Knowledge

Electrochemical gradient

Source 📝

693: 1617: 1346: 31: 1285: 395: 2000: 2168: 1855: 1821: 919:
although external ions are attracted by the negative intracellular potential, entropy seeks to diffuse the ions already concentrated inside the cell. The converse phenomenon (osmosis supports transport, electric potential opposes it) can be achieved for Na in cells with abnormal transmembrane potentials: at
1357:
to drive the formation of proton gradients in chloroplasts, however, PSII utilizes vectorial redox chemistry to achieve this goal. Rather than physically transporting protons through the protein, reactions requiring the binding of protons will occur on the extracellular side while reactions requiring
918:
In the example of Na, both terms tend to support transport: the negative electric potential inside the cell attracts the positive ion and since Na is concentrated outside the cell, osmosis supports diffusion through the Na channel into the cell. In the case of K, the effect of osmosis is reversed:
2004:
Complex IV (CIV) catalyzes the transfer of two electrons from the cytochrome c reduced by CIII to one half of a full oxygen. Utilizing one full oxygen in oxidative phosphorylation requires the transfer of four electrons. The oxygen will then consume four protons from the matrix to form water while
2008: 1557: 719:
of ATP into ADP and an inorganic phosphate; for every molecule of ATP hydrolized, three Na are transported outside and two K are transported inside the cell. This makes the inside of the cell more negative than the outside and more specifically generates a membrane potential
160:
across that same membrane. In the former effect, the concentrated charge attracts charges of the opposite sign; in the latter, the concentrated species tends to diffuse across the membrane to an equalize concentrations. The combination of these two phenomena determines the
1659: 291: 1324:
forming the K state. This moves SB away from Asp85 and Asp212, causing H transfer from the SB to Asp85 forming the M1 state. The protein then shifts to the M2 state by separating Glu204 from Glu194 which releases a proton from Glu204 into the external medium. The SB is
885: 1995:{\displaystyle 2\underbrace {\text{cytochrome c}} _{\text{oxidized}}+{\ce {UQH_2}}+2\underbrace {{\ce {H^+}}} _{\text{matrix}}\longrightarrow 2\underbrace {\text{cytochrome c}} _{\text{reduced}}+{\ce {UQ}}+4\underbrace {{\ce {H^+}}} _{\text{IMS}}} 377:) correspond to turbines that convert the water's potential energy to other forms of physical or chemical energy, and the ions that pass through the membrane correspond to water traveling into the lower river. Conversely, energy can be used to 1304:. The proton pump relies on proton carriers to drive protons from the side of the membrane with a low H concentration to the side of the membrane with a high H concentration. In bacteriorhodopsin, the proton pump is activated by absorption of 81:
across a membrane. If there is an unequal distribution of charges across the membrane, then the difference in electric potential generates a force that drives ion diffusion until the charges are balanced on both sides of the membrane.
1404: 636:
of chloroplasts to drive the synthesis of ATP. The proton gradient can be generated through either noncyclic or cyclic photophosphorylation. Of the proteins that participate in noncyclic photophosphorylation,
529:. In a battery, an electrochemical potential arising from the movement of ions balances the reaction energy of the electrodes. The maximum voltage that a battery reaction can produce is sometimes called the 2163:{\displaystyle 2{\text{cytochrome c}}({\text{reduced}})+4{\ce {H+}}({\text{matrix}})+{\frac {1}{2}}{\ce {O2}}\longrightarrow 2{\text{cytochrome c}}({\text{oxidized}})+2{\ce {H+}}({\text{IMS}})+{\ce {H2O}}} 178: 73:
When there are unequal concentrations of an ion across a permeable membrane, the ion will move across the membrane from the area of higher concentration to the area of lower concentration through
756: 1337:. The protonation of Asp85 and Asp96 causes re-isomerization of the SB, forming the O state. Finally, bacteriorhodopsin returns to its resting state when Asp85 releases its proton to Glu204. 1816:{\displaystyle {\ce {NADH}}+{\ce {H^+}}+{\ce {UQ}}+4\underbrace {{\ce {H^+}}} _{\mathrm {matrix} }\longrightarrow {\ce {NAD^+}}+{\ce {UQH_2}}+4\underbrace {{\ce {H^+}}} _{\mathrm {IMS} }} 2377:
Shattock, Michael J.; Ottolia, Michela; Bers, Donald M.; Blaustein, Mordecai P.; Boguslavskyi, Andrii; Bossuyt, Julie; Bridge, John H. B.; Chen-Izu, Ye; Clancy, Colleen E. (2015-03-15).
