Knowledge (XXG)

Protein design

Source đź“ť

755:), when the optimization goal changes because designers introduce improvements and extensions to the protein design model, such as improvements to the structural flexibility allowed (e.g., protein backbone flexibility) or including sophisticated energy terms, many of the extensions on protein design that improve modeling are built atop these algorithms. For example, Rosetta Design incorporates sophisticated energy terms, and backbone flexibility using Monte Carlo as the underlying optimizing algorithm. OSPREY's algorithms build on the dead-end elimination algorithm and A* to incorporate continuous backbone and side-chain movements. Thus, these algorithms provide a good perspective on the different kinds of algorithms available for protein design. 2986:
resurfacing was the design of the RSC3 probe to select broadly neutralizing HIV antibodies at the NIH Vaccine Research Center. First, residues outside of the binding interface between the gp120 HIV envelope protein and the formerly discovered b12-antibody were selected to be designed. Then, the sequence spaced was selected based on evolutionary information, solubility, similarity with the wild-type, and other considerations. Then the RosettaDesign software was used to find optimal sequences in the selected sequence space. RSC3 was later used to discover the broadly neutralizing antibody VRC01 in the serum of a long-term HIV-infected non-progressor individual.
423:
conformations of many sequences. Thus, molecular mechanics force-fields must be tailored for protein design. In practice, protein design energy functions often incorporate both statistical terms and physics-based terms. For example, the Rosetta energy function, one of the most-used energy functions, incorporates physics-based energy terms originating in the CHARMM energy function, and statistical energy terms, such as rotamer probability and knowledge-based electrostatics. Typically, energy functions are highly customized between laboratories, and specifically tailored for every design.
2961:-binding peptides by Amy Keating and coworkers for 19 out of the 20 bZIP families; 8 of these peptides were specific for their intended partner over competing peptides. Further, positive and negative design was also used by Anderson and coworkers to predict mutations in the active site of a drug target that conferred resistance to a new drug; positive design was used to maintain wild-type activity, while negative design was used to disrupt binding of the drug. Recent computational redesign by Costas Maranas and coworkers was also capable of experimentally switching the 2627:
challenges is that, in general, the interfaces between proteins are more polar than protein cores, and binding involves a tradeoff between desolvation and hydrogen bond formation. To overcome this challenge, Bruce Tidor and coworkers developed a method to improve the affinity of antibodies by focusing on electrostatic contributions. They found that, for the antibodies designed in the study, reducing the desolvation costs of the residues in the interface increased the affinity of the binding pair.
394:, are typically derived from quantum mechanical simulations, and experimental data from thermodynamics, crystallography, and spectroscopy. These energy functions typically simplify physical energy function and make them pairwise decomposable, meaning that the total energy of a protein conformation can be calculated by adding the pairwise energy between each atom pair, which makes them attractive for optimization algorithms. Physics-based energy functions typically model an attractive-repulsive 345:
protein redesign because sequence mutations often result in small changes to the backbone structure. Moreover, backbone flexibility can be essential for more advanced applications of protein design, such as binding prediction and enzyme design. Some models of protein design backbone flexibility include small and continuous global backbone movements, discrete backbone samples around the target fold, backrub motions, and protein loop flexibility.
406: 1063:. A* computes a lower-bound score on each partial tree path that lower bounds (with guarantees) the energy of each of the expanded rotamers. Each partial conformation is added to a priority queue and at each iteration the partial path with the lowest lower bound is popped from the queue and expanded. The algorithm stops once a full conformation has been enumerated and guarantees that the conformation is the optimal. 469:
can be formulated as a sum of individual and pairwise terms between residue positions. If a designer is interested only in the best sequence, the protein design algorithm only requires the lowest-energy conformation of the lowest-energy sequence. In these cases, the amino acid identity of each rotamer can be ignored and all rotamers belonging to different amino acids can be treated the same. Let
246: 341:, in contrast, describe the rotamers as how likely they are to appear depending on the protein backbone arrangement around the side chain. Most protein design programs use one conformation (e.g., the modal value for rotamer dihedrals in space) or several points in the region described by the rotamer; the OSPREY protein design program, in contrast, models the entire continuous region. 354: 156:'s laboratory designed a full protein to a fold never seen before in nature. Later, in 2008, Baker's group computationally designed enzymes for two different reactions. In 2010, one of the most powerful broadly neutralizing antibodies was isolated from patient serum using a computationally designed protein probe. Due to these and other successes (e.g., see 302: 200: 2592:
medical needs. Although this method has high requirements for information and technology and is relatively difficult to implement, with the development of computing technology and bioinformatics, the application prospects of semi-rational design in protein engineering are becoming more and more broad.
2587:
The methodology of semi-rational design emphasizes the in-depth understanding of enzymes and the control of the evolutionary process. It allows researchers to use known information to guide the evolutionary process, thereby improving efficiency and success rate. This method plays an important role in
789:
The dead-end elimination (DEE) algorithm reduces the search space of the problem iteratively by removing rotamers that can be provably shown to be not part of the global lowest energy conformation (GMEC). On each iteration, the dead-end elimination algorithm compares all possible pairs of rotamers at
452:
have 4 rotamers each in the rotamer library, while Asn and His have 7 and 8 rotamers, respectively, in the rotamer library (from the Richardson's penultimate rotamer library). The animation loops through all (4 + 4) x (7 + 8) = 120 possibilities. The structure shown is that of myoglobin, PDB id: 1mbn.
422:
Protein design, however, has requirements that can sometimes be limited in molecular mechanics force-fields. Molecular mechanics force-fields, which have been used mostly in molecular dynamics simulations, are optimized for the simulation of single sequences, but protein design searches through many
314:
on the target structure in order to increase the number of sequences that can be designed for that structure and to minimize the chance of a sequence folding to a different structure. For example, in a protein redesign of one small amino acid (such as alanine) in the tightly packed core of a protein,
2591:
Semi-rational design has a wide range of applications, including but not limited to enzyme optimization, modification of drug targets, evolution of biocatalysts, etc. Through this method, researchers can more effectively improve the functional properties of proteins to meet specific biotechnology or
2489: 468:
The most common energy functions can be decomposed into pairwise terms between rotamers and amino acid types, which casts the problem as a combinatorial one, and powerful optimization algorithms can be used to solve it. In those cases, the total energy of each conformation belonging to each sequence
435:
Individual water molecules can sometimes have a crucial structural role in the core of proteins, and in protein–protein or protein–ligand interactions. Failing to model such waters can result in mispredictions of the optimal sequence of a protein–protein interface. As an alternative, water molecules
114:
When the first proteins were rationally designed during the 1970s and 1980s, the sequence for these was optimized manually based on analyses of other known proteins, the sequence composition, amino acid charges, and the geometry of the desired structure. The first designed proteins are attributed to
745:
algorithms, such as Monte Carlo, that are faster than exact algorithms but have no guarantees on the optimality of the results. Exact algorithms guarantee that the optimization process produced the optimal according to the protein design model. Thus, if the predictions of exact algorithms fail when
318:
Thus, an essential parameter of any design process is the amount of flexibility allowed for both the side-chains and the backbone. In the simplest models, the protein backbone is kept rigid while some of the protein side-chains are allowed to change conformations. However, side-chains can have many
223:
Most often, the target structure is based on a known structure of another protein. However, novel folds not seen in nature have been made increasingly possible. Peter S. Kim and coworkers designed trimers and tetramers of unnatural coiled coils, which had not been seen before in nature. The protein
451:
This animation illustrates the complexity of a protein design search, which typically compares all the rotamer-conformations from all possible mutations at all residues. In this example, the residues Phe36 and His 106 are allowed to mutate to, respectively, the amino acids Tyr and Asn. Phe and Tyr
211:
Protein function is heavily dependent on protein structure, and rational protein design uses this relationship to design function by designing proteins that have a target structure or fold. Thus, by definition, in rational protein design the target structure or ensemble of structures must be known
1025:
Although the Dead-end elimination algorithm runs in polynomial time on each iteration, it cannot guarantee convergence. If, after a certain number of iterations, the dead-end elimination algorithm does not prune any more rotamers, then either rotamers have to be merged or another search algorithm
457:
determined by the protein design energy function. Thus, a typical input to the protein design algorithm is the target fold, the sequence space, the structural flexibility, and the energy function, while the output is one or more sequences that are predicted to fold stably to the target structure.
431:
Water makes up most of the molecules surrounding proteins and is the main driver of protein structure. Thus, modeling the interaction between water and protein is vital in protein design. The number of water molecules that interact with a protein at any given time is huge and each one has a large
2064:
instances of the integer programming, but in order to maintain guarantees on optimality, they are most useful when used to approximate the dual of the protein design problem, because approximating the dual guarantees that no solutions are missed. Message-passing based approximations include the
357:
Comparison of various potential energy functions. The most accurate energy are those that use quantum mechanical calculations, but these are too slow for protein design. On the other extreme, heuristic energy functions are based on statistical terms and are very fast. In the middle are molecular
4210:
Wang, Jue; Lisanza, Sidney; Juergens, David; Tischer, Doug; Watson, Joseph L.; Castro, Karla M.; Ragotte, Robert; Saragovi, Amijai; Milles, Lukas F.; Baek, Minkyung; Anishchenko, Ivan; Yang, Wei; Hicks, Derrick R.; Expòsit, Marc; Schlichthaerle, Thomas; Chun, Jung-Ho; Dauparas, Justas; Bennett,
3025:
designs of globular proteins. Five more protein structures were designed, synthesized, and verified in 2012 by the Baker group. These new proteins serve no biotic function, but the structures are intended to act as building-blocks that can be expanded to incorporate functional active sites. The
2567:
Semi-rational design is a purposeful modification method based on a certain understanding of the sequence, structure, and catalytic mechanism of enzymes. This method is between irrational design and rational design. It uses known information and means to perform evolutionary modification on the
344:
Although rational protein design must preserve the general backbone fold a protein, allowing some backbone flexibility can significantly increase the number of sequences that fold to the structure while maintaining the general fold of the protein. Backbone flexibility is especially important in
2626:
Protein–protein interactions can be designed using protein design algorithms because the principles that rule protein stability also rule protein–protein binding. Protein–protein interaction design, however, presents challenges not commonly present in protein design. One of the most important
2619:) infection involve protein–protein interactions. Thus, to treat such diseases, it is desirable to design protein or protein-like therapeutics that bind one of the partners of the interaction and, thus, disrupt the disease-causing interaction. This requires designing protein-therapeutics for 456:
The goal of protein design is to find a protein sequence that will fold to a target structure. A protein design algorithm must, thus, search all the conformations of each sequence, with respect to the target fold, and rank sequences according to the lowest-energy conformation of each one, as
190:
environments. In order to make the problem tractable, these forces are simplified by protein design models. Although protein design programs vary greatly, they have to address four main modeling questions: What is the target structure of the design, what flexibility is allowed on the target
2985:
Protein resurfacing consists of designing a protein's surface while preserving the overall fold, core, and boundary regions of the protein intact. Protein resurfacing is especially useful to alter the binding of a protein to other proteins. One of the most important applications of protein
1009: 1715: 2938: 1026:
must be used to search the remaining search space. In such cases, the dead-end elimination acts as a pre-filtering algorithm to reduce the search space, while other algorithms, such as A*, Monte Carlo, Linear Programming, or FASTER are used to search the remaining search space.
5692:
Sander, Chris; Vriend, Gerrit; Bazan, Fernando; Horovitz, Amnon; Nakamura, Haruki; Ribas, Luis; Finkelstein, Alexei V.; Lockhart, Andrew; Merkl, Rainer; et al. (1992). "Protein Design on computers. Five new proteins: Shpilka, Grendel, Fingerclasp, Leather and Aida".
135:
simulations enabled the development of structure-based computational protein design tools. Following the development of these computational tools, great success has been achieved over the last 30 years in protein design. The first protein successfully designed completely
4140:
Russ, William P.; Figliuzzi, Matteo; Stocker, Christian; Barrat-Charlaix, Pierre; Socolich, Michael; Kast, Peter; Hilvert, Donald; Monasson, Remi; Cocco, Simona; Weigt, Martin; Ranganathan, Rama (2020). "An evolution-based model for designing chorismatemutase enzymes".
3034:
Several transmembrane proteins have been successfully designed, along with many other membrane-associated peptides and proteins. Recently, Costas Maranas and his coworkers developed an automated tool to redesign the pore size of Outer Membrane Porin Type-F (OmpF) from
2206:
The FASTER algorithm uses a combination of deterministic and stochastic criteria to optimize amino acid sequences. FASTER first uses DEE to eliminate rotamers that are not part of the optimal solution. Then, a series of iterative steps optimize the rotamer assignment.
1491:(ILP). One of the most powerful formulations uses binary variables to represent the presence of a rotamer and edges in the final solution, and constraints the solution to have exactly one rotamer for each residue and one pairwise interaction for each pair of residues: 66:
Rational protein design dates back to the mid-1970s. Recently, however, there were numerous examples of successful rational design of water-soluble and even transmembrane peptides and proteins, in part due to a better understanding of different factors contributing to
2568:
specific functions of the target enzyme. The characteristic of semi-rational design is that it does not rely solely on random mutation and screening, but combines the concept of directed evolution. It creates a library of random mutants with diverse sequences through
2223:
that each residue has about the probability of each rotamer in neighboring residues. The algorithm updates messages on every iteration and iterates until convergence or until a fixed number of iterations. Convergence is not guaranteed in protein design. The message
465:), this results in an exponential number of conformations for each sequence. Thus, in our 100 residue protein, and assuming that each amino acid has exactly 10 rotamers, a search algorithm that searches this space will have to search over 200 protein conformations. 374:
The most accurate energy functions are those based on quantum mechanical simulations. However, such simulations are too slow and typically impractical for protein design. Instead, many protein design algorithms use either physics-based energy functions adapted from
409:
Water-mediated hydrogen bonds play a key role in protein–protein binding. One such interaction is shown between residues D457, S365 in the heavy chain of the HIV-broadly-neutralizing antibody VRC01 (green) and residues N58 and Y59 in the HIV envelope protein GP120
2086:
Monte Carlo is one of the most widely used algorithms for protein design. In its simplest form, a Monte Carlo algorithm selects a residue at random, and in that residue a randomly chosen rotamer (of any amino acid) is evaluated. The new energy of the protein,
460:
The number of candidate protein sequences, however, grows exponentially with the number of protein residues; for example, there are 20 protein sequences of length 100. Furthermore, even if amino acid side-chain conformations are limited to a few rotamers (see
2948:
The design of protein–protein interactions must be highly specific because proteins can interact with a large number of proteins; successful design requires selective binders. Thus, protein design algorithms must be able to distinguish between on-target (or
2736:
The K* algorithm approximates the binding constant of the algorithm by including conformational entropy into the free energy calculation. The K* algorithm considers only the lowest-energy conformations of the free and bound complexes (denoted by the sets
414:
Statistical potentials, in contrast to physics-based potentials, have the advantage of being fast to compute, of accounting implicitly of complex effects and being less sensitive to small changes in the protein structure. These energy functions are
253:
computational design of a full protein. The target fold was that of the zinc finger in residues 33–60 of the structure of protein Zif268 (shown in red, PDB id: 1ZAA). The designed sequence had very little sequence identity with any known protein
305:
Common protein design programs use rotamer libraries to simplify the conformational space of protein side chains. This animation loops through all the rotamers of the isoleucine amino acid based on the Penultimate Rotamer Library (total of 7
2511:
is a use of protein design with huge bioengineering and biomedical applications. In general, designing a protein structure can be different from designing an enzyme, because the design of enzymes must consider many states involved in the
3401:
Wu, X; Yang, ZY; Li, Y; Hogerkorp, CM; Schief, WR; Seaman, MS; Zhou, T; Schmidt, SD; Wu, L; Xu, L; Longo, NS; McKee, K; O'Dell, S; Louder, MK; Wycuff, DL; Feng, Y; Nason, M; Doria-Rose, N; Connors, M; Kwong, PD; Roederer, M; Wyatt, RT;
2260: 236:
that bridge between secondary structure prediction and tertiary structures. These principles, which build on both protein structure prediction and protein design, were used to design five different novel protein topologies.
