Knowledge (XXG)

Protein domain

Source 📝

577:, in which an unfolded protein has a large number of conformational states available and there are fewer states available to the folded protein. A funnel implies that for protein folding there is a decrease in energy and loss of entropy with increasing tertiary structure formation. The local roughness of the funnel reflects kinetic traps, corresponding to the accumulation of misfolded intermediates. A folding chain progresses toward lower intra-chain free-energies by increasing its compactness. The chain's conformational options become increasingly narrowed ultimately toward one native structure. 669:. As the procedure does not consider the protein as a continuous chain of amino acids there are no problems in treating discontinuous domains. Specific nodes in these dendrograms are identified as tertiary structural clusters of the protein, these include both super-secondary structures and domains. The DOMAK algorithm is used to create the 3Dee domain database. It calculates a 'split value' from the number of each type of contact when the protein is divided arbitrarily into two parts. This split value is large when the two parts of the structure are distinct. 510:'palm' domain within the polymerases of the Pol I family. Since a domain can be inserted into another, there should always be at least one continuous domain in a multidomain protein. This is the main difference between definitions of structural domains and evolutionary/functional domains. An evolutionary domain will be limited to one or two connections between domains, whereas structural domains can have unlimited connections, within a given criterion of the existence of a common core. Several structural domains could be assigned to an evolutionary domain. 637:
databases, especially as the number of known protein structures is increasing. Although the boundaries of a domain can be determined by visual inspection, construction of an automated method is not straightforward. Problems occur when faced with domains that are discontinuous or highly associated. The fact that there is no standard definition of what a domain really is has meant that domain assignments have varied enormously, with each researcher using a unique set of criteria.
20: 323:, new sequences are adapted from pre-existing sequences rather than invented. Domains are the common material used by nature to generate new sequences; they can be thought of as genetically mobile units, referred to as 'modules'. Often, the C and N termini of domains are close together in space, allowing them to easily be "slotted into" parent structures during the process of evolution. Many domain families are found in all three forms of life, 335:. Protein modules are a subset of protein domains which are found across a range of different proteins with a particularly versatile structure. Examples can be found among extracellular proteins associated with clotting, fibrinolysis, complement, the extracellular matrix, cell surface adhesion molecules and cytokine receptors. Four concrete examples of widespread protein modules are the following domains: 991: 468: 403: 151:(see first figure), a glycolytic enzyme that plays an important role in regulating the flux from fructose-1,6-biphosphate to pyruvate. It contains an all-β nucleotide-binding domain (in blue), an α/β-substrate binding domain (in grey) and an α/β-regulatory domain (in olive green), connected by several polypeptide linkers. Each domain in this protein occurs in diverse sets of 722:, is publicly available in the form of a webserver. The latter allows users to optimally subdivide single-chain or multimeric proteins into quasi-rigid domains based on the collective modes of fluctuation of the system. By default the latter are calculated through an elastic network model; alternatively pre-calculated essential dynamical spaces can be uploaded by the user. 255:. Domains are the fundamental units of tertiary structure, each domain containing an individual hydrophobic core built from secondary structural units connected by loop regions. The packing of the polypeptide is usually much tighter in the interior than the exterior of the domain producing a solid-like core and a fluid-like surface. Core residues are often conserved in a 362:(PDB). However, this set contains many identical or very similar structures. All proteins should be classified to structural families to understand their evolutionary relationships. Structural comparisons are best achieved at the domain level. For this reason many algorithms have been developed to automatically assign domains in proteins with known 3D structure (see 139:
of possibilities. In a multidomain protein, each domain may fulfill its own function independently, or in a concerted manner with its neighbours. Domains can either serve as modules for building up large assemblies such as virus particles or muscle fibres, or can provide specific catalytic or binding sites as found in enzymes or regulatory proteins.
718:, that is protein regions that behave approximately as rigid units in the course of structural fluctuations, has been introduced by Potestio et al. and, among other applications was also used to compare the consistency of the dynamics-based domain subdivisions with standard structure-based ones. The method, termed 974:
using the prefix DUF followed by a number, with examples being DUF2992 and DUF1220. There are now over 3,000 DUF families within the Pfam database representing over 20% of known families. Surprisingly, the number of DUFs in Pfam has increased from 20% (in 2010) to 22% (in 2019), mostly
640:
A structural domain is a compact, globular sub-structure with more interactions within it than with the rest of the protein. Therefore, a structural domain can be determined by two visual characteristics: its compactness and its extent of isolation. Measures of local compactness in proteins have been
589:
However, the role of inter-domain interactions in protein folding and in energetics of stabilisation of the native structure, probably differs for each protein. In T4 lysozyme, the influence of one domain on the other is so strong that the entire molecule is resistant to proteolytic cleavage. In this
568:
states that if an averaged sized protein would sample all possible conformations before finding the one with the lowest energy, the whole process would take billions of years. Proteins typically fold within 0.1 and 1000 seconds. Therefore, the protein folding process must be directed some way through
560:
in the early 1960s, the goal to completely understand the mechanism by which a polypeptide rapidly folds into its stable native conformation remains elusive. Many experimental folding studies have contributed much to our understanding, but the principles that govern protein folding are still based on
506:. The kinesin motor domain can be at either end of a polypeptide chain that includes a coiled-coil region and a cargo domain. ABC transporters are built with up to four domains consisting of two unrelated modules, ATP-binding cassette and an integral membrane module, arranged in various combinations. 369:
The CATH domain database classifies domains into approximately 800 fold families; ten of these folds are highly populated and are referred to as 'super-folds'. Super-folds are defined as folds for which there are at least three structures without significant sequence similarity. The most populated is
357:
gives rise to families of related proteins with similar sequence and structure. However, sequence similarities can be extremely low between proteins that share the same structure. Protein structures may be similar because proteins have diverged from a common ancestor. Alternatively, some folds may be
657:
routine that considered proteins as several small segments, 10 residues in length. The initial segments were clustered one after another based on inter-segment distances; segments with the shortest distances were clustered and considered as single segments thereafter. The stepwise clustering finally
311:
Domain swapping is a mechanism for forming oligomeric assemblies. In domain swapping, a secondary or tertiary element of a monomeric protein is replaced by the same element of another protein. Domain swapping can range from secondary structure elements to whole structural domains. It also represents
234:
Covalent association of two domains represents a functional and structural advantage since there is an increase in stability when compared with the same structures non-covalently associated. Other, advantages are the protection of intermediates within inter-domain enzymatic clefts that may otherwise
230:
motif consists of two adjacent antiparallel β-strands joined by a small loop. It is present in most antiparallel β structures both as an isolated ribbon and as part of more complex β-sheets. Another common super-secondary structure is the β-α-β motif, which is frequently used to connect two parallel
170:
The TIM-barrel in pyruvate kinase is 'discontinuous', meaning that more than one segment of the polypeptide is required to form the domain. This is likely to be the result of the insertion of one domain into another during the protein's evolution. It has been shown from known structures that about a
166:
named after triose phosphate isomerase, which was the first such structure to be solved. It is currently classified into 26 homologous families in the CATH domain database. The TIM barrel is formed from a sequence of β-α-β motifs closed by the first and last strand hydrogen bonding together, forming
138:
Each definition is valid and will often overlap, i.e. a compact structural domain that is found amongst diverse proteins is likely to fold independently within its structural environment. Nature often brings several domains together to form multidomain and multifunctional proteins with a vast number
676:
and Janin was based on the calculated interface areas between two chain segments repeatedly cleaved at various residue positions. Interface areas were calculated by comparing surface areas of the cleaved segments with that of the native structure. Potential domain boundaries can be identified at a
572:
Advances in experimental and theoretical studies have shown that folding can be viewed in terms of energy landscapes, where folding kinetics is considered as a progressive organisation of an ensemble of partially folded structures through which a protein passes on its way to the folded structure.
636:
The importance of domains as structural building blocks and elements of evolution has brought about many automated methods for their identification and classification in proteins of known structure. Automatic procedures for reliable domain assignment is essential for the generation of the domain
593:
It has been found that the folding of an isolated domain can take place at the same rate or sometimes faster than that of the integrated domain, suggesting that unfavourable interactions with the rest of the protein can occur during folding. Several arguments suggest that the slowest step in the
509:
Not only do domains recombine, but there are many examples of a domain having been inserted into another. Sequence or structural similarities to other domains demonstrate that homologues of inserted and parent domains can exist independently. An example is that of the 'fingers' inserted into the
487:
comprises about 120 fibronectin-III-type and Ig-type domains. In the serine proteases, a gene duplication event has led to the formation of a two β-barrel domain enzyme. The repeats have diverged so widely that there is no obvious sequence similarity between them. The active site is located at a
290:
Domains have limits on size. The size of individual structural domains varies from 36 residues in E-selectin to 692 residues in lipoxygenase-1, but the majority, 90%, have fewer than 200 residues with an average of approximately 100 residues. Very short domains, less than 40 residues, are often
513:
A superdomain consists of two or more conserved domains of nominally independent origin, but subsequently inherited as a single structural/functional unit. This combined superdomain can occur in diverse proteins that are not related by gene duplication alone. An example of a superdomain is the
193:
ultimately encodes its uniquely folded three-dimensional (3D) conformation. The most important factor governing the folding of a protein into 3D structure is the distribution of polar and non-polar side chains. Folding is driven by the burial of hydrophobic side chains into the interior of the
585:
The organisation of large proteins by structural domains represents an advantage for protein folding, with each domain being able to individually fold, accelerating the folding process and reducing a potentially large combination of residue interactions. Furthermore, given the observed random
911:
have all been observed. Given the fact that phosphoinositides are sequestered to various cell membranes (due to their long lipophilic tail) the PH domains usually causes recruitment of the protein in question to a membrane where the protein can exert a certain function in cell signalling,
395:
domains (GARs-AIRs-GARt; GAR: glycinamide ribonucleotide synthetase/transferase; AIR: aminoimidazole ribonucleotide synthetase). In insects, the polypeptide appears as GARs-(AIRs)2-GARt, in yeast GARs-AIRs is encoded separately from GARt, and in bacteria each domain is encoded separately.
167:
an eight stranded barrel. There is debate about the evolutionary origin of this domain. One study has suggested that a single ancestral enzyme could have diverged into several families, while another suggests that a stable TIM-barrel structure has evolved through convergent evolution.
594:
folding of large proteins is the pairing of the folded domains. This is either because the domains are not folded entirely correctly or because the small adjustments required for their interaction are energetically unfavourable, such as the removal of water from the domain interface.
303:, which consists of several polypeptide chains that associate into an oligomeric molecule. Each polypeptide chain in such a protein is called a subunit. Hemoglobin, for example, consists of two α and two β subunits. Each of the four chains has an all-α globin fold with a heme pocket. 680:
The PUU algorithm incorporates a harmonic model used to approximate inter-domain dynamics. The underlying physical concept is that many rigid interactions will occur within each domain and loose interactions will occur between domains. This algorithm is used to define domains in the
198:
surrounded by a shell of hydrophilic residues. Since the peptide bonds themselves are polar they are neutralised by hydrogen bonding with each other when in the hydrophobic environment. This gives rise to regions of the polypeptide that form regular 3D structural patterns called
688:
Swindells (1995) developed a method, DETECTIVE, for identification of domains in protein structures based on the idea that domains have a hydrophobic interior. Deficiencies were found to occur when hydrophobic cores from different domains continue through the interface region.
378:
The majority of proteins, two-thirds in unicellular organisms and more than 80% in metazoa, are multidomain proteins. However, other studies concluded that 40% of prokaryotic proteins consist of multiple domains while eukaryotes have approximately 65% multi-domain proteins.
358:
more favored than others as they represent stable arrangements of secondary structures and some proteins may converge towards these folds over the course of evolution. There are currently about 110,000 experimentally determined protein 3D structures deposited within the
865:(PTB): PTB domains usually bind to phosphorylated tyrosine residues. They are often found in signal transduction proteins. PTB-domain binding specificity is determined by residues to the amino-terminal side of the phosphotyrosine. Examples: the PTB domains of both 382:
Many domains in eukaryotic multidomain proteins can be found as independent proteins in prokaryotes, suggesting that domains in multidomain proteins have once existed as independent proteins. For example, vertebrates have a multi-enzyme polypeptide containing the
270:
All-β domains have a core composed of antiparallel β-sheets, usually two sheets packed against each other. Various patterns can be identified in the arrangement of the strands, often giving rise to the identification of recurring motifs, for example the Greek key
402: 437:
to create new functions. Various proteins have diverged from common ancestors by different combinations and associations of domains. Modular units frequently move about, within and between biological systems through mechanisms of genetic shuffling:
1757:
Banner DW, Bloomer AC, Petsko GA, Phillips DC, Pogson CI, Wilson IA, et al. (June 1975). "Structure of chicken muscle triose phosphate isomerase determined crystallographically at 2.5 angstrom resolution using amino acid sequence data".
231:β-strands. The central α-helix connects the C-termini of the first strand to the N-termini of the second strand, packing its side chains against the β-sheet and therefore shielding the hydrophobic residues of the β-strands from the surface. 590:
case, folding is a sequential process where the C-terminal domain is required to fold independently in an early step, and the other domain requires the presence of the folded C-terminal domain for folding and stabilisation.
695:
is a novel method for identification of protein rigid blocks (domains and loops) from two different conformations. Rigid blocks are defined as blocks where all inter residue distances are conserved across conformations.
620:. The resultant dynamic modes cannot be generally predicted from static structures of either the entire protein or individual domains. They can however be inferred by comparing different structures of a protein (as in 586:
distribution of hydrophobic residues in proteins, domain formation appears to be the optimal solution for a large protein to bury its hydrophobic residues while keeping the hydrophilic residues at the surface.
5156:, Sayre JR, Merutka G, Shin HC, Lerner RA, Wright PE (August 1992). "Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. II. Plastocyanin". 534:
and the membrane protein TPTE2. This superdomain is found in proteins in animals, plants and fungi. A key feature of the PTP-C2 superdomain is amino acid residue conservation in the domain interface.
561:
those discovered in the very first studies of folding. Anfinsen showed that the native state of a protein is thermodynamically stable, the conformation being at a global minimum of its free energy.
281:α/β domains are made from a combination of β-α-β motifs that predominantly form a parallel β-sheet surrounded by amphipathic α-helices. The secondary structures are arranged in layers or barrels. 918:(SH2): SH2 domains are often found in signal transduction proteins. SH2 domains confer binding to phosphorylated tyrosine (pTyr). Named after the phosphotyrosine binding domain of the src viral 495:
were shown to have some proteinase activity even though their active site residues were abolished and it has therefore been postulated that the duplication event enhanced the enzyme's activity.