2977:
Sun, Fei; Zhou, Qiangjun; Pang, Xiaoyun; Xu, Yingzhi; Rao, Zihe (2013-08-01). "Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain".
121:
and has industrial applications such as batteries and fuel cells. In biology, electrochemical gradients allow cells to control the direction ions move across membranes. In
2695:
Spitzer, Kenneth W.; Vaughan-Jones, Richard D. (2003), Karmazyn, Morris; Avkiran, Metin; Fliegel, Larry (eds.), "Regulation of Intracellular pH in Mammalian Cells",
700:
Since the ions are charged, they cannot pass through cellular membranes via simple diffusion. Two different mechanisms can transport the ions across the membrane:
3055: 1581:
in two separate reactions. The process that occurs is similar to the Q-cycle in Complex III of the electron transport chain. In the first reaction, PQH
3029:
Stephen T. Abedon, "Important words and concepts from Chapter 8, Campbell & Reece, 2002 (1/14/2005)", for Biology 113 at the Ohio State University
416: 2925:"Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b 6 f complex" 1264:
Proton gradients in particular are important in many types of cells as a form of energy storage. The gradient is usually used to drive ATP synthase,
1552:{\displaystyle 4h\nu +2{\ce {H2O}}+2{\ce {PQ}}+4{\ce {H+}}({\text{stroma}})\longrightarrow {\ce {O2}}+2{\ce {PQH2}}+4{\ce {H+}}({\text{lumen}})} 734:
An example of passive transport is ion fluxes through Na, K, Ca, and Cl channels. Unlike active transport, passive transport is powered by the
508: 3019: 2674: 2310: 3185: 1358:
the release of protons will occur on the intracellular side. Absorption of photons of 680nm wavelength is used to excite two electrons in
653:
directly contribute to generating the proton gradient. For each four photons absorbed by PSII, eight protons are pumped into the lumen.
3028: 467: 2184: 573: 439: 3254: 2712: 1653: 599: 486: 3048: 1608:
gets oxidized, adding an electron to another plastocyanin and PQ. Both reactions together transfer four protons into the lumen.
446: 286:{\displaystyle \nabla {\overline {\mu }}_{i}=\nabla \mu _{i}({\vec {r}})+z_{i}\mathrm {F} \nabla \varphi ({\vec {r}}){\text{,}}} 420: 2642:"The following table gives an idea of the intra and extra cellular ion concentrations in a squid axon and a mammalian cell" 3249: 3205: 594:, composed of four complexes embedded in the inner mitochondrial membrane. Complexes I, III, and IV pump protons from the 453: 3269: 3041: 1272:
transport. This section will focus on three processes that help establish proton gradients in their respective cells:
118: 2596: 435: 3259: 3153: 2729:"pH of the Cytoplasm and Periplasm of Escherichia coli: Rapid Measurement by Green Fluorescent Protein Fluorimetry" 656:
Several other transporters and ion channels play a role in generating a proton electrochemical gradient. One is TPK
370: 3264: 900: 626: 583: 172: 43: 2616:
Lodish, Harvey; Berk, Arnold; Zipursky, S. Lawrence; Matsudaira, Paul; Baltimore, David; Darnell, James (2000).