1935: 362:
Rational protein design techniques must be able to discriminate sequences that will be stable under the target fold from those that would prefer other low-energy competing states. Thus, protein design requires accurate
5765:
Pokala, Navin & Handel, Tracy M. (2005). "Energy Functions for Protein Design: Adjustment with Protein–Protein Complex Affinities, Models for the Unfolded State, and Negative Design of Solubility and Specificity".
1218: 810: 90:
to a specific protein structure. Although the number of possible protein sequences is vast, growing exponentially with the size of the protein chain, only a subset of them will fold reliably and quickly to one
746:
these are experimentally validated, then the source of error can be attributed to the energy function, the allowed flexibility, the sequence space or the target structure (e.g., if it cannot be designed for).
1497: 2755: 3870:
Zhou, T; Georgiev, I; Wu, X; Yang, ZY; Dai, K; Finzi, A; Kwon, YD; Scheid, JF; Shi, W; Xu, L; Yang, Y; Zhu, J; Nussenzweig, MC; Sodroski, J; Shapiro, L; Nabel, GJ; Mascola, JR; Kwong, PD (August 13, 2010).
293:-based designed proteins, for example, are often composed of Gly-Pro-X repeating patterns. The advent of computational techniques allows designing proteins with no human intervention in sequence selection. 2177: 432:
number of degrees of freedom and interaction partners. Instead, protein design programs model most of such water molecules as a continuum, modeling both the hydrophobic effect and solvation polarization.
2046:-based methods to perform the LP relaxation at each branch. These LP algorithms were developed as general-purpose optimization methods and are not optimized for the protein design problem (Equation ( 1799: 127:
peptides based on rules on sequence composition. Richardson and coworkers designed a 79-residue protein with no sequence homology to a known protein. In the 1990s, the advent of powerful computers,
2588:
protein function modification because it can combine the advantages of irrational design and rational design, and can explore unknown space and use known knowledge for targeted modification.
2730: 281:
to select HIV-broadly neutralizing antibodies was restricted based on evolutionary data and charge balancing. Many of the earliest attempts on protein design were heavily based on empiric
696: 3090: 2030:
algorithm to search only a small portion of the conformation space for the optimal solution. ILP solvers have been shown to solve many instances of the side-chain placement problem.
1999: 4744:
Röthlisberger, Daniela; Khersonsky, Olga; Wollacott, Andrew M.; Jiang, Lin; Dechancie, Jason; Betker, Jamie; Gallaher, Jasmine L.; Althoff, Eric A.; Zanghellini, Alexandre (2008).
4687:
Jiang, Lin; Althoff, Eric A.; Clemente, Fernando R.; Doyle, Lindsey; Rothlisberger, Daniela; Zanghellini, Alexandre; Gallaher, Jasmine L.; Betker, Jamie L.; Tanaka, Fujie (2008).
1454: 725:
problem. Even though the class of problems is NP-hard, in practice many instances of protein design can be solved exactly or optimized satisfactorily through heuristic methods.
228:'s lab, was designed completely using protein design algorithms, to a completely novel fold. More recently, Baker and coworkers developed a series of principles to design ideal 115:
Bernd Gutte, who designed a reduced version of a known catalyst, bovine ribonuclease, and tertiary structures consisting of beta-sheets and alpha-helices, including a binder of
5510:
Chowdhury, Ratul; Kumar, Manish; Maranas, Costas D.; Golbeck, John H.; Baker, Carol; Prabhakar, Jeevan; Grisewood, Matthew; Decker, Karl; Shankla, Manish (September 10, 2018).
2539:. Furthermore, Stephen Mayo and coworkers developed an iterative method to design the most efficient known enzyme for the Kemp-elimination reaction. Also, in the laboratory of 4793:
Siegel, JB; Zanghellini, A; Lovick, HM; Kiss, G; Lambert, AR; St Clair, JL; Gallaher, JL; Hilvert, D; Gelb, MH; Stoddard, BL; Houk, KN; Michael, FE; Baker, D (July 16, 2010).
371:
behind protein design. One of the most challenging requirements for successful design is an energy function that is both accurate and simple for computational calculations.
4595:
Desmet, J; Spriet, J; Lasters, I (July 1, 2002). "Fast and accurate side-chain topology and energy refinement (FASTER) as a new method for protein structure optimization".
3013:, which makes globular proteins more attractive for protein design than the other types of proteins. Most successful protein designs have involved globular proteins. Both 51:
approaches make protein-sequence predictions that will fold to specific structures. These predicted sequences can then be validated experimentally through methods such as
5816: 4850: 3928: 3026:
structures were found computationally by using new heuristics based on analyzing the connecting loops between parts of the sequence that specify secondary structures.
733:
Several algorithms have been developed specifically for the protein design problem. These algorithms can be divided into two broad classes: exact algorithms, such as
367:
that can rank and score sequences by how well they fold to the target structure. At the same time, however, these energy functions must consider the computational
7466: 315:
very few mutants would be predicted by a rational design approach to fold to the target structure, if the surrounding side-chains are not allowed to be repacked.
99:
minimum for the chain. Thus, protein design is the search for sequences that have the chosen structure as a free energy minimum. In a sense, it is the reverse of
5575:
Looger, Loren L.; Dwyer, Mary A.; Smith, James J. & Hellinga, Homme W. (2003). "Computational design of receptor and sensor proteins with novel functions".
3309:
Kuhlman, B; Dantas, G; Ireton, GC; Varani, G; Stoddard, BL; Baker, D (November 21, 2003). "Design of a novel globular protein fold with atomic-level accuracy".
2484:{\displaystyle m_{i\to j}(r_{j})=\max _{r_{i}}{\Big (}e^{\frac {-E_{i}(r_{i})-E_{ij}(r_{i},r_{j})}{T}}{\Big )}\prod _{k\in N(i)\backslash j}m_{k\to i(r_{i})}} 262:
protein design. In protein redesign, most of the residues in the sequence are maintained as their wild-type amino-acid while a few are allowed to mutate. In
749:
Some protein design algorithms are listed below. Although these algorithms address only the most basic formulation of the protein design problem, Equation (
3051:, proteins that will sense the presence of specific compounds. Some attempts in the design of biosensors include sensors for unnatural molecules including 2970: 4021:
Voigt, CA; Gordon, DB; Mayo, SL (June 9, 2000). "Trading accuracy for speed: A quantitative comparison of search algorithms in protein sequence design".
39:
molecules to design novel activity, behavior, or purpose, and to advance basic understanding of protein function. Proteins can be designed from scratch (
111:. Protein design is then an optimization problem: using some scoring criteria, an optimized sequence that will fold to the desired structure is chosen. 4323:
Leach, AR; Lemon, AP (November 1, 1998). "Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm".
2573: 337:
Rotamer libraries are derived from the statistical analysis of many protein structures. Backbone-independent rotamer libraries describe all rotamers.
1807: 7535: 2052:)). In consequence, the LP relaxation becomes the bottleneck of ILP solvers when the problem size is large. Recently, several alternatives based on 326:. To simplify this space, protein design methods use rotamer libraries that assume ideal values for bond lengths and bond angles, while restricting 2056:
have been designed specifically for the optimization of the LP relaxation of the protein design problem. These algorithms can approximate both the
4439:
Wainwright, Martin J; Tommi S. Jaakkola; Alan S. Willsky (2005). "MAP estimation via agreement on trees: message-passing and linear programming".
1092: 2584:. At the same time, it uses the understanding of enzymes and design principles to purposefully screen out mutants with desired characteristics. 770:
to identify design-rules. In 2022, a study reported deep learning software that can design proteins that contain prespecified functional sites.
1004:{\displaystyle E(r_{i}^{\prime })+\sum _{j\neq i}\min _{r_{j}}E(r_{i}^{\prime },r_{j})>E(r_{i})+\sum _{j\neq i}\max _{r_{j}}E(r_{i},r_{j})} 310:
In protein design, the target structure (or structures) of the protein are known. However, a rational protein design approach must model some
7540: 4999: 3085: 448: 6321: 5914: 5809: 1710:{\displaystyle \ \min \sum _{i}\sum _{r_{i}}E_{i}(r_{i})q_{i}(r_{i})+\sum _{j\neq i}\sum _{r_{j}}E_{ij}(r_{i},r_{j})q_{ij}(r_{i},r_{j})\,} 2933:{\displaystyle K^{*}={\frac {\sum \limits _{x\in PL}e^{-E(x)/RT}}{\sum \limits _{x\in P}e^{-E(x)/RT}\sum \limits _{x\in L}e^{-E(x)/RT}}}} 258:
In rational protein design, proteins can be redesigned from the sequence and structure of a known protein, or completely from scratch in
4346: 2520:
enzyme design because, at the very least, the design of catalysts requires a scaffold in which the catalytic mechanism can be inserted.
7484: 6279: 738: 416: 338: 2635:
Protein design energy functions must be adapted to score binding predictions because binding involves a trade-off between the lowest-
2559:
to other noncognate substrates including charged amino acids; the redesigned enzymes had activities close to those of the wild-type.
7494: 5919: 5909: 2974: 2111: 3001:, which have multiple conformations. The three-dimensional structure of globular proteins is typically easier to determine through 4211:
Nathaniel; Wicky, Basile I. M.; Muenks, Andrew; DiMaio, Frank; Correia, Bruno; Ovchinnikov, Sergey; Baker, David (July 22, 2022).
2997:
are proteins that contain a hydrophobic core and a hydrophilic surface. Globular proteins often assume a stable structure, unlike
7725: 7344: 6018: 5899: 3269:
Harbury, PB; Plecs, JJ; Tidor, B; Alber, T; Kim, PS (November 20, 1998). "High-resolution protein design with backbone freedom".
2527:
enzyme design, and redesign, was made in the first decade of the 21st century. In three major studies, David Baker and coworkers
277:: the specific amino acids that are allowed at each mutable residue position. For example, the composition of the surface of the 2600: 358:
mechanics energy functions that are physically based but are not as computationally expensive as quantum mechanical simulations.
5904: 5802: 4527:
Globerson, Amir; Tommi S. Jaakkola (2007). "Fixing max-product: Convergent message passing algorithms for MAP LP-relaxations".
4420:
Yanover, Chen; Talya Meltzer; Yair Weiss (2006). "Linear Programming Relaxations and Belief Propagation – An Empirical Study".
3552: 6847: 95:. Protein design involves identifying novel sequences within this subset. The native state of a protein is the conformational 7489: 1726: 191:
structure, which sequences are included in the search, and which force field will be used to score sequences and structures.
3584:"A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions" 7560: 7113: 6636: 6213: 6203: 2009: 1044:, where the protein residues are ordered in an arbitrary way, and the tree branches at each of the rotamers in a residue. 5732:"De Novo Design of Foldable Proteins with Smooth Folding Funnel: Automated Negative Design and Experimental Verification" 7907: 7366: 7349: 7071: 6911: 6346: 6262: 6235: 5866: 5856: 759: 742: 217: 100: 6663: 6225: 5929: 5846: 2666: 7902: 7730: 7592: 7504: 6874: 6413: 5851: 4864:
Privett, HK; Kiss, G; Lee, TM; Blomberg, R; Chica, RA; Thomas, LM; Hilvert, D; Houk, KN; Mayo, SL (March 6, 2012).
3110: 3006: 1082:
is a lower bound on the energy of the rotamers that have not yet been assigned. Each is designed as follows, where
556: 274: 104: 7687: 7356: 6971: 6966: 6896: 6837: 6641: 6626: 6437: 6353: 5985: 5841: 3075: 2636: 96: 83: 60: 56: 4542:
Allen, BD; Mayo, SL (July 30, 2006). "Dramatic performance enhancements for the FASTER optimization algorithm".
4115: 3634:
Samish, I; MacDermaid, CM; Perez-Aguilar, JM; Saven, JG (2011). "Theoretical and computational protein design".
7692: 7449: 7361: 7123: 6810: 6740: 6601: 6457: 6368: 6242: 4484:
Kolmogorov, Vladimir (October 28, 2006). "Convergent tree-reweighted message passing for energy minimization".
4192: 331: 225: 153: 128: 6785: 2008:, can compute the exact optimal solution for large instances of protein design problems. These solvers use a 1943: 7657: 7622: 7550: 7509: 7461: 7319: 7138: 7096: 7061: 7041: 6805: 2962: 462: 364: 3529:
Lovell, SC; Word, JM; Richardson, JS; Richardson, DC (August 15, 2000). "The penultimate rotamer library".
7177: 7046: 7011: 6462: 6363: 6336: 6274: 5886: 5876: 5825: 5630:"Redesign of the PAK1 autoinhibitory domain for enhanced stability and affinity in biosensor applications" 4551: 4448: 4332: 4030: 3538: 3192: 2581: 2061: 2057: 1488: 763: 383:, or a hybrid mix of both. The trend has been toward using more physics-based potential energy functions. 3039:
to any desired sub-nm size and assembled them in membranes to perform precise angstrom scale separation.
1226: 7858: 7642: 7525: 7339: 7145: 7118: 7108: 7076: 7066: 7031: 6946: 6891: 6886: 6869: 6815: 6653: 6606: 6467: 6331: 6252: 6108: 5894: 4844: 4212: 3922: 3002: 1041: 380: 3183:
Dahiyat, BI; Mayo, SL (October 3, 1997). "De novo protein design: fully automated sequence selection".
3685: 7812: 7667: 7627: 7381: 7334: 7155: 7103: 7026: 7016: 6916: 6879: 6859: 6790: 6780: 6188: 6178: 6135: 6113: 6068: 6011: 5586: 5523: 5412: 5308: 5251: 4936: 4877: 4806: 4757: 4700: 4227: 4150: 3884: 3643: 3480: 3423: 3318: 3056: 2548: 2536: 1019: 1015: 784: 734: 4556: 4337: 4035: 3543: 7607: 7530: 7439: 7324: 7172: 7150: 7056: 7036: 6901: 6760: 6745: 6658: 6425: 6378: 6159: 5955: 5924: 4795:"Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction" 4453: 3197: 3080: 2195: 1469: 1060: 376: 207:
protein was one of the first proteins designed for a fold that had never been seen before in nature
161: 20: 3412:"Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1" 216:, where a variety of methods are used to find proteins that achieve a specific function, and with 7844: 7720: 7672: 7647: 7086: 6921: 6906: 6765: 6581: 6452: 6398: 6130: 5718: 5610: 5512:"PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore" 5436: 5122: 4620: 4577: 4509: 4466: 4358: 4174: 3564: 3506: 3342: 2216: 2187: 2053: 1465: 1078:
is the exact energy of the rotamers that have already been assigned in the partial conformation.
539:. Then, we define the optimization problem as one of finding the conformation of minimum energy ( 213: 132: 7872: 1022:. This algorithm has also been extended to handle continuous rotamers with provable guarantees. 2494:
Both max-product and sum-product belief propagation have been used to optimize protein design.