274:α+β domains are a mixture of all-α and all-β motifs. Classification of proteins into this class is difficult because of overlaps to the other three classes and therefore is not used in the 68:
uses domains as building blocks and these may be recombined in different arrangements to create proteins with different functions. In general, domains vary in length from between about 50
4862:
Micheletti, C., Carloni, P. and Maritan, A. Accurate and efficient description of protein vibrational dynamics: comparing molecular dynamics and gaussian models, Proteins, 55, 635, 2004.
3207:
Politou AS, Gautel M, Improta S, Vangelista L, Pastore A (February 1996). "The elastic I-band region of titin is assembled in a "modular" fashion by weakly interacting Ig-like domains".
569:
a specific folding pathway. The forces that direct this search are likely to be a combination of local and global influences whose effects are felt at various stages of the reaction.
624:). They can also be suggested by sampling in extensive molecular dynamics trajectories and principal component analysis, or they can be directly observed using spectra measured by 6387: 267:
All-α domains have a domain core built exclusively from α-helices. This class is dominated by small folds, many of which form a simple bundle with helices running up and down.
251:
Several motifs pack together to form compact, local, semi-independent units called domains. The overall 3D structure of the polypeptide chain is referred to as the protein's
6795: 2220:
Zhou Y, Vitkup D, Karplus M (January 1999). "Native proteins are surface-molten solids: application of the Lindemann criterion for the solid versus liquid state".
2914:
Ekman D, Björklund AK, Frey-Skött J, Elofsson A (April 2005). "Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions".
2775: 260: 665:
The method by Sowdhamini and Blundell clusters secondary structures in a protein based on their Cα-Cα distances and identifies domains from the pattern in their
259:, whereas the residues in loops are less conserved, unless they are involved in the protein's function. Protein tertiary structure can be divided into four main 608:
Protein domain dynamics play a key role in a multitude of molecular recognition and signaling processes. Protein domains, connected by intrinsically disordered
839:
and are classified into different categories (IgV, IgC1, IgC2 and IgI) according to their size and function. They possess a characteristic fold in which two
1712:
Hegyi H, Gerstein M (April 1999). "The relationship between protein structure and function: a comprehensive survey with application to the yeast genome".
751:
proteins. One part of the domain contains a region that mediates sequence-specific DNA-binding properties and the Leucine zipper that is required for the
488:
cleft between the two β-barrel domains, in which functionally important residues are contributed from each domain. Genetically engineered mutants of the
790:
via proteolytic cascades. Pro-caspase-8 and pro-caspase-9 bind to specific adaptor molecules via DED domains, which leads to autoactivation of caspases.
2949:
Davidson JN, Chen KC, Jamison RS, Musmanno LA, Kern CB (March 1993). "The evolutionary history of the first three enzymes in pyrimidine biosynthesis".
6050: 3408: 773:
proteins. Cadherin domains are extracellular regions which mediate cell-to-cell homophilic binding between cadherins on the surface of adjacent cells.
682: 171:
quarter of structural domains are discontinuous. The inserted β-barrel regulatory domain is 'continuous', made up of a single stretch of polypeptide.
6608: 6380: 2992:
Henikoff S, Greene EA, Pietrokovski S, Bork P, Attwood TK, Hood L (October 1997). "Gene families: the taxonomy of protein paralogs and chimeras".
662:
were represented as diagonal plots in which there were distinct patterns for helices, extended strands and combinations of secondary structures.
658:
included the full protein. Go also exploited the fact that inter-domain distances are normally larger than intra-domain distances; all possible
479:
The simplest multidomain organization seen in proteins is that of a single domain repeated in tandem. The domains may interact with each other (
6247: 312:
a model of evolution for functional adaptation by oligomerisation, e.g. oligomeric enzymes that have their active site at subunit interfaces.
5595: 5234: 5092: 5061: 2501: 1078: 1041: 291:
stabilised by metal ions or disulfide bonds. Larger domains, greater than 300 residues, are likely to consist of multiple hydrophobic cores.
235:
be unstable in aqueous environments, and a fixed stoichiometric ratio of the enzymatic activity necessary for a sequential set of reactions.
6893: 6788: 1351: 6373: 6297: 5355: 4776:
Pandurangan AP, Topf M (February 2012). "Finding rigid bodies in protein structures: Application to flexible fitting into cryoEM maps".
1894:
Lesk AM, Brändén CI, Chothia C (1989). "Structural principles of alpha/beta barrel proteins: the packing of the interior of the sheet".
6012:
Library of HMMs representing superfamilies and database of (superfamily and family) annotations for all completely sequenced organisms
5532: 970: (DUF) is a protein domain that has no characterized function. These families have been collected together in the  384: 3609:"Statistical distribution of hydrophobic residues along the length of protein chains. Implications for protein folding and evolution" 162:
folds. It is seen in many different enzyme families catalysing completely unrelated reactions. The α/β-barrel is commonly called the
6898: 6888: 6242: 2751: 2176: 1375: 677:
site where the interface area was at a minimum. Other methods have used measures of solvent accessibility to calculate compactness.
415:
Attractin-like protein 1 (ATRNL1) is a multi-domain protein found in animals, including humans. Each unit is one domain, e.g. the
6878: 866: 3045:
Walker WP, Aradhya S, Hu CL, Shen S, Zhang W, Azarani A, et al. (December 2007). "Genetic analysis of attractin homologs".
6883: 6781: 6636: 6257: 4872:
Barclay AN (August 2003). "Membrane proteins with immunoglobulin-like domains--a master superfamily of interaction molecules".
1106:
George, R. A. (2002) "Predicting Structural Domains in Proteins" Thesis, University College London (contributed by its author).
7002: 6165: 862: 564:
Folding is a directed search of conformational space allowing the protein to fold on a biologically feasible time scale. The
5879:"SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments" 6120: 6043: 708: 621: 3854:"Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins in rigid subunits" 3664:
George RA, Heringa J (February 2002). "SnapDRAGON: a method to delineate protein structural domains from sequence data".
6845: 6835: 6601: 4736:"RIBFIND: a web server for identifying rigid bodies in protein structures and to aid flexible fitting into cryo EM maps" 4518:"Continuous and discontinuous domains: an algorithm for the automatic generation of reliable protein domain definitions" 2351:"Proteins of Escherichia coli come in sizes that are multiples of 14 kDa: domain concepts and evolutionary implications" 1036: 515: 300: 2658:"The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains" 6908: 6825: 4089:"An automatic method involving cluster analysis of secondary structures for the identification of domains in proteins" 1009: 704: 344: 200: 2871:
Apic G, Gough J, Teichmann SA (July 2001). "Domain combinations in archaeal, eubacterial and eukaryotic proteomes".
703:
developed by Pandurangan and Topf identifies rigid bodies in protein structures by performing spacial clustering of
6987: 6830: 6396: 6309: 961: 884: 832: 472: 252: 61: 6997: 6964: 6820: 186: 6992: 6036: 5870: 5379:
Heringa J, Argos P (July 1991). "Side-chain clusters in protein structures and their role in protein folding".
4313:
Rossmann MG, Moras D, Olsen KW (July 1974). "Chemical and biological evolution of nucleotide-binding protein".
448: 219: 4567:"Identification of compact, hydrophobically stabilized domains and modules containing multiple peptide chains" 3795:"Antibody as immunological probe for studying refolding of bovine serum albumin. Refolding within each domain" 2492:
Garel, J. (1992). "Folding of large proteins: Multidomain and multisubunit proteins". In Creighton, T. (ed.).
855:, cell activation, and molecular recognition. These domains are commonly found in molecules with roles in the 5952: 2602: 719: 6594: 1688:"Protein Domains, Domain Assignment, Identification and Classification According to CATH and SCOP Databases" 736: 654: 5979: 3439: 6865: 6855: 6804: 5533:"SCOP: a structural classification of proteins database for the investigation of sequences and structures" 5417: 3673: 3009: 1721: 1051: 409: 3758:
Desmadril M, Yon JM (July 1981). "Existence of intermediates in the refolding of T4 lysozyme at pH 7.4".
2314:
Hutchinson EG, Thornton JM (April 1993). "The Greek key motif: extraction, classification and analysis".
1687: 194:
molecule so to avoid contact with the aqueous environment. Generally proteins have a core of hydrophobic
6873: 6740: 6472: 6200: 3280:
Moore JD, Endow SA (March 1996). "Kinesin proteins: a phylum of motors for microtubule-based motility".
915: 776: 650: 613: 557: 340: 64:. Many proteins consist of several domains, and a domain may appear in a variety of different proteins. 5728:
Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, et al. (January 2001).
6631: 5730:"The COG database: new developments in phylogenetic classification of proteins from complete genomes" 5656:
Siddiqui AS, Dengler U, Barton GJ (February 2001). "3Dee: a database of protein structural domains".
5271: 4415: 4322: 4038: 3981: 3970:"Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy" 3922: 3865: 3620: 3518: 3423: 3126: 3001: 2829: 2614: 2362: 2272: 2051: 1767: 1600: 1543: 1481: 1424: 1313: 1270: 1219: 1168: 944: 238: 5478:"The SBASE protein domain library, release 7.0: a collection of annotated protein sequence segments" 3678: 3014: 2040:"The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain" 1942:"Domain assignment for protein structures using a consensus approach: characterization and analysis" 1726: 659: 6934: 6903: 6508: 6282: 5983: 5422: 5262:
Go M (May 1981). "Correlation of DNA exonic regions with protein structural units in haemoglobin".
1046: 354: 195: 89: 65: 19: 5112:"A fully automatic evolutionary classification of protein folds: Dali Domain Dictionary version 3" 2707:
Campbell ID, Downing AK (May 1994). "Building protein structure and function from modular units".
755:
of two DNA-binding regions. The DNA-binding region comprises a number of basic aminoacids such as
641:
used in many of the early methods of domain assignment and in several of the more recent methods.
6349: 6267: 5367: 5295: 5217:
George DG, Hunt LT, Barker WC (1996). "[3] PIR-International protein sequence database".
4845: 4346: 3911:"LSD1/CoREST is an allosteric nanoscale clamp regulated by H3-histone-tail molecular recognition" 3589: 3305: 3070: 2974: 2896: 2853: 2820:
Orengo CA, Jones DT, Thornton JM (December 1994). "Protein superfamilies and domain superfolds".
2790: 2769: 2638: 2566:
Heringa J, Taylor WR (June 1997). "Three-dimensional domain duplication, swapping and stealing".
2413:
Islam SA, Luo J, Sternberg MJ (June 1995). "Identification and analysis of domains in proteins".
2296: 2245: 2194: 2017: 1919: 1791: 1569: 1450: 1243: 1192: 1073: 1068: 948: 940: 392: 5575: 2097:
Cordes MH, Davidson AR, Sauer RT (February 1996). "Sequence space, folding and protein design".
896: 214:
Some simple combinations of secondary structure elements have been found to frequently occur in
5408:
Honig B (October 1999). "Protein folding: from the levinthal paradox to structure prediction".
3245:
McLachlan AD (February 1979). "Gene duplications in the structural evolution of chymotrypsin".
6840: 6812: 6672: 6646: 6528: 6420: 6344: 5908: 5858: 5823: 5788: 5759: 5716: 5673: 5644: 5601: 5591: 5555: 5520: 5507: 5464: 5435: 5396: 5359: 5330: 5287: 5250: 5230: 5205: 5173: 5141: 5098: 5088: 5057: 5040: 4987: 4938: 4889: 4837: 4793: 4758: 4716: 4672: 4637: 4596: 4547: 4495: 4443: 4381: 4338: 4295: 4257: 4208: 4167: 4118: 4066: 4007: 3950: 3891: 3816: 3775: 3740: 3691: 3646: 3581: 3546: 3487: 3389: 3340: 3297: 3262: 3224: 3189: 3154: 3062: 3027: 2966: 2931: 2888: 2845: 2757: 2747: 2724: 2689: 2630: 2583: 2548: 2497: 2471: 2430: 2390: 2331: 2288: 2237: 2182: 2172: 2141: 2114: 2079: 2009: 1971: 1911: 1876: 1835: 1783: 1739: 1669: 1628: 1587:
Bakszt R, Wernimont A, Allali-Hassani A, Mok MW, Hills T, Hui R, Pizarro JC (September 2010).
1561: 1509: 1442: 1389: 1381: 1371: 1329: 1286: 1235: 1184: 1141: 1061: 1031: 1014: 808: 804: 731: 625: 565: 359: 215: 180: 121: 93: 41: 28: 5009:
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. (January 2000).
4956:
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. (January 2019).
4228:"Hydrophobic folding units derived from dissimilar monomer structures and their interactions" 1855:"Homology among (betaalpha)(8) barrels: implications for the evolution of metabolic pathways" 707:
in proteins. The RIBFIND rigid bodies have been used to flexibly fit protein structures into
6959: 6750: 6708: 6703: 6698: 6523: 6446: 6334: 6025:
A comprehensive database of domain-centric ontologies on functions, phenotypes and diseases.
5898: 5890: 5848: 5813: 5780: 5749: 5741: 5706: 5698: 5665: 5634: 5626: 5583: 5547: 5497: 5489: 5456: 5427: 5388: 5351: 5320: 5279: 5240: 5222: 5197: 5165: 5131: 5123: 5080: 5030: 5022: 4977: 4969: 4928: 4920: 4881: 4827: 4785: 4750: 4708: 4664: 4627: 4586: 4578: 4537: 4529: 4485: 4477: 4433: 4423: 4373: 4330: 4287: 4247: 4239: 4198: 4157: 4149: 4108: 4100: 4056: 4046: 4027:"Coupled protein domain motion in Taq polymerase revealed by neutron spin-echo spectroscopy" 3997: 3989: 3940: 3930: 3881: 3873: 3806: 3767: 3730: 3722: 3683: 3636: 3628: 3573: 3536: 3526: 3477: 3469: 3431: 3379: 3371: 3332: 3289: 3254: 3216: 3181: 3144: 3134: 3054: 3019: 2958: 2923: 2880: 2837: 2716: 2679: 2669: 2622: 2575: 2538: 2530: 2461: 2422: 2380: 2370: 2323: 2280: 2229: 2164: 2106: 2069: 2059: 2001: 1961: 1953: 1903: 1866: 1825: 1775: 1731: 1659: 1618: 1608: 1551: 1499: 1489: 1432: 1363: 1321: 1278: 1227: 1210:
Drenth J, Jansonius JN, Koekoek R, Swen HM, Wolthers BG (June 1968). "Structure of papain".
1176: 1131: 1094: 888: 825: 800: 797: 617: 603: 503: 223: 152: 5563: 6656: 6641: 6549: 6513: 6415: 5956: 5342:
Hayward S (September 1999). "Structural principles governing domain motions in proteins".