3148: 2214: 949: 591: 405: 142: 1586: 3274: 1394: 880:{\displaystyle \Delta G=RT\ln {\!\left({\frac {c_{\rm {in}}}{c_{\rm {out}}}}\right)}+(Fz)V_{\rm {membrane}}} 606:
entering the chain, ten protons translocate into the IMS. The result is an electric potential of more than
424: 409: 2785: 1566: 646: 138: 114: 3115: 3100: 2801: 619: 522: 460: 2209: 1036: 980: 595: 587: 569: 98: 90: 1329:
by Asp96 which forms the N state. It is important that the second proton comes from Asp96 since its
3074: 2487: 928: 692: 504: 130: 74: 1288:
Diagram of the conformational shift in retinal that initiates proton pumping in bacteriorhodopsin.
3094: 3064: 2526: 2272: 2219: 2194: 2179: 1066: 554: 546: 500: 343: 78: 1616: 3082: 3015: 2994: 2954: 2946: 2905: 2864: 2766: 2748: 2708: 2670: 2577: 2518: 2510: 2468: 2460: 2416: 2398: 2359: 2306: 2264: 2256: 1345: 1293: 1273: 1008: 750: 705: 661: 526: 518: 366: 2641: 350:
Sometimes, the term "electrochemical potential" is abused to describe the electric potential
3125: 3090: 2986: 2936: 2895: 2854: 2846: 2789: 2756: 2740: 2700: 2567: 2557: 2502: 2450: 2406: 2390: 2349: 2339: 2248: 2199: 2189: 954: 944: 912: 747: 701: 514: 333: 329: 157: 110: 86: 30: 2793: 2617: 2437:
Aperia, Anita; Akkuratov, Evgeny E.; Fontana, Jacopo Maria; Brismar, Hjalmar (2016-04-01).
1385:) which is released from PSII after gaining two protons from the stroma. The electrons in P 1284: 2814: 712: 633: 153: 66: 17: 680:) transports K into the thylakoid lumen and H into the stroma, which helps establish the 27:
Gradient of electrochemical potential, usually for an ion that can move across a membrane
2859: 2834: 2761: 2728: 2572: 2545: 2411: 2378: 2354: 2327: 743: 735: 669: 665: 638: 565: 378: 146: 94: 2923:
Schöttler, Mark Aurel; Tóth, Szilvia Z.; Boulouis, Alix; Kahlau, Sabine (2015-05-01).
3243: 3226: 3180: 2204: 1370: 1330: 1313: 642: 603: 580: 542: 541:
The generation of a transmembrane electrical potential through ion movement across a
169: 59: 2530: 3210: 3190: 2276: 1837: 1637: 1590: 1578: 1366: 892: 611: 122: 34:
Diagram of ion concentrations and charge across a semi-permeable cellular membrane.
2882:
Wickstrand, Cecilia; Dods, Robert; Royant, Antoine; Neutze, Richard (2015-03-01).
2239:
Nath, Sunil; Villadsen, John (2015-03-01). "Oxidative phosphorylation revisited".
2900: 2883: 2850: 2669:. Vol. 565 (Seventh ed.). Basel: Ciba-Geigy Limited. pp. 653–654. 2394: 1656:(NADH) which translocates four protons from the mitochondrial matrix to the IMS: 610:. The energy resulting from the flux of protons back into the matrix is used by 3200: 3195: 3172: 3110: 2704: 1825: 1326: 1317: 1301: 1148: 394: 152:
An electrochemical gradient has two components: a differential concentration of
126: 2544:
Höhner, Ricarda; Aboukila, Ali; Kunz, Hans-Henning; Venema, Kees (2016-01-01).