43:
design) or by making calculated variants of a known protein structure and its sequence (termed
7827: 7797: 7602: 7555: 7411: 7401: 7222: 7217: 7212: 7182: 7021: 7006: 6961: 6951: 6936: 6931: 6864: 6800: 6795: 6698: 6533: 6430: 6408: 6358: 6316: 6306: 6220: 6098: 6038: 5861: 5833: 5783: 5753: 5710: 5659: 5602: 5557: 5539: 5428: 5385: 5336: 5277: 5220: 5171: 5114: 5079: 5023: 5005: 4995: 4964: 4905: 4832: 4775: 4726: 4669: 4612: 4569: 4501: 4402: 4350: 4302: 4261: 4243: 4166: 4097: 4048: 4000: 3959: 3910: 3852: 3817: 3775: 3708: 3659: 3613: 3556: 3498: 3449: 3383: 3334: 3286: 3248: 3210: 3160: 2039: 52: 6842: 7802: 7767: 7742: 7455: 7429: 7391: 7197: 7133: 7081: 6986: 6976: 6956: 6832: 6750: 6703: 6673: 6648: 6616: 6576: 6516: 6447: 6286: 5980: 5775: 5743: 5702: 5649: 5641: 5594: 5577: 5547: 5531: 5455: 5420: 5375: 5367: 5356:"Computational design of Candida boidinii xylose reductase for altered cofactor specificity" 5326: 5316: 5267: 5259: 5210: 5202: 5161: 5153: 5106: 5069: 5061: 5013: 4987: 4954: 4944: 4895: 4885: 4822: 4814: 4765: 4716: 4708: 4659: 4651: 4604: 4561: 4493: 4458: 4392: 4381:"Solving and analyzing side-chain positioning problems using linear and integer programming" 4342: 4292: 4251: 4235: 4158: 4087: 4079: 4040: 3990: 3951: 3900: 3892: 3844: 3809: 3767: 3700: 3651: 3603: 3595: 3548: 3488: 3439: 3431: 3373: 3326: 3278: 3240: 3202: 3152: 3010: 2994: 2513: 2043: 1045: 1035: 229: 19:
This article is about rational protein design. For the broader engineering of proteins, see
4068:"Rotamer optimization for protein design through MAP estimation and problem-size reduction" 3655: 7792: 7772: 7752: 7747: 7737: 7632: 7267: 7257: 7242: 7202: 7167: 7160: 7091: 7051: 6820: 6693: 6683: 6591: 6548: 6528: 6257: 6208: 6004: 5730:
Jin, Wenzhen; Kambara, Ohki; Sasakawa, Hiroaki; Tamura, Atsuo & Takada, Shoji (2003).
5354:
Khoury, GA; Fazelinia, H; Chin, JW; Pantazes, RJ; Cirino, PC; Maranas, CD (October 2009).
3835:
Vizcarra, CL; Mayo, SL (December 2005). "Electrostatics in computational protein design".
3758:
Boas, F. E. & Harbury, P. B. (2007). "Potential energy functions for protein design".
3407: 2998: 2957:). One of the most prominent examples of design for specificity is the design of specific 2577: 164:. There is great hope that the design of new proteins, small and large, will have uses in 124: 107:
is specified, and a sequence that will fold to it is identified. Hence, it is also termed
87: 68: 32: 3231:
Gordon, DB; Marshall, SA; Mayo, SL (August 1999). "Energy functions for protein design".
1048:
algorithms use this representation to efficiently explore the conformation tree: At each
5628:
Jha, RK; Wu, YI; Zawistowski, JS; MacNevin, C; Hahn, KM; Kuhlman, B (October 21, 2011).
5590: 5527: 5416: 5312: 5255: 4940: 4881: 4810: 4761: 4704: 4231: 4154: 3942:
Mendes, J; Guerois, R; Serrano, L (August 2002). "Energy estimation in protein design".
3888: 3647: 3484: 3427: 3322: 3143:
Richardson, JS; Richardson, DC (July 1989). "The de novo design of protein structures".
405: 7817: 7762: 7715: 7697: 7499: 7247: 7237: 7232: 7207: 7001: 6981: 6854: 6825: 6775: 6708: 6668: 6631: 6553: 6511: 6506: 6388: 6383: 6373: 6291: 6269: 6103: 6093: 5950: 5654: 5629: 5552: 5511: 5380: 5355: 5331: 5296: 5272: 5239: 5215: 5190: 5166: 5141: 5074: 5049: 5018: 4959: 4924: 4900: 4865: 4827: 4794: 4721: 4688: 4664: 4639: 4256: 4092: 4067: 3905: 3872: 3681: 3608: 3583: 3444: 3411: 3063: 2544: 2532: 2027: 399: 320: 233: 181: 169: 5748: 5731: 4297: 4280: 3955: 3244: 2603:
are involved in most biotic processes. Many of the hardest-to-treat diseases, such as
7896: 7822: 7807: 7787: 7710: 7612: 7444: 7434: 7262: 7252: 7227: 7192: 6755: 6688: 6611: 6586: 6538: 6523: 6230: 6150: 5440: 5403:
Burton, DR; Weiss, RA (August 13, 2010). "AIDS/HIV. A boost for HIV vaccine design".
4178: 3800:
Boas, FE; Harbury, PB (April 2007). "Potential energy functions for protein design".
3156: 2556: 767: 395: 5722: 4624: 4470: 4397: 4380: 4362: 7705: 7682: 7652: 7637: 6926: 6543: 6484: 6296: 6247: 6198: 6173: 6125: 6118: 5965: 5680: 5614: 5498: 5483: 5126: 4513: 3737: 3568: 3510: 3378: 3361: 3346: 2552: 2540: 447: 145: 141: 92: 4581: 3282: 5240:"Design of protein-interaction specificity gives selective bZIP-binding peptides" 5142:"Computational design of antibody-affinity improvement beyond in vivo maturation" 4281:"Branch-and-terminate: a combinatorial optimization algorithm for protein design" 3873:"Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01" 3704: 7782: 7777: 7757: 7677: 7597: 7406: 7311: 6621: 6596: 6568: 6497: 6442: 6420: 6168: 6145: 6140: 6083: 6078: 5050:"Computational design of affinity and specificity at protein–protein interfaces" 4991: 4986:. Methods in Molecular Biology (Clifton, N.J.). Vol. 1685. pp. 15–23. 3995: 3978: 3206: 2958: 2569: 2543:, computational protein design was used to switch the specificity of one of the 165: 160:
below), protein design has become one of the most important tools available for
149: 148:
and coworkers designed dimers, trimers, and tetramers of unnatural right-handed
5535: 5479: 5301:
Proceedings of the National Academy of Sciences of the United States of America
4929:
Proceedings of the National Academy of Sciences of the United States of America
4870:
Proceedings of the National Academy of Sciences of the United States of America
3848: 1930:{\displaystyle \sum _{r_{j}}q_{ij}(r_{i},r_{j})=q_{i}(r_{i}),\forall i,r_{i},j} 245: 7879: 7396: 6991: 6770: 6492: 6472: 6326: 6164: 5960: 5779: 5645: 5206: 5065: 3813: 3771: 3599: 3403: 80: 5543: 5009: 4247: 330:
dihedral angles to a few frequently observed low-energy conformations termed
7865: 7851: 7662: 7386: 7371: 7329: 6941: 6501: 6341: 5424: 5321: 4949: 4890: 4818: 4712: 4462: 4239: 4162: 3896: 3435: 3330: 3048: 2604: 1014:
Other powerful extensions to the dead-end elimination algorithm include the
353: 212:
beforehand. This contrasts with other forms of protein engineering, such as
5787: 5757: 5706: 5663: 5606: 5561: 5432: 5389: 5340: 5281: 5224: 5175: 5118: 5083: 5027: 4968: 4909: 4836: 4779: 4730: 4673: 4616: 4573: 4505: 4497: 4406: 4347:
10.1002/(sici)1097-0134(19981101)33:2<227::aid-prot7>3.0.co;2-f
4306: 4265: 4170: 4101: 4052: 4044: 4004: 3963: 3914: 3856: 3821: 3779: 3712: 3663: 3617: 3560: 3502: 3453: 3387: 3338: 3252: 1213:{\displaystyle g=\sum _{i=1}^{d}(E(r_{i})+\sum _{j=i+1}^{d}E(r_{i},r_{j}))} 5714: 4354: 3290: 3214: 3164: 2194:
can be chosen such that in the initial rounds it is high and it is slowly
266:
design, the entire sequence is designed anew, based on no prior sequence.
6996: 6043: 5794: 5494: 5110: 4982:
Korendovych, Ivan V. (2018). "Rational and Semirational Protein Design".
758:
In 2020 scientists reported the development of an AI-based process using
290: 5598: 5263: 4770: 4745: 4640:"An exciting but challenging road ahead for computational enzyme design" 301: 7617: 7545: 6155: 5945: 4608: 2219:
for protein design, the algorithm exchanges messages that describe the
1086:
is the index of the last assigned residue in the partial conformation.
722: 186: 120: 36: 4565: 4083: 3553:
10.1002/1097-0134(20000815)40:3<389::AID-PROT50>3.0.CO;2-2
2038:
ILP solvers depend on linear programming (LP) algorithms, such as the
7376: 6027: 2608: 2508: 797:
that can be shown to always be of higher energy than another rotamer
391: 5371: 5157: 4655: 3493: 3468: 495:
the potential energy between the internal atoms of the rotamer. Let
3055:. More recently, Kuhlman and coworkers designed a biosensor of the 2034:
Message-passing based approximations to the linear programming dual
157: 6088: 5295:
Frey, KM; Georgiev, I; Donald, BR; Anderson, AC (August 3, 2010).
4923:
Chen, CY; Georgiev, I; Anderson, AC; Donald, BR (March 10, 2009).
4116:"Machine learning reveals recipe for building artificial proteins" 4066:
Hong, EJ; Lippow, SM; Tidor, B; Lozano-PĂ©rez, T (September 2009).
2005: 404: 387: 352: 300: 244: 198: 5297:"Predicting resistance mutations using protein design algorithms" 7128: 2612: 1056:
the conformation space and explore only the promising branches.
1040:
The protein design conformational space can be represented as a
204: 7581: 7284: 6729: 6056: 6000: 5798: 199: 5975: 5970: 4486:
IEEE Transactions on Pattern Analysis and Machine Intelligence
3052: 2616: 2172:{\displaystyle p=e^{-\beta (E_{\text{new}}-E_{\text{old}}))},} 116: 2026:
are allowed to take continuous values, in combination with a
2441: 890: 830: 4925:"Computational structure-based redesign of enzyme activity" 4746:"Kemp elimination catalysts by computational enzyme design" 2653:) and the lowest-energy conformation of the bound complex ( 319:
degrees of freedom in their bond lengths, bond angles, and
220:
where the sequence is known, but the structure is unknown.
4213:"Scaffolding protein functional sites using deep learning" 2749:) to approximate the partition functions of each complex: 741:
guarantees but guarantee the quality of the solution; and
5996: 3047:
One of the most desirable uses for protein design is for
273:
designs and protein redesigns can establish rules on the
5238:
Grigoryan, G; Reinke, AW; Keating, AE (April 16, 2009).
4193:"Biologists train AI to generate medicines and vaccines" 3091:
Comparison of software for molecular mechanics modeling
1794:{\displaystyle \sum _{r_{i}}q_{i}(r_{i})=1,\ \forall i} 419:
from frequency of appearance on a structural database.
4379:
Kingsford, CL; Chazelle, B; Singh, M (April 1, 2005).
3686:"Backbone flexibility in computational protein design" 5097:
Shoichet, BK (October 2007). "No free energy lunch".
4689:"De Novo Computational Design of Retro-Aldol Enzymes" 2758: 2669: 2263: 2114: 1946: 1810: 1729: 1500: 1229: 1095: 1059:
A popular search algorithm for protein design is the
813: 559: 3111:"Minimalist design of peptide and protein catalysts" 289:
usually follows strict rules on the sequence space.
