defined as 181:. From the point of view of 557:= 1, 2, 3, ... ; when 545:cut out by the dual of the 33:homogeneous coordinate ring 991: 613:if the global sections of 339:in the resolution lies in 213:projective Nullstellensatz 96:algebraically closed field 642:is 1-normal it is called 589:times, obtaining a sheaf 585:any number of times, say 539:linear system of divisors 484:, it is the maximum over 155:irreducible algebraic set 858:The Geometry of Syzygies 547:tautological line bundle 227:Resolutions and syzygies 432:Eagon–Northcott complex 406:as the number of grade- 378:minimal free resolution 131:homogeneous coordinates 920:See e.g. Elena Rubei, 800:is satisfied when deg( 763: 726: 677:, such a line bundle ( 671:very ample line bundle 567:complete linear system 302:as graded module over 273:complete intersections 161:can be chosen to be a 779:applied to the first 764: 706: 428:rational normal curve 396:, one may define the 199:generated by all the 57:is by definition the 53:of a given dimension 703: 509:Projective normality 398:graded Betti numbers 18:Projective normality 975:Algebraic varieties 959:Commutative Algebra 933:Giuseppe Pareschi, 911:Hartshorne, p. 159. 519:projectively normal 410:images coming from 388:and occurring as a 233:homological algebra 900:Algebraic Geometry 835:Hilbert polynomial 830:Projective variety 759: 683:normally generated 285:elimination theory 247:, considered as a 231:In application of 175:nilpotent elements 29:algebraic geometry 866:978-0-387-22215-8 818:Guido Castelnuovo 664:Veronese mappings 660:linear projection 571:Serre twist sheaf 527:integrally closed 376:. The concept of 187:Proj construction 139:symmetric algebra 84:homogeneous ideal 40:algebraic variety 16:(Redirected from 982: 938: 931: 925: 918: 912: 909: 903: 896:Robin Hartshorne 893: 887: 886:Eisenbud, Ch. 4. 884: 878: 877:Eisenbud, Ch. 6. 875: 869: 851: 768: 766: 765: 760: 755: 754: 736: 735: 725: 720: 681:) is said to be 679:invertible sheaf 650:-normal for all 355:Nakayama's lemma 277:canonical curves 241:free resolutions 194:irrelevant ideal 179:divisors of zero 102:is defined, and 51:projective space 21: 990: 989: 985: 984: 983: 981: 980: 979: 965: 964: 947: 942: 941: 932: 928: 919: 915: 910: 906: 894: 890: 885: 881: 876: 872: 852: 848: 843: 826: 799: 778: 746: 727: 701: 700: 695: 644:linearly normal 634:), for a given 629: 597: 584: 553:-th powers for 511: 500: 483: 470: 448: 436:elliptic curves 418: 405: 386:chain complexes 384:isomorphism of 375: 365: 348: 335: 325: 229: 219:not containing 207: 171:integral domain 147: 128: 114:polynomial ring 71: /  23: 22: 15: 12: 11: 5: 988: 986: 978: 977: 967: 966: 963: 962: 946: 943: 940: 939: 926: 913: 904: 902:(1977), p. 23. 888: 879: 870: 854:David Eisenbud 845: 844: 842: 839: 838: 837: 832: 825: 822: 795: 776: 770: 769: 758: 753: 749: 745: 742: 739: 734: 730: 724: 719: 716: 713: 709: 693: 625: 593: 580: 535:normal variety 510: 507: 492: 479: 462: 447: 444: 414: 401: 390:direct summand 370: 361: 343: 337: 336: 330: 321: 295:in practice). 228: 225: 203: 146: 143: 124: 120:+ 1 variables 110: 109: 76: 75: 24: 14: 13: 10: 9: 6: 4: 3: 2: 987: 976: 973: 972: 970: 960: 956: 955:Pierre Samuel 952: 951:Oscar Zariski 949: 948: 944: 936: 930: 927: 923: 917: 914: 908: 905: 901: 897: 892: 889: 883: 880: 874: 871: 867: 863: 859: 855: 850: 847: 840: 836: 833: 831: 828: 827: 823: 821: 819: 815: 811: 807: 803: 798: 794: 790: 786: 782: 775: 751: 747: 743: 740: 732: 728: 717: 714: 711: 707: 699: 698: 697: 692: 688: 684: 680: 676: 672: 667: 665: 661: 657: 653: 649: 645: 641: 637: 633: 628: 624: 620: 616: 612: 610: 605: 