2455: 1593:
which then transfers it to plastocyanin. The second electron is transferred to
3220: 3143: 2990: 2546:"Proton Gradients and Proton-Dependent Transport Processes in the Chloroplast" 2506: 1585:
binds to the complex on the lumen side and one electron is transferred to the
1309: 1269: 716: 673: 2950: 2884:"Bacteriorhodopsin: Would the real structural intermediates please stand up?" 2752: 2514: 2464: 2402: 2344: 2260: 3138: 3133: 2562: 1641: 1629: 1625: 1265: 630: 615: 561: 374: 2998: 2958: 2909: 2868: 2770: 2581: 2522: 2488:"Regulation of the mitochondrial proton gradient by cytosolic Ca2+ signals" 2472: 2420: 2363: 2268: 2941: 2924: 2618:"Table 15-1, Typical Ion Concentrations in Invertebrates and Vertebrates" 1649: 1098: 959: 362: 51: 2744: 3163: 3105: 2005:
another four protons are pumped into the IMS, to give a total reaction
1829: 1334: 1321: 1297: 1123: 739: 664:
that is activated by Ca and conducts K from the thylakoid lumen to the
558: 381:, and chemical energy can be used to create electrochemical gradients. 2252: 3033: 1832:. The first step involving the transfer of two electrons from the UQH 1594: 1305: 939: 2835:"Molecular mechanisms for generating transmembrane proton gradients" 2438: 2833:
Gunner, M. R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun (2013-08-01).
2697:
The Sodium-Hydrogen Exchanger: From Molecule to its Role in Disease
1604:
which then transfers it to PQ. In the second reaction, a second PQH
923:, the Na influx halts; at higher potentials, it becomes an efflux. 109:
Electrochemical energy is one of the many interchangeable forms of
1633: 1615: 1390: 1354: 1344: 1333:
state is unstable and rapidly reprotonated with a proton from the
1283: 1276:
and noncyclic photophosphorylation and oxidative phosphorylation.
691: 550: 29: 1620:
Detailed diagram of the electron transport chain in mitochondria.
1369:. These higher energy electrons are transferred to protein-bound 1359: 3037: 2890:. Structural biochemistry and biophysics of membrane proteins. 332:(the electrochemical potential is implicitly measured on a per- 388: 162: 47: 1844:
site. In the second step, two more electrons reduce UQ to UQH
85:
Electrochemical gradients are essential to the operation of
2597:"» What are the concentrations of different ions in cells?" 681: 168:
The combined effect can be quantified as a gradient in the
572:
to the extracellular region; a typical animal cell has an
521:
in the form of an applied voltage is used to modulate the
2439:"Na+-K+-ATPase, a new class of plasma membrane receptors" 2326:
Yang, Huanghe; Zhang, Guohui; Cui, Jianmin (2015-01-01).
2153: 2084: 1893: 1769: 1516: 1495: 1434: 1381:). This reduces plastoquinone (PQ) to plastoquinol (PQH 2888:
Biochimica et Biophysica Acta (BBA) - General Subjects
2727:
Slonczewski, Joan L.; Wilks, Jessica C. (2007-08-01).
568:. By convention, physiological voltages are measured 361:
An electrochemical gradient is analogous to the water
156:
across a membrane and a differential concentration of