7518: 7477: 7420: 7310: 6562: 6481: 6397: 6305: 6187: 6067: 5938: 5885: 5832: 4866:"Iterative approach to computational enzyme design" 176:
Underlying models of protein structure and function
144:and coworkers in 1997, and, shortly after, in 1999 5495:Designed membrane-associated peptides and proteins 5140:Lippow, SM; Wittrup, KD; Tidor, B (October 2007). 4197:University of Washington-Harborview Medical Center 3469:"Structural biology: A toolbox for protein design" 2932: 2724: 2483: 2171: 1993: 1929: 1793: 1709: 1448: 1212: 1003: 690: 249:FSD-1 (shown in blue, PDB id: 1FSV) was the first 79:The goal in rational protein design is to predict 5695:Proteins: Structure, Function, and Bioinformatics 4529:Advances in Neural Information Processing Systems 2413: 2318: 682: 588: 71:and development of better computational methods. 5191:"Protein binding specificity versus promiscuity" 3582:Shapovalov, MV; Dunbrack RL, Jr (June 8, 2011). 3226: 3224: 3138: 3136: 3134: 3132: 3130: 3128: 2300: 1504: 1392: 1267: 953: 858: 790:each residue position, and removes each rotamer 560: 427:Challenges for effective design energy functions 368: 286: 184:of the molecular forces that drive proteins in 5043: 5041: 5039: 5037: 4374: 4372: 3360:Sterner, R; Merkl, R; Raushel, FM (May 2008). 2725:{\displaystyle \Delta _{G}=E_{PL}-E_{P}-E_{L}} 2516:. However protein design is a prerequisite of 2498:Applications and examples of designed proteins 6012: 5810: 5480:Designed transmembrane alpha-hairpin proteins 3675: 3673: 3524: 3522: 3520: 3178: 3176: 3174: 691:{\displaystyle \min E_{T}=\sum _{i}{\Big }\,} 8: 4849:: CS1 maint: multiple names: authors list ( 3927:: CS1 maint: multiple names: authors list ( 1988: 1976: 5189:Schreiber, G; Keating, AE (February 2011). 4279:Gordon, DB; Mayo, SL (September 15, 1999). 3795: 3793: 3791: 3789: 3732: 3730: 3728: 3726: 3724: 3722: 3629: 3627: 3304: 3302: 3300: 3264: 3262: 2535:, a Kemp-elimination reaction, and for the 2067:tree reweighted max-product message passing 7578: 7307: 7281: 6726: 6064: 6053: 6019: 6005: 5997: 5817: 5803: 5795: 5685:Algorithms in Structural Molecular Biology 5048:Karanicolas, J; Kuhlman, B (August 2009). 4318: 4316: 4016: 4014: 3742:Algorithms in Structural Molecular Biology 3062:In a sense, protein design is a subset of 2077:Optimization algorithms without guarantees 1466:Linear programming § Integer unknowns 1020:generalized dead-end elimination criterion 5747: 5653: 5551: 5379: 5330: 5320: 5271: 5214: 5165: 5073: 5017: 4958: 4948: 4899: 4889: 4826: 4769: 4720: 4663: 4555: 4452: 4396: 4336: 4296: 4255: 4091: 4034: 3994: 3904: 3607: 3542: 3492: 3443: 3377: 3196: 2914: 2898: 2882: 2865: 2849: 2833: 2814: 2798: 2779: 2772: 2763: 2757: 2716: 2703: 2687: 2674: 2668: 2470: 2453: 2422: 2412: 2411: 2395: 2382: 2366: 2350: 2337: 2327: 2317: 2316: 2308: 2303: 2287: 2268: 2262: 2152: 2139: 2125: 2113: 1964: 1951: 1945: 1915: 1890: 1877: 1861: 1848: 1832: 1820: 1815: 1809: 1764: 1751: 1739: 1734: 1728: 1706: 1697: 1684: 1668: 1655: 1642: 1626: 1614: 1609: 1593: 1577: 1564: 1551: 1538: 1526: 1521: 1511: 1499: 1431: 1418: 1400: 1395: 1385: 1368: 1352: 1339: 1323: 1312: 1296: 1275: 1270: 1257: 1240: 1228: 1198: 1185: 1169: 1152: 1136: 1117: 1106: 1094: 1070:in protein design consists of two parts, 992: 979: 961: 956: 940: 924: 902: 889: 884: 866: 861: 845: 829: 824: 812: 687: 681: 680: 671: 658: 642: 626: 610: 597: 587: 586: 580: 567: 558: 402:coulombic term between non-bonded atoms. 7536:Good Design Award (Museum of Modern Art) 446: 386:Physics-based energy functions, such as 278: 131:, and force fields developed mainly for 16:Rational design of new protein molecules 4441:IEEE Transactions on Information Theory 3977:Pierce, NA; Winfree, E (October 2002). 3753: 3751: 3101: 1994:{\displaystyle q_{i},q_{ij}\in \{0,1\}} 766:designing of novel proteins. They used 4842: 3920: 3656:10.1146/annurev-physchem-032210-103509 7541:Good Design Award (Chicago Athenaeum) 5454:Jessica Marshall (November 7, 2012). 5195:Current Opinion in Structural Biology 5054:Current Opinion in Structural Biology 3944:Current Opinion in Structural Biology 3802:Current Opinion in Structural Biology 3760:Current Opinion in Structural Biology 3233:Current Opinion in Structural Biology 3086:Protein structure prediction software 3018: 2615:), and human immunodeficiency virus ( 285:on the sequence space. Moreover, the 129:libraries of amino acid conformations 119:. Urry and colleagues later designed 7: 4422:Journal of Machine Learning Research 3109:Korendovych, Ivan (March 19, 2018). 2639:conformations of the free proteins ( 550: 339:Backbone-dependent rotamer libraries 3837:Current Opinion in Chemical Biology 3636:Annual Review of Physical Chemistry 3014: 2879: 2830: 2776: 2094:is compared against the old energy 2082:Monte Carlo and simulated annealing 1449:{\displaystyle h=\sum _{j=d+1}^{n}} 7485:American Institute of Graphic Arts 4544:Journal of Computational Chemistry 4072:Journal of Computational Chemistry 2671: 2071:message passing linear programming 1902: 1785: 1487:)) can be easily formulated as an 804:and is thus not part of the GMEC: 517:) be the potential energy between 398:term between atoms and a pairwise 14: 7495:Design and Industries Association 3362:"Computational design of enzymes" 478:be a rotamer at residue position 3693:Current Opinion in Biotechnology 381:knowledge based energy-functions 3009:than both fibrous proteins and 2549:nonribosomal peptide synthetase 2531:designed enzymes for the retro- 417:based on deriving energy values 7490:Chartered Society of Designers 3467:Höcker, B (November 8, 2012). 3379:10.1016/j.chembiol.2008.04.007 3145:Trends in Biochemical Sciences 2911: 2905: 2862: 2856: 2811: 2805: 2476: 2463: 2457: 2438: 2432: 2401: 2375: 2356: 2343: 2293: 2280: 2272: 2161: 2158: 2132: 1896: 1883: 1867: 1841: 1770: 1757: 1703: 1677: 1661: 1635: 1583: 1570: 1557: 1544: 1443: 1440: 1437: 1411: 1358: 1332: 1302: 1289: 1283: 1263: 1207: 1204: 1178: 1142: 1129: 1123: 1052:, branch and bound algorithms 998: 972: 930: 917: 908: 877: 835: 817: 677: 651: 616: 603: 1: 7561:Prince Philip Designers Prize 6204:Architectural lighting design 5749:10.1016/S0969-2126(03)00075-3 4398:10.1093/bioinformatics/bti144 4298:10.1016/s0969-2126(99)80176-2 3956:10.1016/s0959-440x(02)00345-7 3283:10.1126/science.282.5393.1462 3245:10.1016/s0959-440x(99)80072-4 2953:) and off-target binding (or 2555:, from its natural substrate 2010:linear programming relaxation 7367:Electronic design automation 7350:Virtual home design software 6322:Automotive suspension design 5768:Journal of Molecular Biology 5634:Journal of Molecular Biology 4023:Journal of Molecular Biology 3705:10.1016/j.copbio.2009.07.006 3157:10.1016/0968-0004(89)90070-4 2601:Protein–protein interactions 774:With mathematical guarantees 218:protein structure prediction 180:Protein design programs use 101:protein structure prediction 6226:Environmental impact design 5687:. Cambridge, MA: MIT Press. 4992:10.1007/978-1-4939-7366-8_2 3979:"Protein design is NP-hard" 3744:. Cambridge, MA: MIT Press. 3207:10.1126/science.278.5335.82 3113:. American Chemical Society 3030:Design of membrane proteins 2990:Design of globular proteins 2631:Scoring binding predictions 2582:site-saturation mutagenesis 2048: 1483: 1016:pairs elimination criterion 751: 69:protein structure stability 7924: 7505:International Forum Design 6875:Engineering design process 5536:10.1038/s41467-018-06097-1 3849:10.1016/j.cbpa.2005.10.014 3007:nuclear magnetic resonance 2198:to overcome local minima. 2054:message-passing algorithms 1474:The problem of optimizing 1463: 1460:Integer linear programming 1033: 782: 714:The problem of minimizing 482:in the protein chain, and 443:As an optimization problem 436:can be added to rotamers. 287:design of fibrous proteins 18: 7840: 7588: 7577: 7306: 7280: 6736: 6725: 6627:Integrated circuit design 6549:Stage/set lighting design 6438:Hardware interface design 6354:Hardware interface design 6063: 6052: 6034: 5986:Nucleic acid double helix 5780:10.1016/j.jmb.2004.12.019 5646:10.1016/j.jmb.2011.08.022 5207:10.1016/j.sbi.2010.10.002 5066:10.1016/j.sbi.2009.07.005 4638:Baker, D (October 2010). 3996:10.1093/protein/15.10.779 3814:10.1016/j.sbi.2007.03.006 3772:10.1016/j.sbi.2007.03.006 3600:10.1016/j.str.2011.03.019 3076:Molecular design software 61:artificial gene synthesis 57:site-directed mutagenesis 7462:Industrial design rights 7450:Fashion design copyright 7362:Design quality indicator 6811:Creative problem-solving 6602:Electrical system design 6458:Sonic interaction design 6369:Photographic lens design 6243:Healthy community design 5456:"Proteins made to order" 7658:New product development 7623:Enterprise architecture 7551:IF Product Design Award 7510:Design Research Society 7062:Reliability engineering 5425:10.1126/science.1194693 5322:10.1073/pnas.1002162107 4950:10.1073/pnas.0900266106 4891:10.1073/pnas.1118082108 4819:10.1126/science.1190239 4713:10.1126/science.1152692 4463:10.1109/tit.2005.856938 4240:10.1126/science.abn2100 4163:10.1126/science.aba3304 3897:10.1126/science.1192819 3436:10.1126/science.1187659 3366:Chemistry & Biology 3331:10.1126/science.1089427 2250:at neighboring residue 2243:sends to every rotamer 2105:with a probability of: 2101:and the new rotamer is 234:protein folding funnels 49:Rational protein design 7114:Top-down and bottom-up 6463:User experience design 6364:Packaging and labeling 6337:Electric guitar design 6275:Landscape architecture 5887:Nucleic acid structure 5826:Biomolecular structure 5707:10.1002/prot.340120203 4498:10.1109/TPAMI.2006.200 4045:10.1006/jmbi.2000.3758 2969:xylose reductase from 2944:Design for specificity 2934: 2726: 2485: 2173: 2012:of the problem, where 1995: 1931: 1795: 1711: 1489:integer linear program 1450: 1390: 1328: 1262: 1214: 1174: 1122: 1005: 692: 463:Structural flexibility 453: 411: 359: 307: 297:Structural flexibility 255: 208: 7643:Innovation management 7526:European Design Award 7292:Intellectual property 7109:Theory of constraints 7072:Responsibility-driven 6912:For manufacturability 6816:Creativity techniques 6654:Nuclear weapon design 6468:User interface design 6332:Corrugated box design 6253:Interior architecture 5516:Nature Communications 3003:X-ray crystallography 2935: 2727: 2486: 2174: 2004:ILP solvers, such as 1996: 1932: 1796: 1712: 1464:Further information: 1451: 1364: 1308: 1236: 1215: 1148: 1102: 1006: 693: 450: 408: 379:simulation programs, 356: 304: 248: 202: 7688:Unintelligent design 7668:Philosophy of design 7382:Design specification 7335:Comprehensive layout 6907:For behaviour change 6880:Probabilistic design 6642:Power network design 6179:Visual merchandising 6136:Instructional design 6114:Postage stamp design 5146:Nature Biotechnology 5111:10.1038/nbt1007-1109 5099:Nature Biotechnology 2756: 2667: 2623:toward its partner. 2563:Semi-rational design 2537:Diels-Alder reaction 2261: 2190:and the temperature 2112: 1944: 1808: 1727: 1498: 1227: 1093: 811: 785:Dead-end elimination 779:Dead-end elimination 735:dead-end elimination 557: 535:at residue position 232:structures based on 75:Overview and history 7908:Protein engineering 7608:Creative industries 7531:German Design Award 7440:Design infringement 7325:Architectural model 6664:Organization design 6659:Nucleic acid design 6607:Experimental design 6160:Traffic sign design 5956:Protein engineering 5599:10.1038/nature01556 5591:2003Natur.423..185L 5528:2018NatCo...9.3661C 5417:2010Sci...329..770B 5313:2010PNAS..10713707F 5264:10.1038/nature07885 5256:2009Natur.458..859G 4984:Protein Engineering 4941:2009PNAS..106.3764C 4882:2012PNAS..109.3790P 4811:2010Sci...329..309S 4771:10.1038/nature06879 4762:2008Natur.453..190R 4705:2008Sci...319.1387J 4232:2022Sci...377..387W 4155:2020Sci...369..440R 3983:Protein Engineering 3889:2010Sci...329..811Z 3648:2011ARPC...62..129S 3485:2012Natur.491..204H 3428:2010Sci...329..856W 3410:(August 13, 2010). 