2206: 923: 908: 609: 548: 492: 480: 416: 148: 117: 57: 23: 5837:"Free energy determinants of secondary structure formation: II. Antiparallel beta-sheets" 1648:"An analysis of protein domain linkers: their classification and role in protein folding" 5460: 5275: 4913:
Acta Crystallographica. Section F, Structural Biology and Crystallization Communications
4419: 4326: 4042: 3985: 3926: 3869: 3624: 3522: 3427: 3130: 3005: 2833: 2618: 2366: 2276: 2055: 1771: 1604: 1547: 1485: 1428: 1317: 1274: 1223: 1172: 6850: 6554: 6482: 6451: 6272: 6135: 5447:
Kim PS, Baldwin RL (1990). "Intermediates in the folding reactions of small proteins".
4982: 4957: 4933: 4908: 4591: 4566: 4542: 4517: 4252: 4227: 4162: 4137: 4113: 4088: 4061: 4026: 4002: 3969: 3945: 3910: 3886: 3853: 3735: 3710: 3641: 3608: 3482: 3457: 3384: 3359: 2684: 2657: 2543: 2518: 1966: 1941: 1623: 1588: 1089: 1056: 1004: 996: 673: 574: 498:
Modules frequently display different connectivity relationships, as illustrated by the
455: 388: 348: 256: 77: 5711: 5686: 5669: 5639: 5614: 5551: 5502: 5477: 5325: 5308: 5245: 5226: 5201: 5084: 5035: 5010: 4885: 4490: 4465: 4438: 4403: 3811: 3794: 3632: 3185: 2579: 2466: 2449: 2385: 2350: 2168: 2159:
Ostermeier M, Benkovic SJ (2000). "Evolution of protein function by domain swapping".
2110: 2074: 2039: 1830: 1813: 1504: 1469: 1367: 1180: 1159:
Phillips DC (November 1966). "The three-dimensional structure of an enzyme molecule".
1136: 1119: 6981: 6735: 6730: 6518: 6205: 5903: 5878: 5874: 5784: 5754: 5729: 5685:
Srinivasarao GY, Yeh LS, Marzec CR, Orcutt BC, Barker WC, Pfeiffer F (January 1999).
5587: 5528: 5392: 5169: 5136: 5111: 4377: 4291: 4203: 4186: 3771: 3541: 3506: 3258: 3149: 3114: 2720: 1527: 1437: 1412: 1084: 904: 900: 856: 852: 821: 770: 752: 420: 5947: 5932: 5371: 4849: 4832: 4815: 4754: 4364:
Rose GD (November 1979). "Hierarchic organization of domains in globular proteins".
3593: 3507:"Protein folding funnels: a kinetic approach to the sequence-structure relationship" 3309: 3074: 2978: 2900: 2642: 1923: 1454: 1196: 483:) or remain isolated, like beads on string. The giant 30,000 residue muscle protein 445:
gross rearrangements such as inversions, translocations, deletions and duplications;
108:
was first proposed in 1973 by Wetlaufer after X-ray crystallographic studies of hen
6944: 6436: 6287: 6210: 6195: 6155: 6090: 5309:"A systematic comparison of protein structure classifications: SCOP, CATH and FSSP" 5299: 4350: 4187:"Structural domains in proteins and their role in the dynamics of protein function" 2857: 2300: 2249: 1940:
Jones S, Stewart M, Michie A, Swindells MB, Orengo C, Thornton JM (February 1998).
1795: 1573: 1247: 489: 124:
that could fold autonomously. In the past domains have been described as units of:
73: 4816:"PiSQRD: a web server for decomposing proteins into quasi-rigid dynamical domains" 2021: 1812:
Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (August 1997).
442:
transposition of mobile elements including horizontal transfers (between species);
227: 3023: 1613: 1325: 1282: 6755: 6745: 6477: 6441: 6354: 6339: 6262: 6252: 6232: 6227: 6222: 6185: 6140: 6115: 6100: 6095: 6080: 5524: 5185: 4655:
Wodak SJ, Janin J (November 1981). "Location of structural domains in protein".
3336: 1664: 1647: 937: 744: 523: 204: 4632: 4615: 4408:
Proceedings of the National Academy of Sciences of the United States of America
4031:
Proceedings of the National Academy of Sciences of the United States of America
3915:
Proceedings of the National Academy of Sciences of the United States of America
3511:
Proceedings of the National Academy of Sciences of the United States of America
3119:
Proceedings of the National Academy of Sciences of the United States of America
2355:
Proceedings of the National Academy of Sciences of the United States of America
2044:
Proceedings of the National Academy of Sciences of the United States of America
1474:
Proceedings of the National Academy of Sciences of the United States of America
990: 433:
Multidomain proteins are likely to have emerged from selective pressure during
6939: 6682: 6559: 6503: 6487: 6456: 6329: 6324: 6319: 6304: 6292: 6277: 6217: 6190: 6180: 6175: 6170: 6160: 6130: 6125: 6110: 6105: 6085: 6075: 5153: 4924: 4789: 3993: 3877: 3172:
Heringa J (June 1998). "Detection of internal repeats: how common are they?".
2927: 2426: 2327: 986: 931: 892: 848: 840: 836: 815: 811: 666: 467: 336: 208: 163: 85: 69: 16:
Self-stable region of a protein's chain that folds independently from the rest
6365: 5802:"Free energy determinants of secondary structure formation: I. alpha-Helices" 4814:
Aleksiev T, Potestio R, Pontiggia F, Cozzini S, Micheletti C (October 2009).
3435: 2761: 2263:
Levitt M, Chothia C (June 1976). "Structural patterns in globular proteins".
6760: 6575: 6544: 6314: 6237: 6150: 6145: 6070: 4735: 4278:
Crippen GM (December 1978). "The tree structural organization of proteins".
4051: 3935: 3531: 3139: 2674: 787: 748: 519: 434: 5912: 5894: 5853: 5836: 5818: 5801: 5763: 5702: 5677: 5648: 5630: 5511: 5493: 5439: 5431: 5363: 5356:
10.1002/(SICI)1097-0134(19990901)36:4<425::AID-PROT6>3.0.CO;2-S
5334: 5145: 5102: 5044: 5026: 4991: 4942: 4893: 4841: 4797: 4762: 4641: 4582: 4533: 4481: 4404:"Respective roles of short- and long-range interactions in protein folding" 4243: 4153: 4104: 4070: 4011: 3954: 3895: 3744: 3695: 3687: 3491: 3393: 3293: 3220: 3066: 2962: 2935: 2892: 2884: 2693: 2626: 2534: 2475: 2375: 2233: 2186: 2083: 2064: 2005: 1957: 1907: 1880: 1871: 1854: 1743: 1735: 1673: 1632: 779:(DED): allows protein–protein binding by homotypic interactions (DED-DED). 5862: 5827: 5792: 5745: 5720: 5605: 5559: 5468: 5400: 5291: 5254: 5209: 5177: 5127: 5110:
Dietmann S, Park J, Notredame C, Heger A, Lappe M, Holm L (January 2001).
4720: 4676: 4600: 4551: 4499: 4428: 4342: 4261: 4212: 4171: 4122: 3779: 3650: 3585: 3564:
Dill KA, Chan HS (January 1997). "From Levinthal to pathways to funnels".
3550: 3344: 3301: 3228: 3193: 3158: 3031: 2970: 2849: 2728: 2587: 2552: 2434: 2394: 2335: 2241: 2118: 2013: 1975: 1915: 1839: 1787: 1565: 1513: 1494: 1446: 1385: 1333: 1290: 1239: 1188: 1145: 877:
sequence. PTB-containing proteins such as SHC and IRS-1 are important for
158:
The central α/β-barrel substrate binding domain is one of the most common
6773: 6713: 6651: 4973: 4447: 4385: 4299: 3820: 3726: 3266: 2634: 2292: 2145: 919: 844: 783: 766: 756: 328: 109: 5937: 4712: 4668: 3473: 2496:(First ed.). New York: W.H. Freeman and Company. pp. 405–454. 1470:"Nucleation, rapid folding, and globular intrachain regions in proteins" 6924: 6723: 6718: 6617: 5576:"Domains in proteins: definitions, location, and structural principles" 5476:
Murvai J, Vlahovicek K, Barta E, Cataletto B, Pongor S (January 2000).
3577: 1026: 878: 843:
form a "sandwich" that is stabilized by interactions between conserved
793: 780: 531: 499: 332: 324: 190: 81: 53: 49: 4025:
Bu Z, Biehl R, Monkenbusch M, Richter D, Callaway DJ (December 2005).
3058: 1304:
Edelman GM (May 1973). "Antibody structure and molecular immunology".
851:. They are important for protein–protein interactions in processes of 32: 6022: 5615:"SMART: a web-based tool for the study of genetically mobile domains" 5283: 4334: 3375: 3360:"Superdomains in the protein structure hierarchy: The case of PTP-C2" 2841: 2284: 1779: 1556: 1531: 1231: 976: 760: 527: 159: 113: 88:. Because they are independently stable, domains can be "swapped" by 734:: named after the β-catenin-like Armadillo protein of the fruit fly 6004: 5962: 5613:
Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (January 2000).
3711:"Scooby-domain: prediction of globular domains in protein sequence" 363: 80:. Domains often form functional units, such as the calcium-binding 6028: 5999: 5933:
Conserved Domains at the National Center for Biotechnology website
4699:
Zehfus MH, Rose GD (September 1986). "Compact units in proteins".
1992:
Holm L, Sander C (July 1994). "Parser for protein folding units".
874: 870: 692: 484: 466: 5989: 5771:
Taylor WR, Orengo CA (July 1989). "Protein structure alignment".
5071:
Das S, Smith TF (2000). "Identifying nature's protein Lego set".
3968:
Farago B, Li J, Cornilescu G, Callaway DJ, Bu Z (November 2010).
6009: 5974: 1814:"CATH--a hierarchic classification of protein domain structures" 1020: 971: 700: 275: 60:
independently from the rest. Each domain forms a compact folded
6777: 6590: 6369: 6032: 2163:. Advances in Protein Chemistry. Vol. 55. pp. 29–77. 1261:
Porter RR (May 1973). "Structural studies of immunoglobulins".
72:
up to 250 amino acids in length. The shortest domains, such as
6954: 6949: 3115:"Proposed acquisition of an animal protein domain by bacteria" 1589:"The crystal structure of Toxoplasma gondii pyruvate kinase 1" 943:(ZnF_GATA): ZnF_GATA domain-containing proteins are typically 5188:(February 1997). "Nucleation mechanisms in protein folding". 4466:"Dali/FSSP classification of three-dimensional protein folds" 1532:"Proteins. One thousand families for the molecular biologist" 966:
A large fraction of domains are of unknown function. A 
604:
Protein dynamics § Global flexibility: multiple domains
6586: 5953:
Definition and assignment of structural domains in proteins
5942: 4138:"A procedure for detecting structural domains in proteins" 2656:
Ren S, Yang G, He Y, Wang Y, Li Y, Chen Z (October 2008).
5994: 5582:. Methods in Enzymology. Vol. 115. pp. 420–30. 2517:
Bennett MJ, Schlunegger MP, Eisenberg D (December 1995).
2450:"Domain size distributions can predict domain boundaries" 2038:
Anfinsen CB, Haber E, Sela M, White FH (September 1961).
263:
based on the secondary structural content of the domain.
5580:
Diffraction Methods for Biological Macromolecules Part B
5221:. Methods in Enzymology. Vol. 266. pp. 41–59. 3088: 2519:"3D domain swapping: a mechanism for oligomer assembly" 2798: 831:
Immunoglobulin-like domains: found in proteins of the
769:
repeats: Cadherins function as Ca-dependent cell–cell
2448:
Wheelan SJ, Marchler-Bauer A, Bryant SH (July 2000).
364:§ Domain definition from structural co-ordinates 912:
cytoskeletal reorganization or membrane trafficking.
370:
the α/β-barrel super-fold, as described previously.