2011: 1858: 1662: 1407: 759: 181: 2786:"Rising Acidity in the Ocean: The Other CO2 Problem" 2432: 2430: 2328:"BK channels: multiple sensors, one activation gate" 3219: 3171: 3162: 3124: 3081: 2841:. Metals in Bioenergetics and Biomimetics Systems. 2839:
Biochimica et Biophysica Acta (BBA) - Bioenergetics
77:. Ions also carry an electric charge that forms an 2379:"Na+/Ca2+ exchange and Na+/K+-ATPase in the heart" 2296: 2294: 2292: 2290: 2288: 2286: 2162: 1994: 1815: 1551: 879: 672:. On the other hand, the electro-neutral K efflux 285: 2972: 2970: 2968: 782: 2486:Poburko, Damon; Demaurex, Nicolas (2012-04-24). 2828: 2826: 2824: 2495:Pflügers Archiv: European Journal of Physiology 2443:American Journal of Physiology. Cell Physiology 753:change associated with successful transport is 1401:and H into the lumen, for a total reaction of 746:(the transmembrane potential). Formally, the 711:An example of active transport of ions is the 3049: 1573:, which then transfers two electrons from PQH 625:Similar to the electron transport chain, the 354:by an ionic concentration gradient; that is, 161:thermodynamically-preferred direction for an 8: 579:An electrochemical gradient is essential to 1836:reduced by CI to two molecules of oxidized 1349:Simplified diagram of photophosphorylation. 423:. Unsourced material may be challenged and 3168: 3073:Mechanisms for chemical transport through 3056: 3042: 3034: 576:of (−70)–(−50) mV. 305:the chemical potential of the ion species 101:, and certain other biological processes. 65:The electrical gradient, or difference in 2940: 2899: 2858: 2760: 2571: 2561: 2454: 2410: 2353: 2343: 2152: 2147: 2142: 2131: 2121: 2116: 2102: 2094: 2083: 2078: 2073: 2063: 2052: 2042: 2037: 2023: 2015: 2010: 1986: 1974: 1969: 1967: 1955: 1946: 1936: 1923: 1911: 1906: 1904: 1892: 1887: 1882: 1873: 1863: 1857: 1800: 1799: 1787: 1782: 1780: 1768: 1763: 1758: 1748: 1743: 1718: 1717: 1705: 1700: 1698: 1686: 1676: 1671: 1663: 1661: 1541: 1531: 1526: 1515: 1510: 1505: 1494: 1489: 1484: 1473: 1463: 1458: 1447: 1433: 1428: 1423: 1406: 849: 848: 809: 808: 794: 793: 787: 781: 758: 487:Learn how and when to remove this message 379:pump water up into the lake above the dam 369:. Routes unblocked by the membrane (e.g. 278: 264: 263: 249: 243: 222: 221: 212: 196: 186: 180: 1377:) and then to unbound plastoquinone (PQ 1208: 1206: 1204: 1180:7.35 to 7.45 (normal arterial blood pH) 925: 629:of photosynthesis pump protons into the 58:The chemical gradient, or difference in 2231: 1222: 1220: 1218: 1200: 2810: 2799: 2794:10.1038/scientificamericanearth0908-22 2784:Brewer, Peter G. (September 1, 2008). 509:table of standard electrode potentials 54:. The gradient consists of two parts: 2979:Current Opinion in Structural Biology 2690: 2688: 2686: 7: 3186:Non-specific, adsorptive pinocytosis 2303:Lehninger Principles of Biochemistry 2301:Nelson, David; Cox, Michael (2013). 