3323:2003Sci...302.1364K 3081:Protein engineering 2981:Protein resurfacing 2596:Design for affinity 2514:catalytic mechanism 2069:algorithm, and the 1470:Integer programming 1061:A* search algorithm 894: 834: 377:molecular mechanics 224:Top7, developed in 162:protein engineering 21:Protein engineering 7673:Process simulation 7648:Intelligent design 6972:Intelligence-based 6967:Integrated topside 6897:Framework-oriented 6582:Behavioural design 6453:Information design 6131:Information design 4609:10.1002/prot.10131 3043:Other applications 2930: 2893: 2844: 2793: 2722: 2607:'s, many forms of 2523:Great progress in 2507:The design of new 2481: 2448: 2315: 2217:belief propagation 2211:Belief propagation 2188:Boltzmann constant 2169: 1991: 1927: 1827: 1791: 1746: 1707: 1621: 1604: 1533: 1516: 1446: 1407: 1282: 1210: 1001: 968: 951: 880: 873: 856: 820: 688: 637: 585: 454: 412: 360: 308: 256: 214:directed evolution 209: 133:molecular dynamics 105:tertiary structure 7903:Protein structure 7890: 7889: 7836: 7835: 7603:Conceptual design 7573: 7572: 7569: 7568: 7556:James Dyson Award 7412:Website wireframe 7402:Technical drawing 7276: 7275: 7124:Transgenerational 6865:Ecological design 6741:Activity-centered 6721: 6720: 6717: 6716: 6699:Spacecraft design 6493:Public art design 6431:Video game design 6409:Experience design 6379:Production design 6359:Motorcycle design 6317:Automotive design 6221:Ecological design 6099:Film title design 5994: 5993: 5834:Protein structure 5585:(6936): 185–190. 5001:978-1-4939-7364-4 4699:(5868): 1387–91. 4566:10.1002/jcc.20420 4492:(10): 1568–1583. 4447:(11): 3697–3717. 4226:(6604): 387–394. 4149:(6502): 440–445. 4084:10.1002/jcc.21188 3011:membrane proteins 2995:Globular proteins 2928: 2878: 2829: 2775: 2578:DNA recombination 2418: 2408: 2299: 2155: 2142: 1811: 1784: 1730: 1605: 1589: 1517: 1507: 1503: 1391: 1266: 952: 936: 857: 841: 712: 711: 622: 576: 53:peptide synthesis 7915: 7882: 7875: 7868: 7861: 7854: 7847: 7579: 7456:Geschmacksmuster 7430:Community design 7308: 7282: 7042:Process-centered 6838:Design–bid–build 6806:Cradle-to-cradle 6786:Concept-oriented 6727: 6704:Strategic design 6674:Processor design 6649:Mechanism design 6617:Geometric design 6577:Algorithm design 6517:Jewellery design 6448:Immersive design 6342:Furniture design 6287:Landscape design 6065: 6054: 6021: 6014: 6007: 5998: 5981:Structural motif 5819: 5812: 5805: 5796: 5791: 5761: 5751: 5726: 5688: 5681:Donald, Bruce R. 5668: 5667: 5657: 5625: 5619: 5618: 5572: 5566: 5565: 5555: 5507: 5501: 5492: 5486: 5477: 5471: 5470: 5468: 5466: 5451: 5445: 5444: 5400: 5394: 5393: 5383: 5351: 5345: 5344: 5334: 5324: 5307:(31): 13707–12. 5292: 5286: 5285: 5275: 5250:(7240): 859–64. 5235: 5229: 5228: 5218: 5186: 5180: 5179: 5169: 5137: 5131: 5130: 5094: 5088: 5087: 5077: 5045: 5032: 5031: 5021: 4979: 4973: 4972: 4962: 4952: 4920: 4914: 4913: 4903: 4893: 4861: 4855: 4854: 4848: 4840: 4830: 4805:(5989): 309–13. 4790: 4784: 4783: 4773: 4741: 4735: 4734: 4724: 4684: 4678: 4677: 4667: 4635: 4629: 4628: 4592: 4586: 4585: 4559: 4539: 4533: 4532: 4524: 4518: 4517: 4481: 4475: 4474: 4456: 4436: 4430: 4429: 4417: 4411: 4410: 4400: 4376: 4367: 4366: 4340: 4320: 4311: 4310: 4300: 4276: 4270: 4269: 4259: 4217: 4207: 4201: 4200: 4189: 4183: 4182: 4137: 4131: 4130: 4128: 4126: 4112: 4106: 4105: 4095: 4063: 4057: 4056: 4038: 4018: 4009: 4008: 3998: 3974: 3968: 3967: 3939: 3933: 3932: 3926: 3918: 3908: 3867: 3861: 3860: 3832: 3826: 3825: 3797: 3784: 3783: 3755: 3746: 3745: 3738:Donald, Bruce R. 3734: 3717: 3716: 3690: 3677: 3668: 3667: 3631: 3622: 3621: 3611: 3579: 3573: 3572: 3546: 3526: 3515: 3514: 3496: 3464: 3458: 3457: 3447: 3422:(5993): 856–61. 3398: 3392: 3391: 3381: 3357: 3351: 3350: 3317:(5649): 1364–8. 3306: 3295: 3294: 3277:(5393): 1462–7. 3266: 3257: 3256: 3228: 3219: 3218: 3200: 3180: 3169: 3168: 3140: 3123: 3122: 3120: 3118: 3106: 2999:fibrous proteins 2967:Candida boidinii 2939: 2937: 2936: 2931: 2929: 2927: 2926: 2925: 2918: 2892: 2877: 2876: 2869: 2843: 2827: 2826: 2825: 2818: 2792: 2773: 2768: 2767: 2731: 2729: 2728: 2723: 2721: 2720: 2708: 2707: 2695: 2694: 2679: 2678: 2490: 2488: 2487: 2482: 2480: 2479: 2475: 2474: 2447: 2417: 2416: 2410: 2409: 2404: 2400: 2399: 2387: 2386: 2374: 2373: 2355: 2354: 2342: 2341: 2328: 2322: 2321: 2314: 2313: 2312: 2292: 2291: 2279: 2278: 2178: 2176: 2175: 2170: 2165: 2164: 2157: 2156: 2153: 2144: 2143: 2140: 2000: 1998: 1997: 1992: 1972: 1971: 1956: 1955: 1936: 1934: 1933: 1928: 1920: 1919: 1895: 1894: 1882: 1881: 1866: 1865: 1853: 1852: 1840: 1839: 1826: 1825: 1824: 1800: 1798: 1797: 1792: 1782: 1769: 1768: 1756: 1755: 1745: 1744: 1743: 1716: 1714: 1713: 1708: 1702: 1701: 1689: 1688: 1676: 1675: 1660: 1659: 1647: 1646: 1634: 1633: 1620: 1619: 1618: 1603: 1582: 1581: 1569: 1568: 1556: 1555: 1543: 1542: 1532: 1531: 1530: 1515: 1501: 1455: 1453: 1452: 1447: 1436: 1435: 1423: 1422: 1406: 1405: 1404: 1389: 1384: 1357: 1356: 1344: 1343: 1327: 1322: 1301: 1300: 1281: 1280: 1279: 1261: 1256: 1219: 1217: 1216: 1211: 1203: 1202: 1190: 1189: 1173: 1168: 1141: 1140: 1121: 1116: 1046:Branch and bound 1036:Branch and bound 1030:Branch and bound 1010: 1008: 1007: 1002: 997: 996: 984: 983: 967: 966: 965: 950: 929: 928: 907: 906: 893: 888: 872: 871: 870: 855: 833: 828: 760:genome databases 706: 697: 695: 694: 689: 686: 685: 676: 675: 663: 662: 650: 649: 636: 615: 614: 602: 601: 592: 591: 584: 572: 571: 551: 365:energy functions 230:globular-protein 195:Target structure 45:protein redesign 7923: 7922: 7918: 7917: 7916: 7914: 7913: 7912: 7893: 7892: 7891: 7886: 7880: 7873: 7866: 7859: 7852: 7845: 7832: 7633:Futures studies 7584: 7565: 7514: 7473: 7422: 7416: 7302: 7301: 7272: 7178:Value sensitive 7168:User innovation 7047:Public interest 7012:Object-oriented 6732: 6713: 6694:Software design 6684:Research design 6637:Physical design 6592:Database design 6566: 6564: 6558: 6534:Property design 6529:Game art design 6483: 6477: 6400: 6393: 6308: 6301: 6258:Interior design 6209:Building design 6190: 6183: 6070: 6059: 6048: 6030: 6025: 5995: 5990: 5934: 5881: 5828: 5823: 5764: 5729: 5691: 5679: 5676: 5674:Further reading 5671: 5627: 5626: 5622: 5574: 5573: 5569: 5509: 5508: 5504: 5493: 5489: 5478: 5474: 5464: 5462: 5453: 5452: 5448: 5411:(5993): 770–3. 5402: 5401: 5397: 5372:10.1002/pro.227 5366:(10): 2125–38. 5360:Protein Science 5353: 5352: 5348: 5294: 5293: 5289: 5237: 5236: 5232: 5188: 5187: 5183: 5158:10.1038/nbt1336 5139: 5138: 5134: 5105:(10): 1109–10. 5096: 5095: 5091: 5047: 5046: 5035: 5002: 4981: 4980: 4976: 4922: 4921: 4917: 4863: 4862: 4858: 4841: 4792: 4791: 4787: 4756:(7192): 190–5. 4743: 4742: 4738: 4686: 4685: 4681: 4656:10.1002/pro.481 4644:Protein Science 4637: 4636: 4632: 4594: 4593: 4589: 4557:10.1.1.425.5418 4541: 4540: 4536: 4526: 4525: 4521: 4483: 4482: 4478: 4438: 4437: 4433: 4419: 4418: 4414: 4378: 4377: 4370: 4338:10.1.1.133.7986 4322: 4321: 4314: 4278: 4277: 4273: 4215: 4209: 4208: 4204: 4191: 4190: 4186: 4139: 4138: 4134: 4124: 4122: 4114: 4113: 4109: 4078:(12): 1923–45. 4065: 4064: 4060: 4036:10.1.1.138.2023 4020: 4019: 4012: 3976: 3975: 3971: 3941: 3940: 3936: 3919: 3883:(5993): 811–7. 3869: 3868: 3864: 3834: 3833: 3829: 3799: 3798: 3787: 3757: 3756: 3749: 3736: 3735: 3720: 3688: 3684:(August 2009). 3679: 3678: 3671: 3633: 3632: 3625: 3581: 3580: 3576: 3544:10.1.1.555.4071 3528: 3527: 3518: 3494:10.1038/491204a 3479:(7423): 204–5. 3466: 3465: 3461: 3400: 3399: 3395: 3359: 3358: 3354: 3308: 3307: 3298: 3268: 3267: 3260: 3230: 3229: 3222: 3182: 3181: 3172: 3142: 3141: 3126: 3116: 3114: 3108: 3107: 3103: 3099: 3072: 3045: 3032: 2992: 2983: 2965:specificity of 2955:negative design 2951:positive design 2946: 2894: 2845: 2828: 2794: 2774: 2759: 2754: 2753: 2748: 2744: 2740: 2712: 2699: 2683: 2670: 2665: 2664: 2659: 2658: 2652: 2651: 2645: 2644: 2633: 2598: 2574:error-prone RCR 2565: 2545:protein domains 2505: 2500: 2466: 2449: 2391: 2378: 2362: 2346: 2333: 2329: 2323: 2304: 2283: 2264: 2259: 2258: 2254:is defined as: 2253: 2249: 2248: 2242: 2239:that a residue 2238: 2237: 2232: 2231: 2227: 2213: 2204: 2193: 2185: 2148: 2135: 2121: 2110: 2109: 2100: 2097: 2093: 2090: 2084: 2079: 2036: 2025: 2024: 2018: 2017: 1960: 1947: 1942: 1941: 1911: 1886: 1873: 1857: 1844: 1828: 1816: 1806: 1805: 1760: 1747: 1735: 1725: 1724: 1693: 1680: 1664: 1651: 1638: 1622: 1610: 1573: 1560: 1547: 1534: 1522: 1496: 1495: 1480: 1479: 1472: 1462: 1427: 1414: 1396: 1348: 1335: 1292: 1271: 1225: 1224: 1194: 1181: 1132: 1091: 1090: 1085: 1081: 1077: 1073: 1069: 1038: 1032: 988: 975: 957: 920: 898: 862: 809: 808: 803: 802: 796: 795: 787: 781: 776: 764:evolution-based 731: 720: 719: 704: 667: 654: 638: 606: 593: 563: 555: 554: 547: 546: 542: 538: 534: 533: 529: 525: 524: 520: 516: 515: 511: 507: 506: 502: 498: 494: 492: 491: 487: 481: 477: 476: 472: 445: 439: 429: 351: 349:Energy function 329: 324:dihedral angles 323: 299: 243: 197: 182:computer models 178: 109:inverse folding 103:. In design, a 77: 33:rational design 24: 17: 12: 11: 5: 7921: 7919: 7911: 7910: 7905: 7895: 7894: 7888: 7887: 7885: 7884: 7877: 7870: 7863: 7856: 7849: 7841: 7838: 7837: 7834: 7833: 7831: 7830: 7825: 7820: 7815: 7810: 7805: 7800: 7795: 7790: 7785: 7780: 7775: 7770: 7765: 7760: 7755: 7750: 7745: 7740: 7735: 7734: 7733: 7728: 7718: 7713: 7708: 7701: 7700: 7698:Wicked problem 7695: 7690: 7685: 7680: 7675: 7670: 7665: 7660: 7655: 7650: 7645: 7640: 7635: 7630: 7625: 7620: 7615: 7610: 7605: 7600: 7595: 7589: 7586: 7585: 7583:Related topics 7582: 7575: 7574: 7571: 7570: 7567: 7566: 7564: 7563: 7558: 7553: 7548: 7543: 7538: 7533: 7528: 7522: 7520: 7516: 7515: 7513: 7512: 7507: 7502: 7500:Design Council 7497: 7492: 7487: 7481: 7479: 7475: 7474: 7472: 7471: 7470: 7469: 7467:European Union 7459: 7452: 7447: 7442: 7437: 7432: 7426: 7424: 7418: 7417: 7415: 7414: 7409: 7404: 7399: 7394: 7389: 7384: 7379: 7374: 7369: 7364: 7359: 7354: 7353: 7352: 7347: 7337: 7332: 7327: 7322: 7316: 7314: 7304: 7303: 7300: 7299: 7296: 7293: 7290: 7286: 7285: 7278: 7277: 7274: 7273: 7271: 7270: 7265: 7260: 7255: 7250: 7245: 7240: 7235: 7230: 7225: 7220: 7215: 7210: 7205: 7200: 7195: 7188: 7187: 7186: 7185: 7175: 7170: 7165: 7164: 7163: 7153: 7148: 7146:Usage-centered 7143: 7142: 7141: 7139:Design for All 7131: 7126: 7121: 7119:Transformation 7116: 7111: 7106: 7101: 7100: 7099: 7089: 7084: 7079: 7074: 7069: 7067:Research-based 7064: 7059: 7054: 7049: 7044: 7039: 7034: 7032:Platform-based 7029: 7024: 7019: 7014: 7009: 7004: 6999: 6994: 6989: 6984: 6982:KISS principle 6979: 6974: 6969: 6964: 6959: 6954: 6949: 6944: 6939: 6934: 6929: 6924: 6919: 6914: 6909: 6904: 6899: 6894: 6892:Fault-tolerant 6889: 6887:Error-tolerant 6884: 6883: 6882: 6872: 6870:Energy neutral 6867: 6862: 6857: 6852: 6851: 6850: 6840: 6835: 6830: 6829: 6828: 6826:Design fiction 6818: 6813: 6808: 6803: 6798: 6793: 6788: 6783: 6778: 6773: 6768: 6763: 6758: 6753: 6748: 6743: 6737: 6734: 6733: 6730: 6723: 6722: 6719: 6718: 6715: 6714: 6712: 6711: 6709:Systems design 6706: 6701: 6696: 6691: 6686: 6681: 6679:Protein design 6676: 6671: 6669:Process design 6666: 6661: 6656: 6651: 6646: 6645: 6644: 6639: 6634: 6632:Circuit design 6624: 6619: 6614: 6609: 6604: 6599: 6594: 6589: 6584: 6579: 6573: 6571: 6560: 6559: 6557: 6556: 6554:Textile design 6551: 6546: 6541: 6536: 6531: 6526: 6521: 6520: 6519: 6514: 6512:Costume design 6507:Fashion design 6504: 6495: 6489: 6487: 6479: 6478: 6476: 6475: 6470: 6465: 6460: 6455: 6450: 6445: 6440: 6435: 6434: 6433: 6428: 6418: 6417: 6416: 6405: 6403: 6395: 6394: 6392: 6391: 6389:Service design 6386: 6384:Sensory design 6381: 6376: 6374:Product design 6371: 6366: 6361: 6356: 6351: 6350: 6349: 6339: 6334: 6329: 6324: 6319: 6313: 6311: 6303: 6302: 6300: 6299: 6294: 6292:Spatial design 6289: 6284: 6283: 6282: 6272: 6270:Keyline design 6267: 6266: 6265: 6255: 6250: 6245: 6240: 6239: 6238: 6236:Computer-aided 6228: 6223: 6218: 6217: 6216: 6206: 6201: 6195: 6193: 6185: 6184: 6182: 6181: 6176: 6171: 6162: 6153: 6148: 6143: 6138: 6133: 6128: 6123: 6122: 6121: 6116: 6111: 6104:Graphic design 6101: 6096: 6094:Exhibit design 6091: 6086: 6081: 6075: 6073: 6061: 6060: 6057: 6050: 6049: 6047: 6046: 6041: 6035: 6032: 6031: 6026: 6024: 6023: 6016: 6009: 6001: 5992: 5991: 5989: 5988: 5983: 5978: 5973: 5968: 5963: 5958: 5953: 5951:Protein domain 5948: 5942: 5940: 5936: 5935: 5933: 5932: 5930:Thermodynamics 5927: 5922: 5917: 5912: 5907: 5902: 5897: 5891: 5889: 5883: 5882: 5880: 5879: 5877:Thermodynamics 5874: 5869: 5864: 5859: 5854: 5849: 5844: 5838: 5836: 5830: 5829: 5824: 5822: 5821: 5814: 5807: 5799: 5793: 5792: 5774:(1): 203–227. 