6917: 6864: 6811: 6691: 6665: 6624: 6568: 6537: 6496: 6465: 6429: 6403: 3852:Potestio R, Pontiggia F, Micheletti C (June 2009). 3760:
Biochemical and Biophysical Research Communications
3505:Leopold PE, Montal M, Onuchic JN (September 1992). 203:. There are two main types of secondary structure: 5687:"Database of protein sequence alignments: PIR-ALN" 2134:Comptes Rendus de l'Académie des Sciences, Série D 4082: 4080: 3847: 3845: 3843: 3240: 3238: 1345: 1343: 979:. Pfam release 32.0 (2019) contained 3,961 DUFs. 4809: 4807: 3323:Russell RB (December 1994). "Domain insertion". 2033: 2031: 1017:, a biological database covering protein domains 4511: 4509: 4273: 4271: 1352:"The anatomy and taxonomy of protein structure" 120:. Wetlaufer defined domains as stable units of 4907:Bateman A, Coggill P, Finn RD (October 2010). 1085:CATH Protein Structure Classification database 947:that usually bind to the DNA sequence GATA of 632:Domain definition from structural co-ordinates 241:is an important tool for determining domains. 6789: 6602: 6381: 6044: 3835:Proteins: Structures and molecular properties 1807: 1805: 475:modules (maroon) into two different proteins. 8: 4958:"The Pfam protein families database in 2019" 4191:Progress in Biophysics and Molecular Biology 2487: 2485: 2408: 2406: 2404: 1935: 1933: 1413:"Shuffled domains in extracellular proteins" 5219:PIR-International Protein Sequence Database 4459: 4457: 1987: 1985: 6796: 6782: 6774: 6609: 6595: 6587: 6388: 6374: 6366: 6051: 6037: 6029: 4616:"Protein structural domain identification" 2774:: CS1 maint: location missing publisher ( 824:: A small protein domain from fibritin in 5902: 5852: 5817: 5753: 5710: 5638: 5501: 5421: 5324: 5244: 5135: 5034: 4981: 4932: 4831: 4734:Pandurangan AP, Topf M (September 2012). 4631: 4590: 4541: 4489: 4437: 4427: 4397: 4395: 4251: 4202: 4161: 4112: 4060: 4050: 4001: 3944: 3934: 3885: 3810: 3734: 3709:George RA, Lin K, Heringa J (July 2005). 3677: 3640: 3540: 3530: 3481: 3409:"Are there pathways for protein folding?" 3383: 3148: 3138: 3013: 2683: 2673: 2542: 2465: 2384: 2374: 2073: 2063: 1965: 1870: 1829: 1725: 1663: 1622: 1612: 1555: 1503: 1493: 1436: 1135: 4087:Sowdhamini R, Blundell TL (March 1995). 3458:"Polymer principles and protein folding" 321:Nature is a tinkerer and not an inventor 92:between one protein and another to make 18: 1110: 581:Advantage of domains in protein folding 5986:Web Archives (archived 2011-05-06) 4909:"DUFs: families in search of function" 2767: 2202: 2192: 1646:George RA, Heringa J (November 2002). 573:This has been described in terms of a 554:Protein folding - the unsolved problem 116:and by limited proteolysis studies of 5307:Hadley C, Jones DT (September 1999). 5190:Current Opinion in Structural Biology 3174:Current Opinion in Structural Biology 3113:Bork P, Doolittle RF (October 1992). 2568:Current Opinion in Structural Biology 2099:Current Opinion in Structural Biology 1079:Structural Classification of Proteins 1042:Protein structure prediction software 828:that can cause proteins to trimerize. 7: 4226:Tsai CJ, Nussinov R (January 1997). 3837:. Freeman, New York. Second edition. 2791:"wwPDB: Worldwide Protein Data Bank" 1118:Xu D, Nussinov R (1 February 1998). 891:with high affinity. Specificity for 538:Domains are autonomous folding units 5835:Yang AS, Honig B (September 1995). 5800:Yang AS, Honig B (September 1995). 5461:10.1146/annurev.bi.59.070190.003215 4516:Siddiqui AS, Barton GJ (May 1995). 3799:The Journal of Biological Chemistry 3793:Teale JM, Benjamin DC (July 1977). 2742:Bruce, Alberts (18 November 2014). 1853:Copley RR, Bork P (November 2000). 1120:"Favorable domain size in proteins" 975:due to an increasing number of new 649:One of the first algorithms used a 4402:Go N, Taketomi H (February 1978). 3607:White SH, Jacobs RE (April 1990). 2132:Ghélis C, Yon JM (July 1979). "". 835:(IgSF). They contain about 70-110 556: : Since the seminal work of 76:, are stabilized by metal ions or 56:that is self-stabilizing and that 14: 5054:Introduction to protein structure 4464:Holm L, Sander C (January 1997). 3909:Baron R, Vellore NA (July 2012). 1181:10.1038/scientificamerican1166-78 2746:(Sixth ed.). New York, NY. 989: 401: 26:, a protein with three domains ( 6637:Post-translational modification 6421:Structure determination methods 5670:10.1093/bioinformatics/17.2.200 2467:10.1093/bioinformatics/16.7.613 598:Domains and protein flexibility 316:Domains as evolutionary modules 6005:NCBI Conserved Domain Database 863:Phosphotyrosine-binding domain 1: 5552:10.1016/S0022-2836(05)80134-2 5449:Annual Review of Biochemistry 5326:10.1016/S0969-2126(99)80177-4 5227:10.1016/S0076-6879(96)66005-4 5202:10.1016/S0959-440X(97)80002-4 5085:10.1016/S0065-3233(00)54006-6 5073:Advances in Protein Chemistry 4886:10.1016/S1044-5323(03)00047-2 4833:10.1093/bioinformatics/btp512 4778:Journal of Structural Biology 4755:10.1093/bioinformatics/bts446 4136:Swindells MB (January 1995). 3812:10.1016/S0021-9258(17)40192-X 3633:10.1016/S0006-3495(90)82611-4 3358:Haynie DT, Xue B (May 2015). 3186:10.1016/S0959-440X(98)80068-7 2744:Molecular biology of the cell 2580:10.1016/S0959-440X(97)80060-7 2169:10.1016/s0065-3233(01)55002-0 2111:10.1016/S0959-440X(96)80088-1 1831:10.1016/S0969-2126(97)00260-8 1368:10.1016/S0065-3233(08)60520-3 1356:Advances in Protein Chemistry 1137:10.1016/S1359-0278(98)00004-2 1023:: database of protein domains 747:): found in many DNA-binding 743:Basic leucine zipper domain ( 714:A general method to identify 705:secondary structural elements 622:Database of Molecular Motions 189:(string of amino acids) of a 5841:Journal of Molecular Biology 5806:Journal of Molecular Biology 5785:10.1016/0022-2836(89)90084-3 5773:Journal of Molecular Biology 5588:10.1016/0076-6879(85)15030-5 5540:Journal of Molecular Biology 5410:Journal of Molecular Biology 5393:10.1016/0022-2836(91)90388-M 5381:Journal of Molecular Biology 5170:10.1016/0022-2836(92)90634-V 5158:Journal of Molecular Biology 5052:Tooze J, Brändén CI (1999). 4378:10.1016/0022-2836(79)90363-2 4366:Journal of Molecular Biology 4292:10.1016/0022-2836(78)90043-8 4280:Journal of Molecular Biology 4204:10.1016/0079-6107(83)90003-2 3772:10.1016/0006-291X(81)91296-1 3721:(Web Server issue): W160-3. 3666:Journal of Molecular Biology 3259:10.1016/0022-2836(79)90308-5 3247:Journal of Molecular Biology 3209:Journal of Molecular Biology 3024:10.1126/science.278.5338.609 2916:Journal of Molecular Biology 2873:Journal of Molecular Biology 2721:10.1016/0167-7799(94)90078-7 2222:Journal of Molecular Biology 1859:Journal of Molecular Biology 1714:Journal of Molecular Biology 1614:10.1371/journal.pone.0012736 1438:10.1016/0014-5793(91)80937-X 1326:10.1126/science.180.4088.830 1283:10.1126/science.180.4087.713 1037:Protein structure prediction 516:protein tyrosine phosphatase 6017:Functional domain databases 5927:Structural domain databases 5574:Janin J, Chothia C (1985). 2161:Evolutionary Protein Design 1468:Wetlaufer DB (March 1973). 1010:Cofactor transferase family 956:Domains of unknown function 612:domains, induce long-range 62:three-dimensional structure 7019: 6678:Protein structural domains 6397:Protein tertiary structure 5959: (archived 2006-09-11) 4185:Janin J, Wodak SJ (1983). 2349:Savageau MA (March 1986). 968:domain of unknown function 962:Domain of unknown function 959: 885:Pleckstrin homology domain 833:immunoglobulin superfamily 814:and in the muscle protein 601: 546: 178: 175:Units of protein structure 147:An appropriate example is 6965:Nucleic acid double helix 6066: 5969:Sequence domain databases 5056:. New York: Garland Pub. 4925:10.1107/S1744309110001685 4790:10.1016/j.jsb.2011.10.011 3994:10.1016/j.bpj.2010.09.058 3878:10.1016/j.bpj.2009.03.051 3833:Creighton, T. E. (1983). 3566:Nature Structural Biology 3337:10.1093/protein/7.12.1407 2928:10.1016/j.jmb.2005.02.007 2603:"Evolution and tinkering" 1665:10.1093/protein/15.11.871 881:responses of human cells. 481:domain-domain interaction 4633:10.1093/protein/12.3.203 4614:Taylor WR (March 1999). 709:cryo electron microscopy 449:homologous recombination 220:supersecondary structure 143:Example: Pyruvate kinase 5011:"The Protein Data Bank" 4565:Zehfus MH (June 1997). 4052:10.1073/pnas.0503388102 3936:10.1073/pnas.1207892109 3532:10.1073/pnas.89.18.8721 3140:10.1073/pnas.89.19.8990 2709:Trends in Biotechnology 2675:10.1186/1471-2164-9-452 2427:10.1093/protein/8.6.513 2328:10.1093/protein/6.3.233 737:Drosophila melanogaster 655:hierarchical clustering 618:protein domain dynamics 218:and are referred to as 6866:Nucleic acid structure 6805:Biomolecular structure 5883:Nucleic Acids Research 5854:10.1006/jmbi.1995.0503 5819:10.1006/jmbi.1995.0502 5734:Nucleic Acids Research 5691:Nucleic Acids Research 5619:Nucleic Acids Research 5482:Nucleic Acids Research 5432:10.1006/jmbi.1999.3006 5116:Nucleic Acids Research 5015:Nucleic Acids Research 4962:Nucleic Acids Research 4874:Seminars in Immunology 4583:10.1002/pro.5560060609 4534:10.1002/pro.5560040507 4470:Nucleic Acids Research 4244:10.1002/pro.5560060104 4154:10.1002/pro.5560040113 4105:10.1002/pro.5560040317 3715:Nucleic Acids Research 3688:10.1006/jmbi.2001.5387 3436:10.1051/jcp/1968650044 3294:10.1002/bies.950180308 3221:10.1006/jmbi.1996.0050 2963:10.1002/bies.950150303 2885:10.1006/jmbi.2001.4776 2627:10.1126/science.860134 2535:10.1002/pro.5560041202 2376:10.1073/pnas.83.5.1198 2234:10.1006/jmbi.1998.2374 2065:10.1073/pnas.47.9.1309 2006:10.1002/prot.340190309 1958:10.1002/pro.5560070202 1908:10.1002/prot.340050208 1872:10.1006/jmbi.2000.4152 1736:10.1006/jmbi.1999.2661 1350:Richardson JS (1981). 1052:Protein tandem repeats 887:(PH): PH domains bind 476: 471:Insertions of similar 131:function and evolution 37: 7003:Protein superfamilies 6741:Photoreceptor protein 6473:Immunoglobulin domain 4429:10.1073/pnas.75.2.559 3456:Dill KA (June 1999). 2601:Jacob F (June 1977). 1692:proteinstructures.com 1495:10.1073/pnas.70.3.697 945:transcription factors 916:Src homology 2 domain 777:Death effector domain 547:Further information: 470: 463:Types of organization 299:Many proteins have a 22: 6632:Protein biosynthesis 5895:10.1093/nar/30.1.268 5703:10.1093/nar/27.1.284 5631:10.1093/nar/28.1.231 5494:10.1093/nar/28.1.260 5027:10.1093/nar/28.1.235 4482:10.1093/nar/25.1.231 3445:on 2 September 2009. 3407:Levinthal C (1968). 1411:Bork P (July 1991). 