927:Common cellular ion concentrations ( 421:adding citations to reliable sources 1561:After being released from PSII, PQH 1397:(OEC). This results in release of O 2185:Transmembrane potential difference 1807: 1804: 1801: 1734: 1731: 1728: 1725: 1722: 1719: 871: 868: 865: 862: 859: 856: 853: 850: 816: 813: 810: 798: 795: 760: 742:(a concentration gradient) and an 531:standard electrochemical potential 319:the charge per ion of the species 254: 250: 205: 182: 25: 1654:nicotinamide adenine dinucleotide 1624:In the electron transport chain, 1600:which then transfers it to heme b 165:'s movement across the membrane. 2241:Biotechnology and Bioengineering 393: 1296:generates a proton gradient in 1124:X (negatively charged proteins) 2929:Journal of Experimental Botany 2699:, Springer US, pp. 1–15, 2136: 2128: 2107: 2099: 2088: 2057: 2049: 2028: 2020: 1929: 1740: 1546: 1538: 1481: 1478: 1470: 841: 832: 513:The term typically applies in 275: 269: 260: 233: 227: 218: 149:quickly transmit information. 1: 3206:Receptor-mediated endocytosis 3014:. Pearson Benjamin Cummings. 3010:Campbell & Reece (2005). 2595:Philips, Ron Milo & Ron. 1852:site. The total reaction is: 1389:are replenished by oxidizing 715:(NKA). NKA is powered by the 574:internal electrical potential 2901:10.1016/j.bbagen.2014.05.021 2851:10.1016/j.bbabio.2013.03.001 2395:10.1113/jphysiol.2014.282319 668:, which helps establish the 191: 113:through which energy may be 2705:10.1007/978-1-4615-0427-6_1 1589:which then transfers it to 907:is the charge per ion, and 696:Diagram of the Na-K-ATPase. 119:electroanalytical chemistry 3291: 3154:Secondary active transport 2550:Frontiers in Plant Science 2456:10.1152/ajpcell.00359.2015 2305:. New York: W.H. Freeman. 1182:6.9 - 7.8 (overall range) 523:thermodynamic favorability 498: 436:"Electrochemical gradient" 371:membrane transport protein 18:Proton electromotive force 3071: 2991:10.1016/j.sbi.2013.06.013 2507:10.1007/s00424-012-1106-y 2383:The Journal of Physiology 1648:) by the transfer of two 1612:Oxidative phosphorylation 1114: 958: 953: 948: 943: 938: 935: 627:light-dependent reactions 584:oxidative phosphorylation 173:electrochemical potential 143:sodium-potassium gradient 44:electrochemical potential 3255:Electrochemical concepts 3149:Primary active transport 2345:10.3389/fphys.2015.00029 2215:Proton exchange membrane 592:electron transport chain 40:electrochemical gradient 2733:Journal of Bacteriology 2563:10.3389/fpls.2016.00218 2332:Frontiers in Physiology 1395:oxygen-evolving complex 50:that can move across a 2809:Cite journal requires 2164: 1996: 1817: 1621: 1553: 1350: 1289: 881: 697: 287: 135:chemiosmotic potential 35: 3101:Facilitated diffusion 2165: 1997: 1828:(CIII) catalyzes the 1818: 1619: 1554: 1348: 1287: 882: 695: 614:to combine inorganic 288: 91:electrochemical cells 33: 3250:Cellular respiration 3075:biological membranes 2622:www.ncbi.nlm.nih.gov 2210:Electrochemical cell 2009: 1856: 1660: 1405: 1353:PSII also relies on 1341:Photophosphorylation 901:absolute temperature 757: 588:cellular respiration 586:. The final step of 547:biological processes 417:improve this section 179: 99:cellular respiration 60:solute concentration 3270:Physical quantities 2745:10.1128/JB.00615-07 2155: 2086: 1895: 1771: 1518: 1497: 1436: 