5762: 5742:(5): 581–590. 5727: 5701:(2): 105–110. 5689: 5675: 5672: 5670: 5669: 5620: 5567: 5502: 5487: 5472: 5446: 5395: 5346: 5287: 5230: 5181: 5152:(10): 1171–6. 5132: 5089: 5033: 5000: 4974: 4935:(10): 3764–9. 4915: 4876:(10): 3790–5. 4856: 4785: 4736: 4679: 4650:(10): 1817–9. 4630: 4587: 4550:(10): 1071–5. 4534: 4519: 4476: 4454:10.1.1.71.9565 4431: 4412: 4391:(7): 1028–36. 4385:Bioinformatics 4368: 4312: 4291:(9): 1089–98. 4271: 4202: 4184: 4132: 4107: 4058: 4029:(3): 789–803. 4010: 3989:(10): 779–82. 3969: 3934: 3862: 3827: 3808:(2): 199–204. 3785: 3766:(2): 199–204. 3747: 3718: 3669: 3623: 3574: 3537:(3): 389–408. 3516: 3459: 3393: 3352: 3296: 3258: 3220: 3198:10.1.1.72.7304 3191:(5335): 82–7. 3170: 3124: 3100: 3098: 3095: 3094: 3093: 3088: 3083: 3078: 3071: 3068: 3064:battery design 3044: 3041: 3031: 3028: 2991: 2988: 2982: 2979: 2945: 2942: 2941: 2940: 2924: 2921: 2917: 2913: 2910: 2907: 2904: 2901: 2897: 2891: 2888: 2885: 2881: 2875: 2872: 2868: 2864: 2861: 2858: 2855: 2852: 2848: 2842: 2839: 2836: 2832: 2824: 2821: 2817: 2813: 2810: 2807: 2804: 2801: 2797: 2791: 2788: 2785: 2782: 2778: 2771: 2766: 2762: 2746: 2742: 2738: 2734: 2733: 2719: 2715: 2711: 2706: 2702: 2698: 2693: 2690: 2686: 2682: 2677: 2673: 2656: 2654: 2649: 2647: 2642: 2640: 2632: 2629: 2597: 2594: 2564: 2561: 2551:that produces 2533:aldol reaction 2504: 2501: 2499: 2496: 2492: 2491: 2478: 2473: 2469: 2465: 2462: 2459: 2456: 2452: 2446: 2443: 2440: 2437: 2434: 2431: 2428: 2425: 2421: 2415: 2407: 2403: 2398: 2394: 2390: 2385: 2381: 2377: 2372: 2369: 2365: 2361: 2358: 2353: 2349: 2345: 2340: 2336: 2332: 2326: 2320: 2311: 2307: 2302: 2298: 2295: 2290: 2286: 2282: 2277: 2274: 2271: 2267: 2251: 2246: 2244: 2240: 2235: 2233: 2229: 2228: 2225: 2212: 2209: 2203: 2200: 2191: 2183: 2180: 2179: 2168: 2163: 2160: 2151: 2147: 2138: 2134: 2131: 2128: 2124: 2120: 2117: 2098: 2095: 2091: 2088: 2083: 2080: 2078: 2075: 2035: 2032: 2028:branch and cut 2022: 2020: 2015: 2013: 2002: 2001: 1990: 1987: 1984: 1981: 1978: 1975: 1970: 1967: 1963: 1959: 1954: 1950: 1938: 1937: 1926: 1923: 1918: 1914: 1910: 1907: 1904: 1901: 1898: 1893: 1889: 1885: 1880: 1876: 1872: 1869: 1864: 1860: 1856: 1851: 1847: 1843: 1838: 1835: 1831: 1823: 1819: 1814: 1802: 1801: 1790: 1787: 1781: 1778: 1775: 1772: 1767: 1763: 1759: 1754: 1750: 1742: 1738: 1733: 1718: 1717: 1705: 1700: 1696: 1692: 1687: 1683: 1679: 1674: 1671: 1667: 1663: 1658: 1654: 1650: 1645: 1641: 1637: 1632: 1629: 1625: 1617: 1613: 1608: 1602: 1599: 1596: 1592: 1588: 1585: 1580: 1576: 1572: 1567: 1563: 1559: 1554: 1550: 1546: 1541: 1537: 1529: 1525: 1520: 1514: 1510: 1506: 1477: 1475: 1461: 1458: 1457: 1456: 1445: 1442: 1439: 1434: 1430: 1426: 1421: 1417: 1413: 1410: 1403: 1399: 1394: 1388: 1383: 1380: 1377: 1374: 1371: 1367: 1363: 1360: 1355: 1351: 1347: 1342: 1338: 1334: 1331: 1326: 1321: 1318: 1315: 1311: 1307: 1304: 1299: 1295: 1291: 1288: 1285: 1278: 1274: 1269: 1265: 1260: 1255: 1252: 1249: 1246: 1243: 1239: 1235: 1232: 1221: 1220: 1209: 1206: 1201: 1197: 1193: 1188: 1184: 1180: 1177: 1172: 1167: 1164: 1161: 1158: 1155: 1151: 1147: 1144: 1139: 1135: 1131: 1128: 1125: 1120: 1115: 1112: 1109: 1105: 1101: 1098: 1083: 1079: 1075: 1071: 1067: 1034:Main article: 1031: 1028: 1012: 1011: 1000: 995: 991: 987: 982: 978: 974: 971: 964: 960: 955: 949: 946: 943: 939: 935: 932: 927: 923: 919: 916: 913: 910: 905: 901: 897: 892: 887: 883: 879: 876: 869: 865: 860: 854: 851: 848: 844: 840: 837: 832: 827: 823: 819: 816: 800: 798: 793: 791: 783:Main article: 780: 777: 775: 772: 730: 727: 717: 715: 710: 709: 700: 698: 684: 679: 674: 670: 666: 661: 657: 653: 648: 645: 641: 635: 632: 629: 625: 621: 618: 613: 609: 605: 600: 596: 590: 583: 579: 575: 570: 566: 562: 544: 543: 540: 536: 531: 530: 527: 522: 521: 518: 513: 512: 509: 504: 503: 500: 496: 489: 488: 485: 483: 479: 474: 473: 470: 444: 441: 428: 425: 400:electrostatics 350: 347: 327: 321: 298: 295: 275:sequence space 242: 241:Sequence space 239: 196: 193: 177: 174: 170:bioengineering 76: 73: 29:Protein design 15: 13: 10: 9: 6: 4: 3: 2: 7920: 7909: 7906: 7904: 7901: 7900: 7898: 7883: 7878: 7876: 7871: 7869: 7864: 7862: 7857: 7855: 7850: 7848: 7843: 7842: 7839: 7829: 7826: 7824: 7821: 7819: 7816: 7814: 7813:specification 7811: 7809: 7806: 7804: 7801: 7799: 7796: 7794: 7791: 7789: 7786: 7784: 7781: 7779: 7776: 7774: 7771: 7769: 7766: 7764: 7761: 7759: 7756: 7754: 7751: 7749: 7746: 7744: 7741: 7739: 7736: 7732: 7729: 7727: 7726:architectural 7724: 7723: 7722: 7719: 7717: 7714: 7712: 7709: 7707: 7703: 7702: 7699: 7696: 7694: 7693:Visualization 7691: 7689: 7686: 7684: 7681: 7679: 7676: 7674: 7671: 7669: 7666: 7664: 7661: 7659: 7656: 7654: 7651: 7649: 7646: 7644: 7641: 7639: 7636: 7634: 7631: 7629: 7626: 7624: 7621: 7619: 7616: 7614: 7613:Cultural icon 7611: 7609: 7606: 7604: 7601: 7599: 7596: 7594: 7591: 7590: 7587: 7580: 7576: 7562: 7559: 7557: 7554: 7552: 7549: 7547: 7544: 7542: 7539: 7537: 7534: 7532: 7529: 7527: 7524: 7523: 7521: 7517: 7511: 7508: 7506: 7503: 7501: 7498: 7496: 7493: 7491: 7488: 7486: 7483: 7482: 7480: 7478:Organizations 7476: 7468: 7465: 7464: 7463: 7460: 7458: 7457: 7453: 7451: 7448: 7446: 7445:Design patent 7443: 7441: 7438: 7436: 7435:Design around 7433: 7431: 7428: 7427: 7425: 7419: 7413: 7410: 7408: 7405: 7403: 7400: 7398: 7395: 7393: 7390: 7388: 7385: 7383: 7380: 7378: 7375: 7373: 7370: 7368: 7365: 7363: 7360: 7358: 7355: 7351: 7348: 7346: 7343: 7342: 7341: 7338: 7336: 7333: 7331: 7328: 7326: 7323: 7321: 7318: 7317: 7315: 7313: 7309: 7305: 7297: 7295:Organizations 7294: 7291: 7288: 7287: 7283: 7279: 7269: 7266: 7264: 7261: 7259: 7256: 7254: 7251: 7249: 7246: 7244: 7241: 7239: 7236: 7234: 7231: 7229: 7226: 7224: 7221: 7219: 7216: 7214: 7211: 7209: 7206: 7204: 7201: 7199: 7196: 7194: 7190: 7189: 7184: 7181: 7180: 7179: 7176: 7174: 7171: 7169: 7166: 7162: 7159: 7158: 7157: 7156:User-centered 7154: 7152: 7149: 7147: 7144: 7140: 7137: 7136: 7135: 7132: 7130: 7127: 7125: 7122: 7120: 7117: 7115: 7112: 7110: 7107: 7105: 7104:Tableless web 7102: 7098: 7095: 7094: 7093: 7090: 7088: 7085: 7083: 7080: 7078: 7075: 7073: 7070: 7068: 7065: 7063: 7060: 7058: 7055: 7053: 7050: 7048: 7045: 7043: 7040: 7038: 7035: 7033: 7030: 7028: 7027:Participatory 7025: 7023: 7020: 7018: 7015: 7013: 7010: 7008: 7005: 7003: 7000: 6998: 6995: 6993: 6990: 6988: 6985: 6983: 6980: 6978: 6975: 6973: 6970: 6968: 6965: 6963: 6960: 6958: 6955: 6953: 6950: 6948: 6945: 6943: 6940: 6938: 6935: 6933: 6930: 6928: 6925: 6923: 6920: 6918: 6917:For Six Sigma 6915: 6913: 6910: 6908: 6905: 6903: 6900: 6898: 6895: 6893: 6890: 6888: 6885: 6881: 6878: 6877: 6876: 6873: 6871: 6868: 6866: 6863: 6861: 6860:Domain-driven 6858: 6856: 6853: 6849: 6848:architect-led 6846: 6845: 6844: 6841: 6839: 6836: 6834: 6831: 6827: 6824: 6823: 6822: 6819: 6817: 6814: 6812: 6809: 6807: 6804: 6802: 6799: 6797: 6794: 6792: 6791:Configuration 6789: 6787: 6784: 6782: 6779: 6777: 6774: 6772: 6769: 6767: 6764: 6762: 6759: 6757: 6756:Brainstorming 6754: 6752: 6749: 6747: 6744: 6742: 6739: 6738: 6735: 6728: 6724: 6710: 6707: 6705: 6702: 6700: 6697: 6695: 6692: 6690: 6689:Social design 6687: 6685: 6682: 6680: 6677: 6675: 6672: 6670: 6667: 6665: 6662: 6660: 6657: 6655: 6652: 6650: 6647: 6643: 6640: 6638: 6635: 6633: 6630: 6629: 6628: 6625: 6623: 6620: 6618: 6615: 6613: 6612:Filter design 6610: 6608: 6605: 6603: 6600: 6598: 6595: 6593: 6590: 6588: 6587:Boiler design 6585: 6583: 6580: 6578: 6575: 6574: 6572: 6570: 6561: 6555: 6552: 6550: 6547: 6545: 6542: 6540: 6539:Scenic design 6537: 6535: 6532: 6530: 6527: 6525: 6524:Floral design 6522: 6518: 6515: 6513: 6510: 6509: 6508: 6505: 6503: 6499: 6496: 6494: 6491: 6490: 6488: 6486: 6480: 6474: 6471: 6469: 6466: 6464: 6461: 6459: 6456: 6454: 6451: 6449: 6446: 6444: 6441: 6439: 6436: 6432: 6429: 6427: 6424: 6423: 6422: 6419: 6415: 6412: 6411: 6410: 6407: 6406: 6404: 6402: 6396: 6390: 6387: 6385: 6382: 6380: 6377: 6375: 6372: 6370: 6367: 6365: 6362: 6360: 6357: 6355: 6352: 6348: 6345: 6344: 6343: 6340: 6338: 6335: 6333: 6330: 6328: 6325: 6323: 6320: 6318: 6315: 6314: 6312: 6310: 6304: 6298: 6295: 6293: 6290: 6288: 6285: 6281: 6278: 6277: 6276: 6273: 6271: 6268: 6264: 6261: 6260: 6259: 6256: 6254: 6251: 6249: 6246: 6244: 6241: 6237: 6234: 6233: 6232: 6231:Garden design 6229: 6227: 6224: 6222: 6219: 6215: 6214:Passive solar 6212: 6211: 6210: 6207: 6205: 6202: 6200: 6197: 6196: 6194: 6192: 6189:Environmental 6186: 6180: 6177: 6175: 6172: 6170: 6166: 6163: 6161: 6157: 6154: 6152: 6151:Retail design 6149: 6147: 6144: 6142: 6139: 6137: 6134: 6132: 6129: 6127: 6124: 6120: 6117: 6115: 6112: 6110: 6107: 6106: 6105: 6102: 6100: 6097: 6095: 6092: 6090: 6087: 6085: 6082: 6080: 6077: 6076: 6074: 6072: 6069:Communication 6066: 6062: 6055: 6051: 6045: 6042: 6040: 6037: 6036: 6033: 6029: 6022: 6017: 6015: 6010: 6008: 6003: 6002: 5999: 5987: 5984: 5982: 5979: 5977: 5974: 5972: 5969: 5967: 5964: 5962: 5959: 5957: 5954: 5952: 5949: 5947: 5944: 5943: 5941: 5937: 5931: 5928: 5926: 5923: 5921: 5918: 5916: 5915:Determination 5913: 5911: 5908: 5906: 5903: 5901: 5898: 5896: 5893: 5892: 5890: 5888: 5884: 5878: 5875: 5873: 5870: 5868: 5865: 5863: 5862:Determination 5860: 5858: 5855: 5853: 5850: 5848: 5845: 5843: 5840: 5839: 5837: 5835: 5831: 5827: 5820: 5815: 5813: 5808: 5806: 5801: 5800: 5797: 5789: 5785: 5781: 5777: 5773: 5769: 5763: 5759: 5755: 5750: 5745: 5741: 5737: 5733: 5728: 5724: 5720: 5716: 5712: 5708: 5704: 5700: 5696: 5690: 5686: 5682: 5678: 5677: 5673: 5665: 5661: 5656: 5651: 5647: 5643: 5640:(2): 513–22. 