1124:Folding & Design 922:, which is itself a 374:Multidomain proteins 301:quaternary structure 295:Quaternary structure 239:Structural alignment 6935:Protein engineering 6509:Leucine-rich repeat 5984:Library of Congress 5746:10.1093/nar/29.1.22 5276:1981Natur.291...90G 5128:10.1093/nar/29.1.55 4713:10.1021/bi00367a062 4669:10.1021/bi00526a005 4620:Protein Engineering 4420:1978PNAS...75..559G 4327:1974Natur.250..194R 4043:2005PNAS..10217646B 3986:2010BpJ....99.3473F 3974:Biophysical Journal 3927:2012PNAS..10912509B 3870:2009BpJ....96.4993P 3858:Biophysical Journal 3625:1990BpJ....57..911W 3613:Biophysical Journal 3523:1992PNAS...89.8721L 3474:10.1110/ps.8.6.1166 3428:1968JCP....65...44L 3325:Protein Engineering 3131:1992PNAS...89.8990B 3006:1997Sci...278..609H 2834:1994Natur.372..631O 2619:1977Sci...196.1161J 2415:Protein Engineering 2367:1986PNAS...83.1198S 2316:Protein Engineering 2277:1976Natur.261..552L 2056:1961PNAS...47.1309A 1772:1975Natur.255..609B 1652:Protein Engineering 1605:2010PLoSO...512736B 1548:1992Natur.357..543C 1486:1973PNAS...70..697W 1429:1991FEBSL.286...47B 1392:on 10 February 2019 1318:1973Sci...180..830E 1275:1973Sci...180..713P 1224:1968Natur.218..929D 1173:1966SciAm.215e..78P 1161:Scientific American 1047:Protein superfamily 458:during replication. 355:Molecular evolution 226:. For example, the 201:secondary structure 104:The concept of the 90:genetic engineering 66:Molecular evolution 4974:10.1093/nar/gky995 4919:(Pt 10): 1148–52. 3727:10.1093/nar/gki381 3578:10.1038/nsb0197-10 3089:"SMART: Main page" 1074:Structural biology 1069:Short linear motif 972:Pfam database 941:DNA-binding domain 847:and other charged 651:Cα-Cα distance map 477: 413:(scrollable image) 393:GAR transformylase 345:fibronectin type 3 253:tertiary structure 245:Tertiary structure 38: 6988:Protein structure 6973: 6972: 6813:Protein structure 6771: 6770: 6673:Protein structure 6647:Protein targeting 6584: 6583: 6529:Trefoil knot fold 6411:Structural domain 6363: 6362: 5963:PFAM clan browser 5597:978-0-12-182015-2 5569:on 26 April 2012. 5236:978-0-12-182167-8 5094:978-0-12-034254-9 5063:978-0-8153-2305-1 4968:(D1): D427–D432. 3864:(12): 4993–5002. 3059:10.1002/dvg.20351 2503:978-0-7167-7027-5 1062:Protein subfamily 1032:Protein structure 889:phosphoinositides 809:signaling protein 805:structural domain 732:Armadillo repeats 716:dynamical domains 685:domain database. 626:neutron spin echo 566:Levinthal paradox 360:Protein Data Bank 216:protein structure 187:primary structure 181:Protein structure 128:compact structure 122:protein structure 94:chimeric proteins 78:disulfide bridges 54:polypeptide chain 48:is a region of a 42:molecular biology 7010: 6998:Protein families 6960:Structural motif 6798: 6791: 6784: 6775: 6751:Phycobiliprotein 6709:Globular protein 6704:Membrane protein 6699:List of proteins 6611: 6604: 6597: 6588: 6569:Irregular folds: 6524:Thioredoxin fold 6447:Homeodomain fold 6390: 6383: 6376: 6367: 6053: 6046: 6039: 6030: 5916: 5906: 5877:(January 2002). 5866: 5856: 5831: 5821: 5796: 5767: 5757: 5724: 5714: 5681: 5652: 5642: 5609: 5570: 5568: 5562:. Archived from 5537: 5515: 5505: 5472: 5443: 5425: 5404: 5375: 5338: 5328: 5303: 5284:10.1038/291090a0 5258: 5248: 5213: 5181: 5149: 5139: 5106: 5067: 5048: 5038: 4996: 4995: 4985: 4953: 4947: 4946: 4936: 4904: 4898: 4897: 4869: 4863: 4860: 4854: 4853: 4835: 4811: 4802: 4801: 4773: 4767: 4766: 4740: 4731: 4725: 4724: 4696: 4690: 4687: 4681: 4680: 4652: 4646: 4645: 4635: 4611: 4605: 4604: 4594: 4562: 4556: 4555: 4545: 4513: 4504: 4503: 4493: 4461: 4452: 4451: 4441: 4431: 4399: 4390: 4389: 4361: 4355: 4354: 4335:10.1038/250194a0 4310: 4304: 4303: 4275: 4266: 4265: 4255: 4223: 4217: 4216: 4206: 4182: 4176: 4175: 4165: 4133: 4127: 4126: 4116: 4084: 4075: 4074: 4064: 4054: 4037:(49): 17646–51. 4022: 4016: 4015: 4005: 3965: 3959: 3958: 3948: 3938: 3921:(31): 12509–14. 3906: 3900: 3899: 3889: 3849: 3838: 3831: 3825: 3824: 3814: 3790: 3784: 3783: 3755: 3749: 3748: 3738: 3706: 3700: 3699: 3681: 3661: 3655: 3654: 3644: 3604: 3598: 3597: 3561: 3555: 3554: 3544: 3534: 3502: 3496: 3495: 3485: 3453: 3447: 3446: 3444: 3438:. Archived from 3413: 3404: 3398: 3397: 3387: 3376:10.1002/pro.2664 3355: 3349: 3348: 3320: 3314: 3313: 3277: 3271: 3270: 3242: 3233: 3232: 3204: 3198: 3197: 3169: 3163: 3162: 3152: 3142: 3110: 3104: 3103: 3101: 3099: 3085: 3079: 3078: 3042: 3036: 3035: 3017: 3000:(5338): 609–14. 2989: 2983: 2982: 2946: 2940: 2939: 2911: 2905: 2904: 2868: 2862: 2861: 2842:10.1038/372631a0 2817: 2811: 2810: 2808: 2806: 2797:. Archived from 2786: 2780: 2779: 2773: 2765: 2739: 2733: 2732: 2704: 2698: 2697: 2687: 2677: 2653: 2647: 2646: 2613:(4295): 1161–6. 2598: 2592: 2591: 2563: 2557: 2556: 2546: 2514: 2508: 2507: 2489: 2480: 2479: 2469: 2445: 2439: 2438: 2410: 2399: 2398: 2388: 2378: 2346: 2340: 2339: 2311: 2305: 2304: 2285:10.1038/261552a0 2260: 2254: 2253: 2217: 2211: 2210: 2204: 2200: 2198: 2190: 2156: 2150: 2149: 2129: 2123: 2122: 2094: 2088: 2087: 2077: 2067: 2035: 2026: 2025: 1989: 1980: 1979: 1969: 1937: 1928: 1927: 1891: 1885: 1884: 1874: 1850: 1844: 1843: 1833: 1809: 1800: 1799: 1780:10.1038/255609a0 1766:(5510): 609–14. 1754: 1748: 1747: 1729: 1709: 1703: 1702: 1700: 1698: 1684: 1678: 1677: 1667: 1643: 1637: 1636: 1626: 1616: 1584: 1578: 1577: 1559: 1557:10.1038/357543a0 1524: 1518: 1517: 1507: 1497: 1465: 1459: 1458: 1440: 1408: 1402: 1401: 1399: 1397: 1388:. Archived from 1347: 1338: 1337: 1312:(4088): 830–40. 1301: 1295: 1294: 1258: 1252: 1251: 1232:10.1038/218929a0 1218:(5145): 929–32. 1207: 1201: 1200: 1156: 1150: 1149: 1139: 1115: 1095:Structural motif 999: 994: 993: 977:genome sequences 826:T4 bacteriophage 801:structural motif 798:helix-turn-helix 653:together with a 504:ABC transporters 405: 278:domain database. 153:protein families 35: 7018: 7017: 7013: 7012: 7011: 7009: 7008: 7007: 6993:Protein domains 6978: 6977: 6974: 6969: 6913: 6860: 6807: 6802: 6772: 6767: 6731:Fibrous protein 6687: 6661: 6657:Protein methods 6642:Protein folding 6620: 6615: 6585: 6580: 6564: 6550:Ferredoxin fold 6533: 6514:Flavodoxin fold 6492: 6461: 6425: 6416:Protein folding 6399: 6394: 6364: 6359: 6062: 6060:Protein domains 6057: 6019: 5971: 5957:Wayback Machine 5929: 5924: 5919: 5869: 5834: 5799: 5770: 5727: 5684: 5655: 5612: 5598: 5573: 5566: 5535: 5518: 5475: 5446: 5407: 5378: 5341: 5319:(9): 1099–112. 5306: 5261: 5237: 5216: 5184: 5152: 5109: 5095: 5070: 5064: 5051: 5008: 5004: 4999: 4955: 4954: 4950: 4906: 4905: 4901: 4871: 4870: 4866: 4861: 4857: 4813: 4812: 4805: 4775: 4774: 4770: 4738: 4733: 4732: 4728: 4707:(19): 5759–65. 4698: 4697: 4693: 4688: 4684: 4663:(23): 6544–52. 4654: 4653: 4649: 4613: 4612: 4608: 4571:Protein Science 4564: 4563: 4559: 4522:Protein Science 4515: 4514: 4507: 4463: 4462: 4455: 4401: 4400: 4393: 4363: 4362: 4358: 4312: 4311: 4307: 4277: 4276: 4269: 4232:Protein Science 4225: 4224: 4220: 4184: 4183: 4179: 4142:Protein Science 4135: 4134: 4130: 4093:Protein Science 4086: 4085: 4078: 4024: 4023: 4019: 3980:(10): 3473–82. 3967: 3966: 3962: 3908: 3907: 3903: 3851: 3850: 3841: 3832: 3828: 3792: 3791: 3787: 3757: 3756: 3752: 3708: 3707: 3703: 3679:10.1.1.329.2921 3663: 3662: 3658: 3606: 3605: 3601: 3563: 3562: 3558: 3504: 3503: 3499: 3462:Protein Science 3455: 3454: 3450: 3442: 3411: 3406: 3405: 3401: 3364:Protein Science 3357: 3356: 3352: 3331:(12): 1407–10. 3322: 3321: 3317: 3279: 3278: 3274: 3244: 3243: 3236: 3206: 3205: 3201: 3171: 3170: 3166: 3112: 3111: 3107: 3097: 3095: 3087: 3086: 3082: 3044: 3043: 3039: 3015:10.1.1.562.2262 2991: 2990: 2986: 2948: 2947: 2943: 2913: 2912: 2908: 2870: 2869: 2865: 2828:(6507): 631–4. 2819: 2818: 2814: 2804: 2802: 2801:on 7 April 2015 2788: 2787: 2783: 2766: 2754: 2741: 2740: 2736: 2706: 2705: 2701: 2655: 2654: 2650: 2600: 2599: 2595: 2565: 2564: 2560: 2529:(12): 2455–68. 2523:Protein Science 2516: 2515: 2511: 2504: 2494:Protein Folding 2491: 2490: 2483: 2447: 2446: 2442: 2412: 2411: 2402: 2361:(5): 1198–202. 2348: 2347: 2343: 2313: 2312: 2308: 2271:(5561): 552–8. 2262: 2261: 2257: 2219: 2218: 2214: 2201: 2191: 2179: 2158: 2157: 2153: 2131: 2130: 2126: 2096: 2095: 2091: 2037: 2036: 2029: 1991: 1990: 1983: 1946:Protein Science 1939: 1938: 1931: 1893: 1892: 1888: 1852: 1851: 1847: 1824:(8): 1093–108. 1811: 1810: 1803: 1756: 1755: 1751: 1727:10.1.1.217.9806 1711: 1710: 1706: 1696: 1694: 1686: 1685: 1681: 1645: 1644: 1640: 1586: 1585: 1581: 1542:(6379): 543–4. 1526: 1525: 1521: 1467: 1466: 1462: 1410: 1409: 1405: 1395: 1393: 1378: 1349: 1348: 1341: 1303: 1302: 1298: 1269:(4087): 713–6. 1260: 1259: 1255: 1209: 1208: 1204: 1158: 1157: 1153: 1117: 1116: 1112: 1103: 995: 988: 985: 964: 958: 924:tyrosine kinase 909:PtdIns(3,4,5)P3 728: 726:Example domains 660:Cα-Cα distances 647: 634: 610:flexible linker 606: 600: 583: 551: 549:Protein folding 545: 540: 493:serine protease 465: 431: 426: 425: 424: 411: 406: 376: 318: 309: 307:Domain swapping 297: 288: 247: 183: 177: 149:pyruvate kinase 145: 118:immunoglobulins 102: 27: 24:Pyruvate kinase 17: 12: 11: 5: 7016: 7014: 7006: 7005: 7000: 6995: 6990: 6980: 6979: 6971: 6970: 6968: 6967: 6962: 6957: 6952: 6947: 6942: 6937: 6932: 6930:Protein domain 6927: 6921: 6919: 6915: 6914: 6912: 6911: 6909:Thermodynamics 6906: 6901: 6896: 6891: 6886: 6881: 6876: 6870: 6868: 6862: 6861: 6859: 6858: 6856:Thermodynamics 6853: 6848: 6843: 6838: 6833: 6828: 6823: 6817: 6815: 6809: 6808: 6803: 6801: 6800: 6793: 6786: 6778: 6769: 6768: 6766: 6765: 6764: 6763: 6758: 6753: 6743: 6738: 6733: 6728: 6727: 6726: 6721: 6716: 6706: 6701: 6695: 6693: 6689: 6688: 6686: 6685: 6680: 6675: 6669: 6667: 6663: 6662: 6660: 6659: 6654: 6649: 6644: 6639: 6634: 6628: 6626: 6622: 6621: 6616: 6614: 6613: 6606: 6599: 6591: 6582: 6581: 6579: 6578: 6572: 6570: 6566: 6565: 6563: 6562: 6557: 6555:Ribonuclease A 6552: 6547: 6541: 6539: 6535: 6534: 6532: 6531: 6526: 6521: 6516: 6511: 6506: 6500: 6498: 6494: 6493: 6491: 6490: 6485: 6483:Beta-propeller 6480: 6475: 6469: 6467: 6463: 6462: 6460: 6459: 6454: 6452:Alpha solenoid 6449: 6444: 6439: 6433: 6431: 6427: 6426: 6424: 6423: 6418: 6413: 6407: 6405: 6401: 6400: 6395: 6393: 6392: 6385: 6378: 6370: 6361: 6360: 6358: 6357: 6352: 6347: 6342: 6337: 6332: 6327: 6322: 6317: 6312: 6307: 6302: 6301: 6300: 6290: 6285: 6280: 6275: 6270: 6265: 6260: 6255: 6250: 6245: 6240: 6235: 6230: 6225: 6220: 6215: 6214: 6213: 6208: 6203: 6198: 6188: 6183: 6178: 6173: 6168: 6163: 6158: 6153: 6148: 6143: 6138: 6133: 6128: 6123: 6118: 6113: 6108: 6103: 6098: 6093: 6088: 6083: 6078: 6073: 6067: 6064: 6063: 6058: 6056: 6055: 6048: 6041: 6033: 6027: 6026: 6018: 6015: 6014: 6013: 6007: 6002: 5997: 5992: 5987: 5977: 5970: 5967: 5966: 5965: 5960: 5950: 5945: 5940: 5935: 5928: 5925: 5923: 5922:External links 5920: 5918: 5917: 5867: 5832: 5797: 5768: 5725: 5682: 5658:Bioinformatics 5653: 5610: 5596: 5571: 5531:(April 1995). 