932: 600:intermembrane space 505:electrode potential 137:used to synthesize 3095:mediated transport 3065:Membrane transport 2942:10.1093/jxb/eru495 2665:Diem K, Lenter C. 2646:www.chm.bris.ac.uk 2220:Reversal potential 2180:Concentration cell 2160: 2143: 2074: 1992: 1991: 1984: 1951: 1944: 1928: 1921: 1883: 1878: 1871: 1813: 1812: 1797: 1759: 1739: 1715: 1622: 1587:iron-sulfur center 1549: 1506: 1485: 1424: 1351: 1290: 926: 877: 698: 555:muscle contraction 537:Biological context 533:of that reaction. 501:concentration cell 344:electric potential 283: 79:electric potential 69:across a membrane. 62:across a membrane. 36: 3260:Electrophysiology 3237: 3236: 3233: 3232: 3083:Passive transport 3021:978-0-8053-7146-8 2739:(15): 5601–5607. 2676:978-3-9801244-0-9 2667:Scientific Tables 2312:978-1-4292-3414-6 2253:10.1002/bit.25492 2158: 2146: 2134: 2120: 2105: 2097: 2077: 2071: 2055: 2041: 2026: 2018: 1989: 1973: 1968: 1966: 1958: 1949: 1940: 1937: 1935: 1926: 1910: 1905: 1903: 1886: 1876: 1867: 1864: 1862: 1786: 1781: 1779: 1762: 1747: 1704: 1699: 1697: 1689: 1675: 1666: 1544: 1530: 1509: 1488: 1476: 1462: 1450: 1439: 1427: 1312:, which leads to 1294:bacteriorhodopsin 1280:Bacteriorhodopsin 1274:bacteriorhodopsin 1198: 1197: 822: 751:Gibbs free energy 662:potassium channel 602:(IMS); for every 527:chemical reaction 519:electrical energy 497: 496: 489: 471: 367:hydroelectric dam 281: 272: 230: 194: 117:. It appears in 46:, usually for an 42:is a gradient of 16:(Redirected from 3282: 3265:Membrane biology 3169: 3126:Active transport 3091:Simple diffusion 3058: 3051: 3044: 3035: 3025: 3003: 3002: 2974: 2963: 2962: 2944: 2935:(9): 2373–2400. 2920: 2914: 2913: 2903: 2879: 2873: 2872: 2862: 2845:(8–9): 892–913. 2830: 2819: 2818: 2812: 2807: 2805: 2797: 2781: 2775: 2774: 2764: 2724: 2718: 2717: 2692: 2681: 2680: 2662: 2656: 2655: 2653: 2652: 2638: 2632: 2631: 2629: 2628: 2613: 2607: 2606: 2604: 2603: 2592: 2586: 2585: 2575: 2565: 2541: 2535: 2534: 2492: 2483: 2477: 2476: 2458: 2449:(7): C491–C495. 2434: 2425: 2424: 2414: 2389:(6): 1361–1382. 2374: 2368: 2367: 2357: 2347: 2323: 2317: 2316: 2298: 2281: 2280: 2236: 2200:Electrodiffusion 2190:Action potential 2169: 2167: 2166: 2161: 2159: 2156: 2154: 2151: 2144: 2135: 2132: 2127: 2126: 2125: 2118: 2106: 2103: 2098: 2095: 2087: 2085: 2082: 2075: 2072: 2064: 2056: 2053: 2048: 2047: 2046: 2039: 2027: 2024: 2019: 2016: 2001: 1999: 1998: 1993: 1990: 1987: 1985: 1980: 1979: 1978: 1971: 1959: 1956: 1950: 1947: 1945: 1938: 1927: 1924: 1922: 1917: 1916: 1915: 1908: 1896: 1894: 1891: 1884: 1877: 1874: 1872: 1865: 1822: 1820: 1819: 1814: 1811: 1810: 1798: 1793: 1792: 1791: 1784: 1772: 1770: 1767: 1760: 1754: 1753: 1752: 1745: 1738: 1737: 1716: 1711: 1710: 1709: 1702: 1690: 1687: 1682: 1681: 1680: 1673: 1667: 1664: 1558: 1556: 1555: 1550: 1545: 1542: 1537: 1536: 1535: 1528: 1519: 1517: 1514: 1507: 1498: 1496: 1493: 1486: 1477: 1474: 1469: 1468: 1467: 1460: 1451: 1448: 1440: 1437: 1435: 1432: 1425: 1260:Proton gradients 1254: 1253:Medium dependent 1251: 1245: 1242: 1236: 1233: 1227: 1224: 1213: 