601: 596: 592: 588: 583: 579: 575: 572: 568: 564: 560: 556: 552: 548: 544: 540: 536: 532: 528: 524: 520: 516: 508: 506: 504: 499: 495: 491: 487: 482: 478: 474: 469: 465: 461: 457: 453: 445: 443: 441: 437: 433: 429: 424: 422: 417: 413: 409: 404: 399: 395: 391: 387: 383: 379: 373: 369: 364: 360: 356: 352: 346: 342: 333: 329: 324: 320: 316: 315: 314: 313: 309: 305: 301: 296: 294: 293:Gröbner bases 290: 286: 282: 278: 274: 270: 266: 262: 258: 254: 250: 249:graded module 246: 242: 238: 237:David Hilbert 234: 226: 224: 222: 218: 214: 209: 206: 202: 198: 195: 190: 188: 184: 183:scheme theory 180: 176: 172: 168: 164: 160: 156: 152: 144: 142: 140: 136: 132: 127: 123: 119: 115: 108: 105: 104: 103: 101: 97: 93: 89: 85: 81: 74: 70: 66: 63: 62: 61: 60: 59:quotient ring 56: 52: 48: 44: 41: 37: 34: 30: 19: 958: 934: 929: 921: 916: 907: 899: 891: 882: 873: 857: 849: 813: 812:, which for 809: 805: 801: 796: 792: 788: 784: 780: 773: 771: 690: 686: 682: 674: 668: 655: 651: 647: 643: 639: 635: 631: 626: 622: 618: 614: 608: 607: 603: 599: 594: 590: 586: 581: 577: 573: 563:non-singular 558: 554: 550: 542: 530: 522: 518: 514: 513:The variety 512: 502: 497: 493: 489: 485: 480: 476: 472: 467: 463: 459: 455: 449: 440:mapping cone 425: 420: 415: 411: 407: 402: 397: 393: 377: 371: 367: 362: 358: 350: 344: 340: 338: 331: 327: 322: 318: 312:free modules 307: 303: 299: 297: 288: 269:hypersurface 264: 260: 256: 244: 230: 220: 216: 210: 204: 200: 196: 193: 191: 166: 158: 157:, the ideal 150: 148: 135:vector space 125: 121: 117: 111: 106: 99: 91: 87: 79: 77: 72: 68: 64: 54: 42: 35: 32: 26: 868:), pp. 5–8. 475:-th module 163:prime ideal 145:Formulation 98:over which 45:given as a 945:References 606:is called 446:Regularity 177:and other 47:subvariety 860:, (2005, 723:∞ 708:⨁ 638:, and if 602:). Then 430:it is an 165:, and so 86:defining 969:Category 824:See also 279:and the 253:syzygies 611:-normal 488:of the 471:in the 308:minimal 112:is the 94:is the 82:is the 864:  808:+ 1 + 434:. For 349:where 169:is an 149:Since 78:where 38:of an 31:, the 841:Notes 804:) ≥ 2 787:> 533:is a 382:up to 267:is a 263:. If 953:and 862:ISBN 450:The 403:i, j 347:− 1, 211:The 192:The 685:if 561:is 541:on 525:is 521:if 374:− 1 334:− 1 243:of 116:in 49:of 27:In 971:: 957:, 898:, 856:, 820:. 501:− 496:, 466:, 341:JF 326:→ 317:φ: 223:. 189:. 141:. 90:, 67:= 814:p 810:p 806:g 802:L 797:p 793:N 789:i 785:j 781:p 777:p 774:N 757:) 752:d 748:L 744:, 741:V 738:( 733:0 729:H 718:0 715:= 712:d 694:0 691:N 687:V 675:V 656:V 652:k 648:k 640:V 636:k 632:k 630:( 627:V 623:O 619:k 617:( 615:O 609:k 604:V 600:k 598:( 595:V 591:O 587:k 582:V 578:O 574:O 559:V 555:d 551:d 543:V 531:V 523:R 515:V 503:i 498:j 494:i 490:a 486:i 481:i 477:F 473:i 468:j 464:i 460:a 456:I 421:V 416:i 412:F 408:j 400:β 394:R 372:i 368:F 363:i 359:F 351:J 345:i 332:i 328:F 323:i 319:F 304:K 300:R 289:I 265:V 261:V 257:I 245:R 221:J 217:I 205:i 201:X 197:J 167:R 159:I 151:V 126:i 122:X 118:N 107:K 100:V 92:K 88:V 80:I 73:I 69:K 65:R 55:N 43:V 36:R 20:)

Index

Projective normality
algebraic geometry
algebraic variety
subvariety
projective space
quotient ring
homogeneous ideal
algebraically closed field
polynomial ring
homogeneous coordinates
vector space
symmetric algebra
irreducible algebraic set
prime ideal
integral domain
nilpotent elements
divisors of zero
scheme theory
Proj construction
projective Nullstellensatz
homological algebra
David Hilbert
free resolutions
graded module
syzygies
hypersurface
complete intersections
canonical curves
equations defining abelian varieties
elimination theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.