5516: 5473: 5444: 5423:10.1.1.332.955 5405: 5376: 5339: 5304: 5270:(5810): 90–2. 5259: 5235: 5214: 5182: 5150: 5107: 5093: 5068: 5062: 5049: 5005: 5003: 5000: 4998: 4997: 4948: 4899: 4864: 4855: 4826:(20): 2743–4. 4820:Bioinformatics 4803: 4768: 4749:(18): 2391–3. 4743:Bioinformatics 4726: 4691: 4682: 4647: 4606: 4557: 4505: 4453: 4391: 4356: 4321:(463): 194–9. 4305: 4267: 4218: 4177: 4128: 4076: 4017: 3960: 3901: 3839: 3826: 3805:(13): 4521–6. 3785: 3750: 3701: 3656: 3599: 3556: 3517:(18): 8721–5. 3497: 3468:(6): 1166–80. 3448: 3399: 3350: 3315: 3272: 3234: 3199: 3164: 3125:(19): 8990–4. 3105: 3080: 3053:(12): 744–56. 3037: 2984: 2941: 2906: 2863: 2812: 2781: 2752: 2734: 2699: 2648: 2593: 2558: 2509: 2502: 2481: 2454:Bioinformatics 2440: 2400: 2341: 2306: 2255: 2212: 2203:|journal= 2177: 2151: 2124: 2089: 2050:(9): 1309–14. 2027: 1981: 1929: 1886: 1845: 1801: 1749: 1704: 1679: 1638: 1579: 1519: 1480:(3): 697–701. 1460: 1423:(1–2): 47–54. 1403: 1376: 1339: 1296: 1253: 1202: 1151: 1109: 1108: 1107: 1102: 1099: 1098: 1097: 1092: 1090:Sequence motif 1087: 1082: 1076: 1071: 1066: 1065: 1064: 1059: 1057:Protein family 1054: 1049: 1044: 1039: 1034: 1024: 1018: 1012: 1007: 1005:Binding domain 1001: 1000: 997:Biology portal 984: 981: 960:Main article: 957: 954: 953: 952: 935: 913: 882: 860: 829: 819: 803:found in each 791: 774: 764: 741: 727: 724: 711:density maps. 672:The method of 646: 643: 633: 630: 628:spectroscopy. 602:Main article: 599: 596: 582: 579: 575:folding funnel 544: 541: 539: 536: 464: 461: 460: 459: 456:DNA polymerase 452: 446: 443: 430: 427: 408: 407: 400: 399: 398: 389:AIR synthetase 385:GAR synthetase 375: 372: 341:immunoglobulin 317: 314: 308: 305: 296: 293: 287: 286:Limits on size 284: 283: 282: 279: 272: 268: 257:protein family 246: 243: 179:Main article: 176: 173: 144: 141: 136: 135: 132: 129: 101: 98: 82:EF hand domain 46:protein domain 15: 13: 10: 9: 6: 4: 3: 2: 7015: 7004: 7001: 6999: 6996: 6994: 6991: 6989: 6986: 6985: 6983: 6976: 6966: 6963: 6961: 6958: 6956: 6953: 6951: 6948: 6946: 6943: 6941: 6938: 6936: 6933: 6931: 6928: 6926: 6923: 6922: 6920: 6916: 6910: 6907: 6905: 6902: 6900: 6897: 6895: 6894:Determination 6892: 6890: 6887: 6885: 6882: 6880: 6877: 6875: 6872: 6871: 6869: 6867: 6863: 6857: 6854: 6852: 6849: 6847: 6844: 6842: 6841:Determination 6839: 6837: 6834: 6832: 6829: 6827: 6824: 6822: 6819: 6818: 6816: 6814: 6810: 6806: 6799: 6794: 6792: 6787: 6785: 6780: 6779: 6776: 6762: 6759: 6757: 6754: 6752: 6749: 6748: 6747: 6744: 6742: 6739: 6737: 6736:Chromoprotein 6734: 6732: 6729: 6725: 6722: 6720: 6717: 6715: 6712: 6711: 6710: 6707: 6705: 6702: 6700: 6697: 6696: 6694: 6690: 6684: 6681: 6679: 6676: 6674: 6671: 6670: 6668: 6664: 6658: 6655: 6653: 6650: 6648: 6645: 6643: 6640: 6638: 6635: 6633: 6630: 6629: 6627: 6623: 6619: 6612: 6607: 6605: 6600: 6598: 6593: 6592: 6589: 6577: 6574: 6573: 6571: 6567: 6561: 6560:SH2-like fold 6558: 6556: 6553: 6551: 6548: 6546: 6543: 6542: 6540: 6536: 6530: 6527: 6525: 6522: 6520: 6519:Rossmann fold 6517: 6515: 6512: 6510: 6507: 6505: 6502: 6501: 6499: 6495: 6489: 6486: 6484: 6481: 6479: 6476: 6474: 6471: 6470: 6468: 6464: 6458: 6455: 6453: 6450: 6448: 6445: 6443: 6440: 6438: 6435: 6434: 6432: 6428: 6422: 6419: 6417: 6414: 6412: 6409: 6408: 6406: 6402: 6398: 6391: 6386: 6384: 6379: 6377: 6372: 6371: 6368: 6356: 6353: 6351: 6348: 6346: 6343: 6341: 6338: 6336: 6333: 6331: 6328: 6326: 6323: 6321: 6318: 6316: 6313: 6311: 6308: 6306: 6303: 6299: 6296: 6295: 6294: 6291: 6289: 6286: 6284: 6281: 6279: 6276: 6274: 6271: 6269: 6266: 6264: 6261: 6259: 6256: 6254: 6251: 6249: 6246: 6244: 6241: 6239: 6236: 6234: 6231: 6229: 6226: 6224: 6221: 6219: 6216: 6212: 6209: 6207: 6204: 6202: 6199: 6197: 6194: 6193: 6192: 6189: 6187: 6184: 6182: 6179: 6177: 6174: 6172: 6169: 6167: 6164: 6162: 6159: 6157: 6154: 6152: 6149: 6147: 6144: 6142: 6139: 6137: 6134: 6132: 6129: 6127: 6124: 6122: 6119: 6117: 6114: 6112: 6109: 6107: 6104: 6102: 6099: 6097: 6094: 6092: 6089: 6087: 6084: 6082: 6079: 6077: 6074: 6072: 6069: 6068: 6065: 6061: 6054: 6049: 6047: 6042: 6040: 6035: 6034: 6031: 6024: 6021: 6020: 6016: 6011: 6008: 6006: 6003: 6001: 5998: 5996: 5993: 5991: 5988: 5985: 5981: 5978: 5976: 5973: 5972: 5968: 5964: 5961: 5958: 5954: 5951: 5949: 5946: 5944: 5941: 5939: 5936: 5934: 5931: 5930: 5926: 5921: 5914: 5910: 5905: 5900: 5896: 5892: 5889:(1): 268–72. 5888: 5884: 5880: 5876: 5872: 5868: 5864: 5860: 5855: 5850: 5847:(3): 366–76. 5846: 5842: 5838: 5833: 5829: 5825: 5820: 5815: 5812:(3): 351–65. 5811: 5807: 5803: 5798: 5794: 5790: 5786: 5782: 5778: 5774: 5769: 5765: 5761: 5756: 5751: 5747: 5743: 5739: 5735: 5731: 5726: 5722: 5718: 5713: 5708: 5704: 5700: 5696: 5692: 5688: 5683: 5679: 5675: 5671: 5667: 5663: 5659: 5654: 5650: 5646: 5641: 5636: 5632: 5628: 5624: 5620: 5616: 5611: 5607: 5603: 5599: 5593: 5589: 5585: 5581: 5577: 5572: 5565: 5561: 5557: 5553: 5549: 5546:(4): 536–40. 5545: 5541: 5534: 5530: 5526: 5522: 5517: 5513: 5509: 5504: 5499: 5495: 5491: 5487: 5483: 5479: 5474: 5470: 5466: 5462: 5458: 5455:(1): 631–60. 5454: 5450: 5445: 5441: 5437: 5433: 5429: 5424: 5419: 5416:(2): 283–93. 5415: 5411: 5406: 5402: 5398: 5394: 5390: 5387:(1): 151–71. 5386: 5382: 5377: 5373: 5369: 5365: 5361: 5357: 5353: 5350:(4): 425–35. 5349: 5345: 5340: 5336: 5332: 5327: 5322: 5318: 5314: 5310: 5305: 5301: 5297: 5293: 5289: 5285: 5281: 5277: 5273: 5269: 5265: 5260: 5256: 5252: 5247: 5242: 5238: 5232: 5228: 5224: 5220: 5215: 5211: 5207: 5203: 5199: 5195: 5191: 5187: 5183: 5179: 5175: 5171: 5167: 5164:(3): 819–35. 5163: 5159: 5155: 5151: 5147: 5143: 5138: 5133: 5129: 5125: 5121: 5117: 5113: 5108: 5104: 5100: 5096: 5090: 5086: 5082: 5078: 5074: 5069: 5065: 5059: 5055: 5050: 5046: 5042: 5037: 5032: 5028: 5024: 5021:(1): 235–42. 5020: 5016: 5012: 5007: 5006: 5001: 4993: 4989: 4984: 4979: 4975: 4971: 4967: 4963: 4959: 4952: 4949: 4944: 4940: 4935: 4930: 4926: 4922: 4918: 4914: 4910: 4903: 4900: 4895: 4891: 4887: 4883: 4880:(4): 215–23. 4879: 4875: 4868: 4865: 4859: 4856: 4851: 4847: 4843: 4839: 4834: 4829: 4825: 4821: 4817: 4810: 4808: 4804: 4799: 4795: 4791: 4787: 4784:(2): 520–31. 4783: 4779: 4772: 4769: 4764: 4760: 4756: 4752: 4748: 4744: 4737: 4730: 4727: 4722: 4718: 4714: 4710: 4706: 4702: 4695: 4692: 4686: 4683: 4678: 4674: 4670: 4666: 4662: 4658: 4651: 4648: 4643: 4639: 4634: 4629: 4626:(3): 203–16. 4625: 4621: 4617: 4610: 4607: 4602: 4598: 4593: 4588: 4584: 4580: 4577:(6): 1210–9. 4576: 4572: 4568: 4561: 4558: 4553: 4549: 4544: 4539: 4535: 4531: 4528:(5): 872–84. 4527: 4523: 4519: 4512: 4510: 4506: 4501: 4497: 4492: 4487: 4483: 4479: 4475: 4471: 4467: 4460: 4458: 4454: 4449: 4445: 4440: 4435: 4430: 4425: 4421: 4417: 4414:(2): 559–63. 4413: 4409: 4405: 4398: 4396: 4392: 4387: 4383: 4379: 4375: 4372:(3): 447–70. 4371: 4367: 4360: 4357: 4352: 4348: 4344: 4340: 4336: 4332: 4328: 4324: 4320: 4316: 4309: 4306: 4301: 4297: 4293: 4289: 4286:(3): 315–32. 4285: 4281: 4274: 4272: 4268: 4263: 4259: 4254: 4249: 4245: 4241: 4237: 4233: 4229: 4222: 4219: 4214: 4210: 4205: 4200: 4196: 4192: 4188: 4181: 4178: 4173: 4169: 4164: 4159: 4155: 4151: 4148:(1): 103–12. 4147: 4143: 4139: 4132: 4129: 4124: 4120: 4115: 4110: 4106: 4102: 4099:(3): 506–20. 4098: 4094: 4090: 4083: 4081: 4077: 4072: 4068: 4063: 4058: 4053: 4048: 4044: 4040: 4036: 4032: 4028: 4021: 4018: 4013: 4009: 4004: 3999: 3995: 3991: 3987: 3983: 3979: 3975: 3971: 3964: 3961: 3956: 3952: 3947: 3942: 3937: 3932: 3928: 3924: 3920: 3916: 3912: 3905: 3902: 3897: 3893: 3888: 3883: 3879: 3875: 3871: 3867: 3863: 3859: 3855: 3848: 3846: 3844: 3840: 3836: 3830: 3827: 3822: 3818: 3813: 3808: 3804: 3800: 3796: 3789: 3786: 3781: 3777: 3773: 3769: 3765: 3761: 3754: 3751: 3746: 3742: 3737: 3732: 3728: 3724: 3720: 3716: 3712: 3705: 3702: 3697: 3693: 3689: 3685: 3680: 3675: 3672:(3): 839–51. 3671: 3667: 3660: 3657: 3652: 3648: 3643: 3638: 3634: 3630: 3626: 3622: 3619:(4): 911–21. 3618: 3614: 3610: 3603: 3600: 3595: 3591: 3587: 3583: 3579: 3575: 3571: 3567: 3560: 3557: 3552: 3548: 3543: 3538: 3533: 3528: 3524: 3520: 3516: 3512: 3508: 3501: 3498: 3493: 3489: 3484: 3479: 3475: 3471: 3467: 3463: 3459: 3452: 3449: 3441: 3437: 3433: 3429: 3425: 3421: 3417: 3410: 3403: 3400: 3395: 3391: 3386: 3381: 3377: 3373: 3370:(5): 874–82. 3369: 3365: 3361: 3354: 3351: 3346: 3342: 3338: 3334: 3330: 3326: 3319: 3316: 3311: 3307: 3303: 3299: 3295: 3291: 3288:(3): 207–19. 3287: 3283: 3276: 3273: 3268: 3264: 3260: 3256: 3252: 3248: 3241: 3239: 3235: 3230: 3226: 3222: 3218: 3215:(4): 604–16. 3214: 3210: 3203: 3200: 3195: 3191: 3187: 3183: 3180:(3): 338–45. 3179: 3175: 3168: 3165: 3160: 3156: 3151: 3146: 3141: 3136: 3132: 3128: 3124: 3120: 3116: 3109: 3106: 3094: 3093:smart.embl.de 3090: 3084: 3081: 3076: 3072: 3068: 3064: 3060: 3056: 3052: 3048: 3041: 3038: 3033: 3029: 3025: 3021: 3016: 3011: 3007: 3003: 2999: 2995: 2988: 2985: 2980: 2976: 2972: 2968: 2964: 2960: 2957:(3): 157–64. 2956: 2952: 2945: 2942: 2937: 2933: 2929: 2925: 2922:(1): 231–43. 2921: 2917: 2910: 2907: 2902: 2898: 2894: 2890: 2886: 2882: 2879:(2): 311–25. 2878: 2874: 2867: 2864: 2859: 2855: 2851: 2847: 2843: 2839: 2835: 2831: 2827: 2823: 2816: 2813: 2800: 2796: 2792: 2785: 2782: 2777: 2771: 2763: 2759: 2755: 2753:9780815344322 2749: 2745: 2738: 2735: 2730: 2726: 2722: 2718: 2715:(5): 168–72. 2714: 2710: 2703: 2700: 2695: 2691: 2686: 2681: 2676: 2671: 2667: 2663: 2659: 2652: 2649: 2644: 2640: 2636: 2632: 2628: 2624: 2620: 2616: 2612: 2608: 2604: 2597: 2594: 2589: 2585: 2581: 2577: 2574:(3): 416–21. 2573: 2569: 2562: 2559: 2554: 2550: 2545: 2540: 2536: 2532: 2528: 2524: 2520: 2513: 2510: 2505: 2499: 2495: 2488: 2486: 2482: 2477: 2473: 2468: 2463: 2459: 2455: 2451: 2444: 2441: 2436: 2432: 2428: 2424: 2421:(6): 513–25. 2420: 2416: 2409: 2407: 2405: 2401: 2396: 2392: 2387: 2382: 2377: 2372: 2368: 2364: 2360: 2356: 2352: 2345: 2342: 2337: 2333: 2329: 2325: 2322:(3): 233–45. 2321: 2317: 2310: 2307: 2302: 2298: 2294: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2259: 2256: 2251: 2247: 2243: 2239: 2235: 2231: 2228:(4): 1371–5. 