5639: 5635: 5631: 5624: 5621: 5616: 5612: 5608: 5604: 5600: 5596: 5592: 5588: 5584: 5580: 5579: 5571: 5568: 5563: 5559: 5554: 5549: 5545: 5541: 5537: 5533: 5529: 5525: 5521: 5517: 5513: 5506: 5503: 5500: 5496: 5491: 5488: 5485: 5481: 5476: 5473: 5461: 5457: 5450: 5447: 5442: 5438: 5434: 5430: 5426: 5422: 5418: 5414: 5410: 5406: 5399: 5396: 5391: 5387: 5382: 5377: 5373: 5369: 5365: 5361: 5357: 5350: 5347: 5342: 5338: 5333: 5328: 5323: 5318: 5314: 5310: 5306: 5302: 5298: 5291: 5288: 5283: 5279: 5274: 5269: 5265: 5261: 5257: 5253: 5249: 5245: 5241: 5234: 5231: 5226: 5222: 5217: 5212: 5208: 5204: 5200: 5196: 5192: 5185: 5182: 5177: 5173: 5168: 5163: 5159: 5155: 5151: 5147: 5143: 5136: 5133: 5128: 5124: 5120: 5116: 5112: 5108: 5104: 5100: 5093: 5090: 5085: 5081: 5076: 5071: 5067: 5063: 5060:(4): 458–63. 5059: 5055: 5051: 5044: 5042: 5040: 5038: 5034: 5029: 5025: 5020: 5015: 5011: 5007: 5003: 4997: 4993: 4989: 4985: 4978: 4975: 4970: 4966: 4961: 4956: 4951: 4946: 4942: 4938: 4934: 4930: 4926: 4919: 4916: 4911: 4907: 4902: 4897: 4892: 4887: 4883: 4879: 4875: 4871: 4867: 4860: 4857: 4852: 4846: 4838: 4834: 4829: 4824: 4820: 4816: 4812: 4808: 4804: 4800: 4796: 4789: 4786: 4781: 4777: 4772: 4767: 4763: 4759: 4755: 4751: 4747: 4740: 4737: 4732: 4728: 4723: 4718: 4714: 4710: 4706: 4702: 4698: 4694: 4690: 4683: 4680: 4675: 4671: 4666: 4661: 4657: 4653: 4649: 4645: 4641: 4634: 4631: 4626: 4622: 4618: 4614: 4610: 4606: 4602: 4598: 4591: 4588: 4583: 4579: 4575: 4571: 4567: 4563: 4558: 4553: 4549: 4545: 4538: 4535: 4530: 4523: 4520: 4515: 4511: 4507: 4503: 4499: 4495: 4491: 4487: 4480: 4477: 4472: 4468: 4464: 4460: 4455: 4450: 4446: 4442: 4435: 4432: 4427: 4423: 4416: 4413: 4408: 4404: 4399: 4394: 4390: 4386: 4382: 4375: 4373: 4369: 4364: 4360: 4356: 4352: 4348: 4344: 4339: 4334: 4331:(2): 227–39. 4330: 4326: 4319: 4317: 4313: 4308: 4304: 4299: 4294: 4290: 4286: 4282: 4275: 4272: 4267: 4263: 4258: 4253: 4249: 4245: 4241: 4237: 4233: 4229: 4225: 4221: 4214: 4206: 4203: 4198: 4194: 4188: 4185: 4180: 4176: 4172: 4168: 4164: 4160: 4156: 4152: 4148: 4144: 4136: 4133: 4121: 4117: 4111: 4108: 4103: 4099: 4094: 4089: 4085: 4081: 4077: 4073: 4069: 4062: 4059: 4054: 4050: 4046: 4042: 4037: 4032: 4028: 4024: 4017: 4015: 4011: 4006: 4002: 3997: 3992: 3988: 3984: 3980: 3973: 3970: 3965: 3961: 3957: 3953: 3949: 3945: 3938: 3935: 3930: 3924: 3916: 3912: 3907: 3902: 3898: 3894: 3890: 3886: 3882: 3878: 3874: 3866: 3863: 3858: 3854: 3850: 3846: 3842: 3838: 3831: 3828: 3823: 3819: 3815: 3811: 3807: 3803: 3796: 3794: 3792: 3790: 3786: 3781: 3777: 3773: 3769: 3765: 3761: 3754: 3752: 3748: 3743: 3739: 3733: 3731: 3729: 3727: 3725: 3723: 3719: 3714: 3710: 3706: 3702: 3698: 3694: 3687: 3683: 3680:Mandell, DJ; 3676: 3674: 3670: 3665: 3661: 3657: 3653: 3649: 3645: 3641: 3637: 3630: 3628: 3624: 3619: 3615: 3610: 3605: 3601: 3597: 3594:(6): 844–58. 3593: 3589: 3585: 3578: 3575: 3570: 3566: 3562: 3558: 3554: 3550: 3545: 3540: 3536: 3532: 3525: 3523: 3521: 3517: 3512: 3508: 3504: 3500: 3495: 3490: 3486: 3482: 3478: 3474: 3470: 3463: 3460: 3455: 3451: 3446: 3441: 3437: 3433: 3429: 3425: 3421: 3417: 3413: 3409: 3405: 3397: 3394: 3389: 3385: 3380: 3375: 3371: 3367: 3363: 3356: 3353: 3348: 3344: 3340: 3336: 3332: 3328: 3324: 3320: 3316: 3312: 3305: 3303: 3301: 3297: 3292: 3288: 3284: 3280: 3276: 3272: 3265: 3263: 3259: 3254: 3250: 3246: 3242: 3239:(4): 509–13. 3238: 3234: 3227: 3225: 3221: 3216: 3212: 3208: 3204: 3199: 3194: 3190: 3186: 3179: 3177: 3175: 3171: 3166: 3162: 3158: 3154: 3150: 3146: 3139: 3137: 3135: 3133: 3131: 3129: 3125: 3112: 3105: 3102: 3096: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3073: 3069: 3067: 3065: 3060: 3058: 3054: 3050: 3042: 3040: 3038: 3029: 3027: 3024: 3020: 3016: 3012: 3008: 3004: 3000: 2996: 2989: 2987: 2980: 2978: 2976: 2972: 2968: 2964: 2960: 2956: 2952: 2943: 2922: 2919: 2915: 2908: 2902: 2899: 2895: 2889: 2886: 2883: 2873: 2870: 2866: 2859: 2853: 2850: 2846: 2840: 2837: 2834: 2822: 2819: 2815: 2808: 2802: 2799: 2795: 2789: 2786: 2783: 2780: 2769: 2764: 2760: 2752: 2751: 2750: 2717: 2713: 2709: 2704: 2700: 2696: 2691: 2688: 2684: 2680: 2675: 2663: 2662: 2661: 2638: 2630: 2628: 2624: 2622: 2618: 2614: 2610: 2606: 2602: 2595: 2593: 2589: 2585: 2583: 2579: 2575: 2571: 2562: 2560: 2558: 2557:phenylalanine 2554: 2550: 2546: 2542: 2538: 2534: 2530: 2526: 2521: 2519: 2515: 2510: 2503:Enzyme design 2502: 2497: 2495: 2471: 2467: 2460: 2454: 2450: 2444: 2435: 2429: 2426: 2423: 2419: 2405: 2396: 2392: 2388: 2383: 2379: 2370: 2367: 2363: 2359: 2351: 2347: 2338: 2334: 2330: 2324: 2309: 2305: 2296: 2288: 2284: 2275: 2269: 2265: 2257: 2256: 2255: 2222: 2218: 2210: 2208: 2201: 2199: 2197: 2189: 2166: 2149: 2145: 2136: 2129: 2126: 2122: 2118: 2115: 2108: 2107: 2106: 2104: 2081: 2076: 2074: 2072: 2068: 2063: 2059: 2055: 2051: 2050: 2045: 2041: 2033: 2031: 2029: 2011: 2007: 1985: 1982: 1979: 1973: 1968: 1965: 1961: 1957: 1952: 1948: 1940: 1939: 1924: 1921: 1916: 1912: 1908: 1905: 1899: 1891: 1887: 1878: 1874: 1870: 1862: 1858: 1854: 1849: 1845: 1836: 1833: 1829: 1821: 1817: 1812: 1804: 1803: 1788: 1779: 1776: 1773: 1765: 1761: 1752: 1748: 1740: 1736: 1731: 1723: 1722: 1721: 1698: 1694: 1690: 1685: 1681: 1672: 1669: 1665: 1656: 1652: 1648: 1643: 1639: 1630: 1627: 1623: 1615: 1611: 1606: 1600: 1597: 1594: 1590: 1586: 1578: 1574: 1565: 1561: 1552: 1548: 1539: 1535: 1527: 1523: 1518: 1512: 1508: 1494: 1493: 1492: 1490: 1486: 1485: 1471: 1467: 1459: 1432: 1428: 1424: 1419: 1415: 1408: 1401: 1397: 1386: 1381: 1378: 1375: 1372: 1369: 1365: 1361: 1353: 1349: 1345: 1340: 1336: 1329: 1324: 1319: 1316: 1313: 1309: 1305: 1297: 1293: 1286: 1276: 1272: 1258: 1253: 1250: 1247: 1244: 1241: 1237: 1233: 1230: 1223: 1222: 1199: 1195: 1191: 1186: 1182: 1175: 1170: 1165: 1162: 1159: 1156: 1153: 1149: 1145: 1137: 1133: 1126: 1118: 1113: 1110: 1107: 1103: 1099: 1096: 1089: 1088: 1087: 1066:The A* score 1064: 1062: 1057: 1055: 1051: 1047: 1043: 1037: 1029: 1027: 1023: 1021: 1017: 993: 989: 985: 980: 976: 969: 962: 958: 947: 944: 941: 937: 933: 925: 921: 914: 911: 903: 899: 895: 885: 881: 874: 867: 863: 852: 849: 846: 842: 838: 825: 821: 814: 807: 806: 805: 786: 778: 773: 771: 769: 768:deep learning 765: 761: 756: 754: 753: 747: 744: 740: 736: 728: 726: 724: 708: 701: 699: 672: 668: 664: 659: 655: 646: 643: 639: 633: 630: 627: 623: 619: 611: 607: 598: 594: 581: 577: 573: 568: 564: 553: 552: 549: 466: 464: 458: 449: 442: 440: 437: 433: 426: 424: 420: 418: 407: 403: 401: 397: 396:Lennard-Jones 393: 389: 384: 382: 378: 372: 370: 366: 355: 348: 346: 342: 340: 335: 333: 325: 316: 313: 303: 296: 294: 292: 288: 284: 280: 276: 272: 267: 265: 261: 252: 247: 240: 238: 235: 231: 227: 221: 219: 215: 206: 201: 194: 192: 189: 188: 183: 175: 173: 171: 167: 163: 159: 155: 151: 147: 143: 139: 134: 130: 126: 122: 118: 112: 110: 106: 102: 98: 94: 89: 85: 82: 74: 72: 70: 64: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 7683:STEAM fields 7653:Lean startup 7638:Indie design 7454: 7421:Intellectual 7173:Value-driven 7151:Use-centered 7057:Regenerative 7037:Policy-based 6997:Mind mapping 6902:For assembly 6843:Design–build 6761:By committee 6746:Adaptive web 6678: 6544:Sound design 6502:glass design 6500: / 6485:applied arts 6426:Level design 6297:Urban design 6248:Hotel design 6199:Architecture 6174:Video design 6167: / 6158: / 6126:Illustration 6119:Print design 6089:Brand design 5966:Nucleic acid 5871: 5771: 5767: 5739: 5735: 5698: 5694: 5684: 5637: 5633: 5623: 5582: 5576: 5570: 5519: 5515: 5505: 5499:OPM database 5490: 5484:OPM database 5475: 5465:November 17, 5463:. Retrieved 5459: 5449: 5408: 5404: 5398: 5363: 5359: 5349: 5304: 5300: 5290: 5247: 5243: 5233: 5201:(1): 50–61. 5198: 5194: 5184: 5149: 5145: 5135: 5102: 5098: 5092: 5057: 5053: 4983: 4977: 4932: 4928: 4918: 4873: 4869: 4859: 4845:cite journal 4802: 4798: 4788: 4753: 4749: 4739: 4696: 4692: 4682: 4647: 4643: 4633: 4603:(1): 31–43. 4600: 4596: 4590: 4547: 4543: 4537: 4528: 4522: 4489: 4485: 4479: 4444: 4440: 4434: 4428:: 1887–1907. 4425: 4421: 4415: 4388: 4384: 4328: 4324: 4288: 4284: 4274: 4223: 4219: 4205: 4196: 4187: 4146: 4142: 4135: 4123:. Retrieved 4119: 4110: 4075: 4071: 4061: 4026: 4022: 3986: 3982: 3972: 3950:(4): 441–6. 3947: 3943: 3937: 3923:cite journal 3880: 3876: 3865: 3843:(6): 622–6. 3840: 3836: 3830: 3805: 3801: 3763: 3759: 3741: 3699:(4): 420–8. 3696: 3692: 3639: 3635: 3591: 3587: 3577: 3534: 3530: 3476: 3472: 3462: 3419: 3415: 3396: 3372:(5): 421–3. 3369: 3365: 3355: 3314: 3310: 3274: 3270: 3236: 3232: 3188: 3184: 3151:(7): 304–9. 3148: 3144: 3115:. Retrieved 3104: 3061: 3046: 3036: 3033: 3022: 2993: 2984: 2966: 2954: 2950: 2947: 2735: 2634: 2625: 2620: 2599: 2590: 2586: 2566: 2553:Gramicidin S 2541:Bruce Donald 2528: 2524: 2522: 2517: 2506: 2493: 2220: 2214: 2205: 2181: 2102: 2085: 2070: 2066: 2047: 2037: 2003: 1719: 1482: 1473: 1065: 1058: 1053: 1049: 1039: 1024: 1013: 788: 757: 750: 748: 737:, that lack 732: 713: 702: 526:and rotamer 467: 459: 455: 438: 434: 430: 421: 413: 385: 373: 361: 343: 336: 317: 311: 309: 282: 270: 268: 263: 259: 257: 250: 222: 210: 185: 179: 150:coiled coils 146:Peter S. Kim 142:Stephen Mayo 140:was done by 137: 113: 108: 93:native state 78: 65: 48: 44: 40: 28: 27: 25: 7721:competition 7678:Slow design 7628:Form factor 7598:Concept art 7407:HTML editor 7087:Sustainable 6922:For testing 6766:By contract 6622:Work design 6597:Drug design 6569:engineering 6443:Icon design 6421:Game design 6399:Interaction 6347:Sustainable 6280:Sustainable 6169:Type design 6146:Photography 6141:News design 6084:Book design 6079:Advertising 6058:Disciplines 5522:(1): 3661. 5460:Nature News 3682:Kortemme, T 3408:Mascola, JR 2570:mutagenesis 2073:algorithm. 1481:(Equation ( 312:flexibility 226:David Baker 166:biomedicine 154:David Baker 152:. In 2003, 97:free energy 7897:Categories 7881:Wiktionary 7874:Wikisource 7828:technology 7798:principles 7397:Storyboard 7223:management 7218:leadership 7183:Privacy by 7022:Parametric 6992:Metadesign 6962:Integrated 6952:High-level 6937:Generative 6932:Functional 6801:Continuous 6796:Contextual 6771:C-K theory 6731:Approaches 6473:Web design 6327:CMF design 6307:Industrial 6165:Typography 5961:Proteasome 5920:Prediction 5910:Quaternary 5867:Prediction 5857:Quaternary 4125:August 17, 3642:: 129–49. 3097:References 3049:biosensors 2230:i→ j 1018:, and the 729:Algorithms 369:challenges 306:rotamers). 279:RSC3 probe 86:that will 81:amino acid 7867:Wikiquote 7853:Wikibooks 7803:rationale 7768:knowledge 7743:education 7663:OODA loop 7387:Prototype 7372:Flowchart 7330:Blueprint 7198:computing 7134:Universal 7082:Safe-life 6987:Low-level 6977:Iterative 6957:Inclusive 6942:Geodesign 6833:Defensive 6781:Co-design 6751:Affective 5900:Secondary 5847:Secondary 5736:Structure 5544:2041-1723 5441:206528638 5010:1064-3745 4552:CiteSeerX 4449:CiteSeerX 4333:CiteSeerX 4285:Structure 4248:0036-8075 4179:220714458 4031:CiteSeerX 3588:Structure 3539:CiteSeerX 3404:Nabel, GJ 3193:CiteSeerX 3117:March 22, 2900:− 2887:∈ 2880:∑ 2851:− 2838:∈ 2831:∑ 2800:− 2784:∈ 2777:∑ 2765:∗ 2710:− 2697:− 2672:Δ 2605:Alzheimer 2458:→ 2442:∖ 2427:∈ 2420:∏ 2360:− 2331:− 2273:→ 2146:− 2130:β 2127:− 1974:∈ 1903:∀ 1813:∑ 1786:∀ 1732:∑ 1607:∑ 1598:≠ 1591:∑ 1519:∑ 1509:∑ 1366:∑ 1310:∑ 1238:∑ 1150:∑ 1104:∑ 1050:branching 945:≠ 938:∑ 891:′ 850:≠ 843:∑ 831:′ 743:heuristic 631:≠ 624:∑ 578:∑ 410:(purple). 254:sequence. 84:sequences 7860:Wikinews 7793:paradigm 7773:language 7753:engineer 7748:elements 7738:director 7423:property 7268:thinking 7258:strategy 7243:research 7203:controls 7161:Empathic 7092:Systemic 7052:Rational 7007:New Wave 6821:Critical 6044:Designer 5939:See also 5905:Tertiary 5852:Tertiary 5788:15733929 5758:12737823 5723:38986245 5683:(2011). 