2227: 2223: 2216: 2213: 2208: 2196: 2188: 2184: 2180: 2178:9780120342556 2174: 2170: 2166: 2162: 2155: 2152: 2147: 2143: 2139: 2135: 2128: 2125: 2120: 2116: 2112: 2108: 2104: 2100: 2093: 2090: 2085: 2081: 2076: 2071: 2066: 2061: 2057: 2053: 2049: 2045: 2041: 2034: 2032: 2028: 2023: 2019: 2015: 2011: 2007: 2003: 2000:(3): 256–68. 1999: 1995: 1988: 1986: 1982: 1977: 1973: 1968: 1963: 1959: 1955: 1952:(2): 233–42. 1951: 1947: 1943: 1936: 1934: 1930: 1925: 1921: 1917: 1913: 1909: 1905: 1902:(2): 139–48. 1901: 1897: 1890: 1887: 1882: 1878: 1873: 1868: 1865:(4): 627–41. 1864: 1860: 1856: 1849: 1846: 1841: 1837: 1832: 1827: 1823: 1819: 1815: 1808: 1806: 1802: 1797: 1793: 1789: 1785: 1781: 1777: 1773: 1769: 1765: 1761: 1753: 1750: 1745: 1741: 1737: 1733: 1728: 1723: 1720:(1): 147–64. 1719: 1715: 1708: 1705: 1693: 1689: 1683: 1680: 1675: 1671: 1666: 1661: 1658:(11): 871–9. 1657: 1653: 1649: 1642: 1639: 1634: 1630: 1625: 1620: 1615: 1610: 1606: 1602: 1599:(9): e12736. 1598: 1594: 1590: 1583: 1580: 1575: 1571: 1567: 1563: 1558: 1553: 1549: 1545: 1541: 1537: 1533: 1530:(June 1992). 1529: 1523: 1520: 1515: 1511: 1506: 1501: 1496: 1491: 1487: 1483: 1479: 1475: 1471: 1464: 1461: 1456: 1452: 1448: 1444: 1439: 1434: 1430: 1426: 1422: 1418: 1414: 1407: 1404: 1391: 1387: 1383: 1379: 1377:9780120342341 1373: 1369: 1365: 1361: 1357: 1353: 1346: 1344: 1340: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1300: 1297: 1292: 1288: 1284: 1280: 1276: 1272: 1268: 1264: 1257: 1254: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1206: 1203: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1155: 1152: 1147: 1143: 1138: 1133: 1129: 1125: 1121: 1114: 1111: 1105: 1104: 1100: 1096: 1093: 1091: 1088: 1086: 1083: 1080: 1077: 1075: 1072: 1070: 1067: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1043: 1040: 1038: 1035: 1033: 1030: 1029: 1028: 1025: 1022: 1019: 1016: 1013: 1011: 1008: 1006: 1003: 1002: 998: 992: 987: 982: 980: 978: 973: 969: 963: 955: 950: 946: 942: 939: 936: 933: 929: 925: 921: 917: 914: 910: 906: 905:PtdIns(4,5)P2 902: 901:PtdIns(3,4)P2 898: 894: 890: 886: 883: 880: 876: 872: 868: 864: 861: 858: 857:immune system 854: 853:cell adhesion 850: 846: 842: 838: 834: 830: 827: 823: 822:Foldon domain 820: 817: 813: 810: 806: 802: 799: 795: 792: 789: 785: 782: 778: 775: 772: 768: 765: 762: 758: 754: 750: 746: 742: 739: 738: 733: 730: 729: 725: 723: 721: 717: 712: 710: 706: 702: 697: 694: 690: 686: 684: 678: 675: 670: 668: 663: 661: 656: 652: 644: 642: 638: 631: 629: 627: 623: 619: 615: 611: 605: 597: 595: 591: 587: 580: 578: 576: 570: 567: 562: 559: 555: 550: 542: 537: 535: 533: 529: 525: 521: 517: 511: 507: 505: 501: 496: 494: 491: 486: 482: 474: 469: 462: 457: 453: 450: 447: 444: 441: 440: 439: 436: 428: 422: 421:Kelch domains 418: 414: 410: 404: 397: 394: 390: 386: 380: 373: 371: 367: 365: 361: 356: 352: 350: 346: 342: 338: 334: 330: 326: 322: 315: 313: 306: 304: 302: 294: 292: 285: 280: 277: 273: 269: 266: 265: 264: 262: 258: 254: 249: 244: 242: 240: 236: 232: 229: 225: 221: 217: 212: 210: 206: 202: 197: 192: 188: 182: 174: 172: 168: 165: 161: 156: 154: 150: 142: 140: 133: 130: 127: 126: 125: 123: 119: 115: 111: 107: 99: 97: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 51: 47: 43: 34: 30: 25: 21: 6975: 6945:Nucleic acid 6929: 6677: 6466:All-β folds: 6437:Helix bundle 6430:All-α folds: 6410: 6059: 5886: 5882: 5844: 5840: 5809: 5805: 5776: 5772: 5737: 5733: 5697:(1): 284–5. 5694: 5690: 5664:(2): 200–1. 5661: 5657: 5625:(1): 231–4. 5622: 5618: 5579: 5564:the original 5543: 5539: 5488:(1): 260–2. 5485: 5481: 5452: 5448: 5413: 5409: 5384: 5380: 5347: 5343: 5316: 5312: 5267: 5263: 5218: 5193: 5189: 5161: 5157: 5119: 5115: 5076: 5072: 5053: 5018: 5014: 4965: 4961: 4951: 4916: 4912: 4902: 4877: 4873: 4867: 4858: 4823: 4819: 4781: 4777: 4771: 4746: 4742: 4729: 4704: 4701:Biochemistry 4700: 4694: 4689:Rashin, 1985 4685: 4660: 4657:Biochemistry 4656: 4650: 4623: 4619: 4609: 4574: 4570: 4560: 4525: 4521: 4476:(1): 231–4. 4473: 4469: 4411: 4407: 4369: 4365: 4359: 4318: 4314: 4308: 4283: 4279: 4238:(1): 24–42. 4235: 4231: 4221: 4197:(1): 21–78. 4194: 4190: 4180: 4145: 4141: 4131: 4096: 4092: 4034: 4030: 4020: 3977: 3973: 3963: 3918: 3914: 3904: 3861: 3857: 3834: 3829: 3802: 3798: 3788: 3766:(2): 563–9. 3763: 3759: 3753: 3718: 3714: 3704: 3669: 3665: 3659: 3616: 3612: 3602: 3569: 3565: 3559: 3514: 3510: 3500: 3465: 3461: 3451: 3440:the original 3419: 3415: 3402: 3367: 3363: 3353: 3328: 3324: 3318: 3285: 3281: 3275: 3253:(1): 49–79. 3250: 3246: 3212: 3208: 3202: 3177: 3173: 3167: 3122: 3118: 3108: 3096:. Retrieved 3092: 3083: 3050: 3046: 3040: 2997: 2993: 2987: 2954: 2950: 2944: 2919: 2915: 2909: 2876: 2872: 2866: 2825: 2821: 2815: 2803:. Retrieved 2799:the original 2794: 2784: 2743: 2737: 2712: 2708: 2702: 2665: 2662:BMC Genomics 2661: 2651: 2610: 2606: 2596: 2571: 2567: 2561: 2526: 2522: 2512: 2493: 2460:(7): 613–8. 2457: 2453: 2443: 2418: 2414: 2358: 2354: 2344: 2319: 2315: 2309: 2268: 2264: 2258: 2225: 2221: 2215: 2160: 2154: 2140:(2): 197–9. 2137: 2133: 2127: 2102: 2098: 2092: 2047: 2043: 1997: 1993: 1949: 1945: 1899: 1895: 1889: 1862: 1858: 1848: 1821: 1817: 1763: 1759: 1752: 1717: 1713: 1707: 1695:. Retrieved 1691: 1682: 1655: 1651: 1641: 1596: 1592: 1582: 1539: 1535: 1522: 1477: 1473: 1463: 1420: 1417:FEBS Letters 1416: 1406: 1394:. Retrieved 1390:the original 1359: 1355: 1309: 1305: 1299: 1266: 1262: 1256: 1215: 1211: 1205: 1167:(5): 78–90. 1164: 1160: 1154: 1127: 1123: 1113: 967: 965: 927: 753:dimerization 735: 715: 713: 698: 691: 687: 679: 671: 664: 648: 639: 635: 607: 592: 588: 584: 571: 563: 553: 552: 512: 508: 497: 490:chymotrypsin 478: 454:slippage of 432: 412: 381: 377: 368: 353: 320: 319: 310: 298: 289: 250: 248: 237: 233: 213: 184: 169: 157: 146: 137: 105: 103: 74:zinc fingers 45: 39: 6756:Phytochrome 6746:Biliprotein 6478:Beta barrel 6442:Globin fold 6355:zinc finger 6010:SUPERFAMILY 5779:(1): 1–22. 5740:(1): 22–8. 5519:Murzin AG, 5122:(1): 55–7. 3572:(1): 10–9. 3416:J Chim Phys 2795:www.pdb.org 2789:wwPDB.org. 2105:(1): 3–10. 1362:: 167–339. 1130:(1): 11–7. 938:Zinc finger 849:amino acids 841:beta sheets 837:amino acids 745:bZIP domain 699:The method 693:RigidFinder 667:dendrograms 70:amino acids 6982:Categories 6940:Proteasome 6899:Prediction 6889:Quaternary 6846:Prediction 6836:Quaternary 6683:Proteasome 6666:Structures 6538:α+β folds: 6504:TIM barrel 6497:α/β folds: 6488:Beta helix 6457:Death fold 5521:Brenner SE 5196:(1): 3–9. 5079:: 159–83. 5002:Key papers 1697:14 October 1101:References 932:SH3 domain 897:PtdIns(4)P 893:PtdIns(3)P 873:bind to a 816:troponin-C 812:calmodulin 749:eukaryotic 164:TIM barrel 100:Background 86:calmodulin 6879:Secondary 6826:Secondary 6761:Lipocalin 6625:Processes 6576:Conotoxin 6545:DNA clamp 6243:EcoEI_R_C 5875:Chothia C 5529:Chothia C 5525:Hubbard T 5418:CiteSeerX 5313:Structure 5186:Fersht AR 3674:CiteSeerX 3422:: 44–45. 3282:BioEssays 3098:1 January 3010:CiteSeerX 2951:BioEssays 2770:cite book 2762:887605755 2205:ignored ( 2195:cite book 1818:Structure 1722:CiteSeerX 1528:Chothia C 1396:3 January 949:promoters 845:cysteines 788:apoptosis 784:proteases 614:allostery 520:C2 domain 473:PH domain 435:evolution 228:β-hairpin 205:α-helices 36:​). 6918:See also 6884:Tertiary 6831:Tertiary 6714:Globulin 6652:Proteome 6618:Proteins 5975:InterPro 5913:11752312 5764:11125040 5678:11238081 5649:10592234 5512:10592241 5440:10550209 5372:29808315 5364:10450084 5344:Proteins 5335:10508779 5154:Dyson HJ 5146:11125048 5103:10829228 5045:10592235 4992:30357350 4943:20944204 4894:14690046 4850:28106759 4842:19696046 4798:22079400 4763:22796953 4642:10235621 4071:16306270 4012:21081097 3955:22802671 3896:19527659 3745:15980446 3696:11866536 3594:11557990 3492:10386867 3394:25694109 3310:46012215 3075:20878849 3067:18064672 2979:24897614 2936:15808866 2901:11894663 2893:11428892 2694:18828911 2643:29756896 2476:11038331 2187:11050932 2084:13683522 1994:Proteins 1924:15340449 1896:Proteins 1881:11054297 1744:10329133 1674:12538906 1633:20856875 1593:PLOS ONE 1455:22126481 1197:39959172 983:See also 928:See also 920:oncogene 786:trigger 771:adhesion 767:Cadherin 757:arginine 558:Anfinsen 522:pair in 500:kinesins 347:and the 329:Bacteria 209:β-sheets 196:residues 134:folding. 110:lysozyme 6925:Protein 6874:Primary 6821:Primary 6724:Albumin 6719:Edestin 6404:General 6273:Kringle 6166:CGI-121 6136:BTB/POZ 5990:PROSITE 5982:at the 5955:at the 5871:Gough J 5863:7563057 5828:7563056 5793:2769748 5721:9847202 5606:4079796 5560:7723011 5469:2197986 5401:2067014 5300:4313732 5292:7231530 5272:Bibcode 5255:8743676 5210:9032066 5178:1507228 4983:6324024 4934:2954198 4721:3778881 4677:7306523 4601:9194181 4592:2143719 4552:7663343 4543:2143117 4500:9016542 4416:Bibcode 4351:4273028 4343:4368490 4323:Bibcode 4262:9007974 4253:2143523 4213:6353481 4172:7773168 4163:2142966 4123:7795532 4114:2143076 4062:1345721 4039:Bibcode 4003:2980739 3982:Bibcode 3946:3411975 3923:Bibcode 3887:2712024 3866:Bibcode 3780:7306096 3736:1160142 3651:2188687 3642:1280792 3621:Bibcode 3586:8989315 3551:1528885 3519:Bibcode 3483:2144345 3424:Bibcode 3385:4420535 3345:7716150 3302:8867735 3229:8568900 3194:9666330 3159:1409594 3127:Bibcode 3047:Genesis 3032:9381171 3002:Bibcode 2994:Science 2971:8098212 2858:4330359 2850:7990952 2830:Bibcode 2805:25 July 2729:7764899 2685:2576256 2668:: 452. 2615:Bibcode 2607:Science 2588:9204285 2553:8580836 2544:2143041 2435:8532675 2395:3513170 2363:Bibcode 2336:8506258 2301:4154884 2273:Bibcode 2250:8702994 2242:9917381 2119:8696970 2052:Bibcode 2014:7937738 1976:9521098 1967:2143930 1916:2664768 1840:9309224 1796:4195346 1788:1134550 1768:Bibcode 1624:2939071 1601:Bibcode 1574:4355476 1566:1608464 1544:Bibcode 1514:4351801 1482:Bibcode 1447:1864378 1425:Bibcode 1386:7020376 1334:4540988 1314:Bibcode 1306:Science 1291:4122075 1271:Bibcode 1263:Science 1248:4169127 1240:5681232 1220:Bibcode 1189:5978599 1169:Bibcode 1146:9502316 1027:Protein 879:insulin 807:of the 794:EF hand 781:Caspase 701:RIBFIND 645:Methods 543:Folding 532:auxilin 349:kringle 333:Eukarya 325:Archaea 261:classes 191:protein 50:protein 6904:Design 6851:Design 5995:ProDom 5911:  5901:  5861:  5826:  5791:  5762:  5752:  5719:  5712:148157 5709:  5676:  5647:  5640:102444 5637:  5604:  5594:  5558:  5510:  5503:102474 5500:  5467:  5438:  5420:  5399:  5370:  5362:  5333:  5298:  5290:  5264:Nature 5253:  5246:145575 5243:  5233:  5208:  5176:  5144:  5134:  5101:  5091:  5060:  5043:  5036:102472 5033:  4990:  4980:  4941:  4931:  4892:  4848:  4840:  4796:  4761:  4719:  4675:  4640:  4599:  4589:  4550:  4540:  4498:  4491:146389 4488:  4448:273218 4446:  4439:411294 4436:  4386:537072 4384:  4349:  4341:  4315:Nature 4300:745231 4298:  4260:  4250:  4211:  4170:  4160:  4121:  4111:  4069:  4059:  4010:  4000:  3953:  3943:  3894:  3884:  3821:873903 3819:  3778:  3743:  3733:  3694:  3676:  3649:  3639:  3592:  3584:  3549:  3539:  3490:  3480:  3392:  3382:  3343:  3308:  3300:  3267:430571 3265:  3227:  3192:  3157:  3147:  3073:  3065:  3030:  3012:  2977:  2969:  2934:  2899:  2891:  2856:  2848:  2822:Nature 2760:  2750:  2727:  2692:  2682:  2641:  2635:860134 2633:  2586:  2551:  2541:  2500:  2474:  2433:  2393:  2386:323042 2383:  2334:  2299:  2293:934293 2291:  2265:Nature 2248:  2240:  2185:  2175:  2146:117925 2144:  2117:  2082:  2075:223141 2072:  2022:525264 2020:  2012:  1974:  1964:  1922:  1914:  1879:  1838:  1794:  1786:  1760:Nature 1742:  1724:  1672:  1631:  1621:  1572:  1564:  1536:Nature 1512:  1505:433338 1502:  1453:  1445:  1384:  1374:  1332:  1289:  1246:  1238:  1212:Nature 1195:  1187:  1144:  1081:(SCOP) 1015:PANDIT 907:, and 761:lysine 720:PiSQRD 528:tensin 429:Origin 271:motif. 224:motifs 160:enzyme 114:papain 106:domain 6692:Types 6288:NACHT 6211:Pyrin 6191:Death 6156:Cache 6091:ADF-H 6000:SMART 5904:99153 5755:29819 5567:(PDF) 5536:(PDF) 5368:S2CID 5296:S2CID 5137:29815 4846:S2CID 4739:(PDF) 4347:S2CID 3590:S2CID 3542:49992 3443:(PDF) 3412:(PDF) 3306:S2CID 3150:50050 3071:S2CID 2975:S2CID 2897:S2CID 2854:S2CID 2639:S2CID 2297:S2CID 2246:S2CID 2018:S2CID 1920:S2CID 1792:S2CID 1570:S2CID 1451:S2CID 1244:S2CID 1193:S2CID 875:NPXpY 871:IRS-1 674:Wodak 485:titin 58:folds 6340:WD40 6335:TRIO 6268:HEAT 6263:FYVE 6258:FGGY 6253:ENTH 6233:DHR2 6228:DHR1 6223:DHHC 6206:CARD 6186:CVHN 6141:BZIP 6116:BESS 6101:ARID 6096:ANTH 6081:ACDC 6023:dcGO 5980:Pfam 5948:DALI 5943:CATH 5938:3Dee 5909:PMID 5859:PMID 5824:PMID 5789:PMID 5760:PMID 5717:PMID 5674:PMID 5645:PMID 5602:PMID 5592:ISBN 5556:PMID 5508:PMID 5465:PMID 5436:PMID 5397:PMID 5360:PMID 5331:PMID 5288:PMID 5251:PMID 5231:ISBN 5206:PMID 5174:PMID 5142:PMID 5099:PMID 5089:ISBN 5058:ISBN 5041:PMID 4988:PMID 4939:PMID 4890:PMID 4838:PMID 4794:PMID 4759:PMID 4717:PMID 4673:PMID 4638:PMID 4597:PMID 4548:PMID 4496:PMID 4444:PMID 4382:PMID 4339:PMID 4296:PMID 4258:PMID 4209:PMID 4168:PMID 4119:PMID 4067:PMID 4008:PMID 3951:PMID 3892:PMID 3817:PMID 3776:PMID 3741:PMID 3692:PMID 3647:PMID 3582:PMID 3547:PMID 3488:PMID 3390:PMID 3341:PMID 3298:PMID 3263:PMID 3225:PMID 3190:PMID 3155:PMID 3100:2017 3063:PMID 3028:PMID 2967:PMID 2932:PMID 2889:PMID 2846:PMID 2807:2007 2776:link 2758:OCLC 2748:ISBN 2725:PMID 2690:PMID 2631:PMID 2584:PMID 2549:PMID 2498:ISBN 2472:PMID 2431:PMID 2391:PMID 2332:PMID 2289:PMID 2238:PMID 2207:help 2183:PMID 2173:ISBN 2142:PMID 2115:PMID 2080:PMID 2010:PMID 1972:PMID 1912:PMID 1877:PMID 1836:PMID 1784:PMID 1740:PMID 1699:2018 1670:PMID 1629:PMID 1562:PMID 1510:PMID 1443:PMID 1398:2009 1382:PMID 1372:ISBN 1330:PMID 1287:PMID 1236:PMID 1185:PMID 1142:PMID 1021:Pfam 869:and 796:: a 759:and 683:FSSP 616:via 524:PTEN 502:and 391:and 331:and 276:CATH 207:and 185:The 112:and 44:, a 33:1PKN 6955:RNA 6950:DNA 6350:YTH 6330:SUN 6325:SH3 6320:SH2 6305:PDZ 6298:LOV 6293:PAS 6283:LRR 6278:LIM 6248:EF1 6218:DEP 6201:DED 6181:CUT 6176:CUB 6171:CRM 6161:CBS 6131:BPS 6126:BMC 6121:BIR 6111:BEN 6106:BAR 6086:ACT 6076:ABM 5899:PMC 5891:doi 5849:doi 5845:252 5814:doi 5810:252 5781:doi 5777:208 5750:PMC 5742:doi 5707:PMC 5699:doi 5666:doi 5635:PMC 5627:doi 5584:doi 5548:doi 5544:247 5498:PMC 5490:doi 5457:doi 5428:doi 5414:293 5389:doi 5385:220 5352:doi 5321:doi 5280:doi 5268:291 5241:PMC 5223:doi 5198:doi 5166:doi 5162:226 5132:PMC 5124:doi 5081:doi 5031:PMC 5023:doi 4978:PMC 4970:doi 4929:PMC 4921:doi 4882:doi 4828:doi 4786:doi 4782:177 4751:doi 4709:doi 4665:doi 4628:doi 4587:PMC 4579:doi 4538:PMC 4530:doi 4486:PMC 4478:doi 4434:PMC 4424:doi 4374:doi 4370:134 4331:doi 4319:250 4288:doi 4284:126 4248:PMC 4240:doi 4199:doi 4158:PMC 4150:doi 4109:PMC 4101:doi 4057:PMC 4047:doi 4035:102 3998:PMC 3990:doi 3941:PMC 3931:doi 3919:109 3882:PMC 3874:doi 3807:doi 3803:252 3768:doi 3764:101 3731:PMC 3723:doi 3684:doi 3670:316 3637:PMC 3629:doi 3574:doi 3537:PMC 3527:doi 3478:PMC 3470:doi 3432:doi 3380:PMC 3372:doi 3333:doi 3290:doi 3255:doi 3251:128 3217:doi 3213:255 3182:doi 3145:PMC 3135:doi 3055:doi 3020:doi 2998:278 2959:doi 2924:doi 2920:348 2881:doi 2877:310 2838:doi 2826:372 2717:doi 2680:PMC 2670:doi 2623:doi 2611:196 2576:doi 2539:PMC 2531:doi 2462:doi 2423:doi 2381:PMC 2371:doi 2324:doi 2281:doi 2269:261 2230:doi 2226:285 2165:doi 2138:289 2107:doi 2070:PMC 2060:doi 2002:doi 1962:PMC 1954:doi 1904:doi 1867:doi 1863:303 1826:doi 1776:doi 1764:255 1732:doi 1718:288 1660:doi 1619:PMC 1609:doi 1552:doi 1540:357 1500:PMC 1490:doi 1433:doi 1421:286 1364:doi 1322:doi 1310:180 1279:doi 1267:180 1228:doi 1216:218 1177:doi 1165:215 1132:doi 867:SHC 419:or 417:EGF 366:). 337:SH2 222:or 84:of 52:'s 40:In 29:PDB 6984:: 6345:X8 6315:PX 6310:PH 6238:DM 6196:DD 6151:C2 6146:C1 6071:3H 5907:. 5897:. 5887:30 5885:. 5881:. 5873:, 5857:. 5843:. 5839:. 5822:. 5808:. 5804:. 5787:. 5775:. 5758:. 5748:. 5738:29 5736:. 5732:. 5715:. 5705:. 5695:27 5693:. 5689:. 5672:. 5662:17 5660:. 5643:. 5633:. 5623:28 5621:. 5617:. 5600:. 5590:. 5578:. 5554:. 5542:. 5538:. 5527:, 5523:, 5506:. 5496:. 5486:28 5484:. 5480:. 5463:. 5453:59 5451:. 5434:. 5426:. 5412:. 5395:. 5383:. 5366:. 5358:. 5348:36 5346:. 5329:. 5315:. 5311:. 5294:. 5286:. 5278:. 5266:. 5249:. 5239:. 5229:. 5204:. 5192:. 5172:. 5160:. 5140:. 5130:. 5120:29 5118:. 5114:. 5097:. 5087:. 5077:54 5075:. 5039:. 5029:. 5019:28 5017:. 5013:. 4986:. 4976:. 4966:47 4964:. 4960:. 4937:. 4927:. 4917:66 4915:. 4911:. 4888:. 4878:15 4876:. 4844:. 4836:. 4824:25 4822:. 4818:. 4806:^ 4792:. 4780:. 4757:. 4747:28 4745:. 4741:. 4715:. 4705:25 4703:. 4671:. 4661:20 4659:. 4636:. 4624:12 4622:. 4618:. 4595:. 4585:. 4573:. 4569:. 4546:. 4536:. 4524:. 4520:. 4508:^ 4494:. 4484:. 4474:25 4472:. 4468:. 4456:^ 4442:. 4432:. 4422:. 4412:75 4410:. 4406:. 4394:^ 4380:. 4368:. 4345:. 4337:. 4329:. 4317:. 4294:. 4282:. 4270:^ 4256:. 4246:. 4234:. 4230:. 4207:. 4195:42 4193:. 4189:. 4166:. 4156:. 4144:. 4140:. 4117:. 4107:. 4095:. 4091:. 4079:^ 4065:. 4055:. 4045:. 4033:. 4029:. 4006:. 3996:. 3988:. 3978:99 3976:. 3972:. 3949:. 3939:. 3929:. 3917:. 3913:. 3890:. 3880:. 3872:. 3862:96 3860:. 3856:. 3842:^ 3815:. 3801:. 3797:. 3774:. 3762:. 3739:. 3729:. 3719:33 3717:. 3713:. 3690:. 3682:. 3668:. 3645:. 3635:. 3627:. 3617:57 3615:. 3611:. 3588:. 3580:. 3568:. 3545:. 3535:. 3525:. 3515:89 3513:. 3509:. 3486:. 3476:. 3464:. 3460:. 3430:. 3420:65 3418:. 3414:. 3388:. 3378:. 3368:24 3366:. 3362:. 3339:. 3327:. 3304:. 3296:. 3286:18 3284:. 3261:. 3249:. 3237:^ 3223:. 3211:. 3188:. 3176:. 3153:. 3143:. 3133:. 3123:89 3121:. 3117:. 3091:. 3069:. 3061:. 3051:45 3049:. 3026:. 3018:. 3008:. 2996:. 2973:. 2965:. 2955:15 2953:. 2930:. 2918:. 2895:. 2887:. 2875:. 2852:. 2844:. 2836:. 2824:. 2793:. 2772:}} 2768:{{ 2756:. 2723:. 2713:12 2711:. 2688:. 2678:. 2664:. 2660:. 2637:. 2629:. 2621:. 2609:. 2605:. 2582:. 2570:. 2547:. 2537:. 2525:. 2521:. 2484:^ 2470:. 2458:16 2456:. 2452:. 2429:. 2417:. 2403:^ 2389:. 2379:. 2369:. 2359:83 2357:. 2353:. 2330:. 2318:. 2295:. 2287:. 2279:. 2267:. 2244:. 2236:. 2224:. 2199:: 2197:}} 2193:{{ 2181:. 2171:. 2136:. 2113:. 2101:. 2078:. 2068:. 2058:. 2048:47 2046:. 2042:. 2030:^ 2016:. 2008:. 1998:19 1996:. 1984:^ 1970:. 1960:. 1948:. 1944:. 1932:^ 1918:. 1910:. 1898:. 1875:. 1861:. 1857:. 1834:. 1820:. 1816:. 1804:^ 1790:. 1782:. 1774:. 1762:. 1738:. 1730:. 1716:. 1690:. 1668:. 1656:15 1654:. 1650:. 1627:. 1617:. 1607:. 1595:. 1591:. 1568:. 1560:. 1550:. 1538:. 1534:. 1508:. 1498:. 1488:. 1478:70 1476:. 1472:. 1449:. 1441:. 1431:. 1419:. 1415:. 1380:. 1370:. 1360:34 1358:. 1354:. 1342:^ 1328:. 1320:. 1308:. 1285:. 1277:. 1265:. 1242:. 1234:. 1226:. 1214:. 1191:. 1183:. 1175:. 1163:. 1140:. 1126:. 1122:. 930:: 926:. 903:, 899:, 895:, 530:, 526:, 387:, 351:. 343:, 339:, 327:, 211:. 155:. 96:. 31:: 6797:e 6790:t 6783:v 6610:e 6603:t 6596:v 6389:e 6382:t 6375:v 6052:e 6045:t 6038:v 5915:. 5893:: 5865:. 5851:: 5830:. 5816:: 5795:. 5783:: 5766:. 5744:: 5723:. 5701:: 5680:. 5668:: 5651:. 5629:: 5608:. 5586:: 5550:: 5514:. 5492:: 5471:. 5459:: 5442:. 5430:: 5403:. 5391:: 5374:. 5354:: 5337:. 5323:: 5317:7 5302:. 5282:: 5274:: 5257:. 5225:: 5212:. 5200:: 5194:7 5180:. 5168:: 5148:. 5126:: 5105:. 5083:: 5066:. 5047:. 5025:: 4994:. 4972:: 4945:. 4923:: 4896:. 4884:: 4852:. 4830:: 4800:. 4788:: 4765:. 4753:: 4723:. 4711:: 4679:. 4667:: 4644:. 4630:: 4603:. 4581:: 4575:6 4554:. 4532:: 4526:4 4502:. 4480:: 4450:. 4426:: 4418:: 4388:. 4376:: 4353:. 4333:: 4325:: 4302:. 4290:: 4264:. 4242:: 4236:6 4215:. 4201:: 4174:. 4152:: 4146:4 4125:. 4103:: 4097:4 4073:. 4049:: 4041:: 4014:. 3992:: 3984:: 3957:. 3933:: 3925:: 3898:. 3876:: 3868:: 3823:. 3809:: 3782:. 3770:: 3747:. 3725:: 3698:. 3686:: 3653:. 3631:: 3623:: 3596:. 3576:: 3570:4 3553:. 3529:: 3521:: 3494:. 3472:: 3466:8 3434:: 3426:: 3396:. 3374:: 3347:. 3335:: 3329:7 3312:. 3292:: 3269:. 3257:: 3231:. 3219:: 3196:. 3184:: 3178:8 3161:. 3137:: 3129:: 3102:. 3077:. 3057:: 3034:. 3022:: 3004:: 2981:. 2961:: 2938:. 2926:: 2903:. 2883:: 2860:. 2840:: 2832:: 2809:. 2778:) 2764:. 2731:. 2719:: 2696:. 2672:: 2666:9 2645:. 2625:: 2617:: 2590:. 2578:: 2572:7 2555:. 2533:: 2527:4 2506:. 2478:. 2464:: 2437:. 2425:: 2419:8 2397:. 2373:: 2365:: 2338:. 2326:: 2320:6 2303:. 2283:: 2275:: 2252:. 2232:: 2209:) 2189:. 2167:: 2148:. 2121:. 2109:: 2103:6 2086:. 2062:: 2054:: 2024:. 2004:: 1978:. 1956:: 1950:7 1926:. 1906:: 1900:5 1883:. 1869:: 1842:. 1828:: 1822:5 1798:. 1778:: 1770:: 1746:. 1734:: 1701:. 1676:. 1662:: 1635:. 1611:: 1603:: 1597:5 1576:. 1554:: 1546:: 1516:. 1492:: 1484:: 1457:. 1435:: 1427:: 1400:. 1366:: 1336:. 1324:: 1316:: 1293:. 1281:: 1273:: 1250:. 1230:: 1222:: 1199:. 1179:: 1171:: 1148:. 1134:: 1128:3 951:. 934:. 859:. 818:. 763:. 740:. 518:– 451:; 423:.

Index


Pyruvate kinase
PDB
1PKN
molecular biology
protein
polypeptide chain
folds
three-dimensional structure
Molecular evolution
amino acids
zinc fingers
disulfide bridges
EF hand domain
calmodulin
genetic engineering
chimeric proteins
lysozyme
papain
immunoglobulins
protein structure
pyruvate kinase
protein families
enzyme
TIM barrel
Protein structure
primary structure
protein
residues
secondary structure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.