5664:21888918 5607:12736688 5562:30202038 5433:20705840 5390:19693930 5341:20643959 5282:19370028 5225:21071205 5176:17891135 5119:17921992 5084:19646858 5028:29086301 4969:19228942 4910:22357762 4837:20647463 4780:18354394 4731:18323453 4674:20717908 4625:21524437 4617:12012335 4597:Proteins 4574:16685715 4506:16986540 4471:10007532 4407:15546935 4363:12872539 4325:Proteins 4307:10508778 4266:35862514 4171:32703877 4120:phys.org 4102:19123203 4053:10835284 4005:12468711 3964:12163065 3915:20616231 3857:16257567 3822:17387014 3780:17387014 3740:(2011). 3713:19709874 3664:21128762 3618:21645855 3561:10861930 3531:Proteins 3503:23135466 3454:20616233 3388:18482694 3339:14631033 3253:10449371 3070:See also 2963:cofactor 2621:affinity 2196:annealed 2103:accepted 792:r′ 332:rotamers 291:Collagen 158:examples 7846:Commons 7818:studies 7763:history 7731:student 7716:classic 7704:Design 7618:.design 7546:Graphex 7248:science 7238:pattern 7233:methods 7208:culture 7191:Design 7002:Modular 6855:Diffuse 6776:Closure 6498:Ceramic 6156:Signage 6039:Outline 5946:Protein 5895:Primary 5842:Primary 5715:1603799 5655:3202338 5615:4387641 5587:Bibcode 5553:6131167 5524:Bibcode 5413:Bibcode 5405:Science 5381:2786976 5332:2922245 5309:Bibcode 5273:2748673 5252:Bibcode 5216:3053118 5167:2803018 5127:5527226 5075:2882636 5019:5912912 4960:2645347 4937:Bibcode 4901:3309769 4878:Bibcode 4828:3241958 4807:Bibcode 4799:Science 4758:Bibcode 4722:3431203 4701:Bibcode 4693:Science 4665:2998717 4514:8616813 4355:9779790 4257:9621694 4228:Bibcode 4220:Science 4151:Bibcode 4143:Science 4093:3495010 3906:2981354 3885:Bibcode 3877:Science 3644:Bibcode 3609:3118414 3569:3055173 3511:4426247 3481:Bibcode 3445:2965066 3424:Bibcode 3416:Science 3347:1939390 3319:Bibcode 3311:Science 3291:9822371 3271:Science 3215:9311930 3185:Science 3165:2672455 3023:de novo 2611:(e.g., 2547:of the 2529:de novo 2525:de novo 2518:de novo 2509:enzymes 2186:is the 2060:or the 2044:barrier 2040:Simplex 739:runtime 723:NP-hard 271:de novo 264:de novo 260:de novo 251:de novo 187:in vivo 138:de novo 125:fibrous 121:elastin 41:de novo 37:protein 35:of new 31:is the 7823:studio 7808:review 7788:museum 7711:change 7519:Awards 7392:Sketch 7377:Mockup 7357:CAutoD 7298:Awards 7263:theory 7253:sprint 7228:marker 7193:choice 6567:& 6565:design 6401:design 6309:design 6191:design 6109:Motion 6071:design 6028:Design 5925:Design 5872:Design 5786:  5756:  5721:  5713:  5662:  5652:  5613:  5605:  5578:Nature 5560:  5550:  5542:  5439:  5431:  5388:  5378:  5339:  5329:  5280:  5270:  5244:Nature 5223:  5213:  5174:  5164:  5125:  5117:  5082:  5072:  5026:  5016:  5008:  4998:  4967:  4957:  4908:  4898:  4835:  4825:  4778:  4750:Nature 4729:  4719:  4672:  4662:  4623:  4615:  4582:769053 4580:  4572:  4554:  4512:  4504:  4469:  4451:  4405:  4361:  4353:  4335:  4305:  4264:  4254:  4246:  4177:  4169:  4100:  4090:  4051:  4033:  4003:  3962:  3913:  3903:  3855:  3820:  3778:  3711:  3662:  3616:  3606:  3567:  3559:  3541:  3509:  3501:  3473:Nature 3452:  3442:  3386:  3345:  3337:  3289:  3251:  3213:  3195:  3163:  3037:E.coli 3017:, and 2745:, and 2637:energy 2609:cancer 2580:, and 2221:belief 2202:FASTER 2184:β 2182:where 2062:primal 1783:  1502:  1468:, and 721:is an 392:CHARMM 328:χ 322:χ 123:-like 7706:brief 7593:Agile 7312:Tools 7289:Tools 6927:For X 6563:Other 6482:Other 5719:S2CID 5611:S2CID 5437:S2CID 5123:S2CID 4621:S2CID 4578:S2CID 4510:S2CID 4467:S2CID 4359:S2CID 4216:(PDF) 4175:S2CID 3689:(PDF) 3565:S2CID 3507:S2CID 3343:S2CID 3021:were 3015:RSD-1 2971:NADPH 2006:CPLEX 1720:s.t. 1072:f=g+h 1054:bound 388:AMBER 283:rules 269:Both 59:, or 7783:load 7778:life 7758:firm 7345:CAID 7213:flow 7129:TRIZ 7017:Open 5784:PMID 5754:PMID 5711:PMID 5660:PMID 5603:PMID 5558:PMID 5540:ISSN 5467:2012 5429:PMID 5386:PMID 5337:PMID 5278:PMID 5221:PMID 5172:PMID 5115:PMID 5080:PMID 5024:PMID 5006:ISSN 4996:ISBN 4965:PMID 4906:PMID 4851:link 4833:PMID 4776:PMID 4727:PMID 4670:PMID 4613:PMID 4570:PMID 4502:PMID 4403:PMID 4351:PMID 4303:PMID 4262:PMID 4244:ISSN 4167:PMID 4127:2020 4098:PMID 4049:PMID 4001:PMID 3960:PMID 3929:link 3911:PMID 3853:PMID 3818:PMID 3776:PMID 3709:PMID 3660:PMID 3614:PMID 3557:PMID 3499:PMID 3450:PMID 3384:PMID 3335:PMID 3287:PMID 3249:PMID 3211:PMID 3161:PMID 3119:2018 3057:PAK1 3019:Top7 3005:and 2975:NADH 2959:bZIP 2646:and 2613:TP53 2058:dual 2019:and 1042:tree 912:> 762:for 390:and 205:Top7 203:The 168:and 88:fold 7340:CAD 7320:AAD 7097:SOD 7077:RWD 6947:HCD 6414:EED 6263:EID 5976:RNA 5971:DNA 5776:doi 5772:347 5744:doi 5703:doi 5650:PMC 5642:doi 5638:413 5595:doi 5583:423 5548:PMC 5532:doi 5497:in 5482:in 5421:doi 5409:329 5376:PMC 5368:doi 5327:PMC 5317:doi 5305:107 5268:PMC 5260:doi 5248:458 5211:PMC 5203:doi 5162:PMC 5154:doi 5107:doi 5070:PMC 5062:doi 5014:PMC 4988:doi 4955:PMC 4945:doi 4933:106 4896:PMC 4886:doi 4874:109 4823:PMC 4815:doi 4803:329 4766:doi 4754:453 4717:PMC 4709:doi 4697:319 4660:PMC 4652:doi 4605:doi 4562:doi 4494:doi 4459:doi 4393:doi 4343:doi 4293:doi 4252:PMC 4236:doi 4224:377 4159:doi 4147:369 4088:PMC 4080:doi 4041:doi 4027:299 3991:doi 3952:doi 3901:PMC 3893:doi 3881:329 3845:doi 3810:doi 3768:doi 3701:doi 3652:doi 3604:PMC 3596:doi 3549:doi 3489:doi 3477:491 3440:PMC 3432:doi 3420:329 3374:doi 3327:doi 3315:302 3279:doi 3275:282 3241:doi 3203:doi 3189:278 3153:doi 3053:TNT 2973:to 2660:): 2617:HIV 2301:max 2215:In 2154:old 2141:new 2099:old 2092:new 2042:or 1505:min 1393:min 1268:min 954:max 859:min 561:min 548:): 117:DDT 47:). 7899:: 5782:. 5770:. 5752:. 5740:11 5738:. 5734:. 5717:. 5709:. 5699:12 5697:. 5658:. 5648:. 5636:. 5632:. 5609:. 5601:. 5593:. 5581:. 5556:. 5546:. 5538:. 5530:. 5518:. 5514:. 5458:. 5435:. 5427:. 5419:. 5407:. 5384:. 5374:. 5364:18 5362:. 5358:. 5335:. 5325:. 5315:. 5303:. 5299:. 5276:. 5266:. 5258:. 5246:. 5242:. 5219:. 5209:. 5199:21 5197:. 5193:. 5170:. 5160:. 5150:25 5148:. 5144:. 5121:. 5113:. 5103:25 5101:. 5078:. 5068:. 5058:19 5056:. 5052:. 5036:^ 5022:. 5012:. 5004:. 4994:. 4963:. 4953:. 4943:. 4931:. 4927:. 4904:. 4894:. 4884:. 4872:. 4868:. 4847:}} 4843:{{ 4831:. 4821:. 4813:. 4801:. 4797:. 4774:. 4764:. 4752:. 4748:. 4725:. 4715:. 4707:. 4695:. 4691:. 4668:. 4658:. 4648:19 4646:. 4642:. 4619:. 4611:. 4601:48 4599:. 4576:. 4568:. 4560:. 4548:27 4546:. 4508:. 4500:. 4490:28 4488:. 4465:. 4457:. 4445:51 4443:. 4424:. 4401:. 4389:21 4387:. 4383:. 4371:^ 4357:. 4349:. 4341:. 4329:33 4327:. 4315:^ 4301:. 4287:. 4283:. 4260:. 4250:. 4242:. 4234:. 4222:. 4218:. 4195:. 4173:. 4165:. 4157:. 4145:. 4118:. 4096:. 4086:. 4076:30 4074:. 4070:. 4047:. 4039:. 4025:. 4013:^ 3999:. 3987:15 3985:. 3981:. 3958:. 3948:12 3946:. 3925:}} 3921:{{ 3909:. 3899:. 3891:. 3879:. 3875:. 3851:. 3839:. 3816:. 3806:17 3804:. 3788:^ 3774:. 3764:17 3762:. 3750:^ 3721:^ 3707:. 3697:20 3695:. 3691:. 3672:^ 3658:. 3650:. 3640:62 3638:. 3626:^ 3612:. 3602:. 3592:19 3590:. 3586:. 3563:. 3555:. 3547:. 3535:40 3533:. 3519:^ 3505:. 3497:. 3487:. 3475:. 3471:. 3448:. 3438:. 3430:. 3418:. 3414:. 3406:; 3382:. 3370:15 3368:. 3364:. 3341:. 3333:. 3325:. 3313:. 3299:^ 3285:. 3273:. 3261:^ 3247:. 3235:. 3223:^ 3209:. 3201:. 3187:. 3173:^ 3159:. 3149:14 3147:. 3127:^ 3066:. 3059:. 2977:. 2747:PL 2741:, 2657:PL 2576:, 2572:, 2245:(r 2234:(r 2023:ij 1074:. 508:, 484:E( 334:. 172:. 63:. 55:, 6020:e 6013:t 6006:v 5818:e 5811:t 5804:v 5790:. 5778:: 5760:. 5746:: 5725:. 5705:: 5666:. 5644:: 5617:. 5597:: 5589:: 5564:. 5534:: 5526:: 5520:9 5469:. 5443:. 5423:: 5415:: 5392:. 5370:: 5343:. 5319:: 5311:: 5284:. 5262:: 5254:: 5227:. 5205:: 5178:. 5156:: 5129:. 5109:: 5086:. 5064:: 5030:. 4990:: 4971:. 4947:: 4939:: 4912:. 4888:: 4880:: 4853:) 4839:. 4817:: 4809:: 4782:. 4768:: 4760:: 4733:. 4711:: 4703:: 4676:. 4654:: 4627:. 4607:: 4584:. 4564:: 4531:. 4516:. 4496:: 4473:. 4461:: 4426:7 4409:. 4395:: 4365:. 4345:: 4309:. 4295:: 4289:7 4268:. 4238:: 4230:: 4199:. 4181:. 4161:: 4153:: 4129:. 4104:. 4082:: 4055:. 4043:: 4007:. 3993:: 3966:. 3954:: 3931:) 3917:. 3895:: 3887:: 3859:. 3847:: 3841:9 3824:. 3812:: 3782:. 3770:: 3715:. 3703:: 3666:. 3654:: 3646:: 3620:. 3598:: 3571:. 3551:: 3513:. 3491:: 3483:: 3456:. 3434:: 3426:: 3390:. 3376:: 3349:. 3329:: 3321:: 3293:. 3281:: 3255:. 3243:: 3237:9 3217:. 3205:: 3167:. 3155:: 3121:. 2923:T 2920:R 2916:/ 2912:) 2909:x 2906:( 2903:E 2896:e 2890:L 2884:x 2874:T 2871:R 2867:/ 2863:) 2860:x 2857:( 2854:E 2847:e 2841:P 2835:x 2823:T 2820:R 2816:/ 2812:) 2809:x 2806:( 2803:E 2796:e 2790:L 2787:P 2781:x 2770:= 2761:K 2743:L 2739:P 2732:. 2718:L 2714:E 2705:P 2701:E 2692:L 2689:P 2685:E 2681:= 2676:G 2655:E 2650:L 2648:E 2643:P 2641:E 2477:) 2472:i 2468:r 2464:( 2461:i 2455:k 2451:m 2445:j 2439:) 2436:i 2433:( 2430:N 2424:k 2414:) 2406:T 2402:) 2397:j 2393:r 2389:, 2384:i 2380:r 2376:( 2371:j 2368:i 2364:E 2357:) 2352:i 2348:r 2344:( 2339:i 2335:E 2325:e 2319:( 2310:i 2306:r 2297:= 2294:) 2289:j 2285:r 2281:( 2276:j 2270:i 2266:m 2252:j 2247:j 2241:i 2236:j 2226:m 2192:T 2167:, 2162:) 2159:) 2150:E 2137:E 2133:( 2123:e 2119:= 2116:p 2096:E 2089:E 2049:1 2021:q 2016:i 2014:q 1989:} 1986:1 1983:, 1980:0 1977:{ 1969:j 1966:i 1962:q 1958:, 1953:i 1949:q 1925:j 1922:, 1917:i 1913:r 1909:, 1906:i 1900:, 1897:) 1892:i 1888:r 1884:( 1879:i 1875:q 1871:= 1868:) 1863:j 1859:r 1855:, 1850:i 1846:r 1842:( 1837:j 1834:i 1830:q 1822:j 1818:r 1789:i 1780:, 1777:1 1774:= 1771:) 1766:i 1762:r 1758:( 1753:i 1749:q 1741:i 1737:r 1704:) 1699:j 1695:r 1691:, 1686:i 1682:r 1678:( 1673:j 1670:i 1666:q 1662:) 1657:j 1653:r 1649:, 1644:i 1640:r 1636:( 1631:j 1628:i 1624:E 1616:j 1612:r 1601:i 1595:j 1587:+ 1584:) 1579:i 1575:r 1571:( 1566:i 1562:q 1558:) 1553:i 1549:r 1545:( 1540:i 1536:E 1528:i 1524:r 1513:i 1484:1 1478:T 1476:E 1444:] 1441:) 1438:) 1433:k 1429:r 1425:, 1420:j 1416:r 1412:( 1409:E 1402:k 1398:r 1387:n 1382:1 1379:+ 1376:j 1373:= 1370:k 1362:+ 1359:) 1354:j 1350:r 1346:, 1341:i 1337:r 1333:( 1330:E 1325:d 1320:1 1317:= 1314:i 1306:+ 1303:) 1298:j 1294:r 1290:( 1287:E 1284:( 1277:j 1273:r 1264:[ 1259:n 1254:1 1251:+ 1248:d 1245:= 1242:j 1234:= 1231:h 1208:) 1205:) 1200:j 1196:r 1192:, 1187:i 1183:r 1179:( 1176:E 1171:d 1166:1 1163:+ 1160:i 1157:= 1154:j 1146:+ 1143:) 1138:i 1134:r 1130:( 1127:E 1124:( 1119:d 1114:1 1111:= 1108:i 1100:= 1097:g 1084:d 1080:h 1076:g 1068:f 999:) 994:j 990:r 986:, 981:i 977:r 973:( 970:E 963:j 959:r 948:i 942:j 934:+ 931:) 926:i 922:r 918:( 915:E 909:) 904:j 900:r 896:, 886:i 882:r 878:( 875:E 868:j 864:r 853:i 847:j 839:+ 836:) 826:i 822:r 818:( 815:E 801:i 799:r 794:i 752:1 718:T 716:E 707:) 705:1 703:( 683:] 678:) 673:j 669:r 665:, 660:i 656:r 652:( 647:j 644:i 640:E 634:j 628:i 620:+ 617:) 612:i 608:r 604:( 599:i 595:E 589:[ 582:i 574:= 569:T 565:E 545:T 541:E 537:j 532:j 528:r 523:i 519:r 514:j 510:r 505:i 501:r 499:( 497:E 493:) 490:i 486:r 480:i 475:i 471:r 23:.

Index

Protein engineering
rational design
protein
peptide synthesis
site-directed mutagenesis
artificial gene synthesis
protein structure stability
amino acid
sequences
fold
native state
free energy
protein structure prediction
tertiary structure
DDT
elastin
fibrous
libraries of amino acid conformations
molecular dynamics
Stephen Mayo
Peter S. Kim
coiled coils
David Baker
examples
protein engineering
biomedicine
bioengineering
computer models
in vivo

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