1210: 933: 922: 913:Faraday constant 910: 906: 898: 890: 886: 884: 883: 878: 876: 875: 874: 828: 827: 823: 821: 820: 819: 803: 802: 801: 788: 730: 609: 515:electrochemistry 492: 485: 481: 478: 472: 470: 429: 397: 389: 357: 341: 330:Faraday constant 327: 322: 318: 308: 304: 292: 290: 289: 284: 282: 279: 274: 273: 265: 253: 248: 247: 232: 231: 223: 217: 216: 201: 200: 195: 187: 158:chemical species 131:proton gradients 111:potential energy 75:simple diffusion 21: 3290: 3289: 3285: 3284: 3283: 3281: 3280: 3279: 3240: 3239: 3238: 3229: 3215: 3158: 3120: 3077: 3067: 3062: 3022: 3009: 3006: 2976: 2975: 2966: 2922: 2921: 2917: 2881: 2880: 2876: 2832: 2831: 2822: 2808: 2798: 2783: 2782: 2778: 2726: 2725: 2721: 2715: 2694: 2693: 2684: 2677: 2664: 2663: 2659: 2650: 2648: 2640: 2639: 2635: 2626: 2624: 2615: 2614: 2610: 2601: 2599: 2594: 2593: 2589: 2543: 2542: 2538: 2490: 2485: 2484: 2480: 2436: 2435: 2428: 2376: 2375: 2371: 2325: 2324: 2320: 2313: 2300: 2299: 2284: 2238: 2237: 2233: 2229: 2224: 2175: 2117: 2038: 2007: 2006: 1970: 1907: 1854: 1853: 1851: 1847: 1843: 1835: 1783: 1744: 1701: 1672: 1658: 1657: 1647: 1614: 1607: 1603: 1598: 1584: 1576: 1570: 1565:travels to the 1564: 1527: 1459: 1403: 1402: 1400: 1388: 1384: 1380: 1376: 1363: 1343: 1282: 1262: 1257: 1252: 1248: 1243: 1239: 1234: 1230: 1225: 1216: 1211: 1202: 1181: 1152: 1089: 1075: 1057: 1042: 920: 911:represents the 908: 904: 896: 891:represents the 888: 844: 804: 789: 783: 755: 754: 728: 726: 690: 679: 659: 650: 607: 539: 511: 493: 482: 476: 473: 430: 428: 414: 398: 387: 355: 339: 325: 320: 316: 311: 306: 303: 297: 239: 208: 185: 177: 176: 154:electric charge 147:neural synapses 107: 28: 23: 22: 15: 12: 11: 5: 3288: 3286: 3278: 3277: 3275:Thermodynamics 3272: 3267: 3262: 3257: 3252: 3242: 3241: 3235: 3234: 3231: 3230: 3225: 3223: 3217: 3216: 3214: 3213: 3208: 3203: 3198: 3193: 3188: 3183: 3177: 3175: 3166: 3160: 3159: 3157: 3156: 3151: 3146: 3141: 3136: 3130: 3128: 3122: 3121: 3119: 3118: 3113: 3108: 3103: 3098: 3087: 3085: 3079: 3078: 3072: 3069: 3068: 3063: 3061: 3060: 3053: 3046: 3038: 3032: 3031: 3026: 3020: 3005: 3004: 2985:(4): 526–538. 2964: 2915: 2894:(3): 536–553. 2874: 2820: 2811:|journal= 2776: 2719: 2713: 2682: 2675: 2657: 2633: 2608: 2587: 2536: 2478: 2426: 2369: 2318: 2311: 2282: 2247:(3): 429–437. 2230: 2228: 2225: 2223: 2222: 2217: 2212: 2207: 2202: 2197: 2195:Cell potential 2192: 2187: 2182: 2176: 2174: 2171: 2150: 2141: 2138: 2130: 2124: 2115: 2112: 2109: 2101: 2093: 2090: 2081: 2070: 2067: 2062: 2059: 2051: 2045: 2036: 2033: 2030: 2022: 2014: 1983: 1977: 1965: 1962: 1954: 1943: 1934: 1931: 1920: 1914: 1902: 1899: 1890: 1881: 1870: 1861: 1849: 1845: 1841: 1833: 1809: 1806: 1803: 1796: 1790: 1778: 1775: 1766: 1757: 1751: 1742: 1736: 1733: 1730: 1727: 1724: 1721: 1714: 1708: 1696: 1693: 1685: 1679: 1670: 1645: 1613: 1610: 1605: 1601: 1596: 1582: 1574: 1568: 1562: 1548: 1540: 1534: 1525: 1522: 1513: 1504: 1501: 1492: 1483: 1480: 1472: 1466: 1457: 1454: 1446: 1443: 1431: 1422: 1419: 1416: 1413: 1410: 1398: 1386: 1382: 1378: 1374: 1361: 1342: 1339: 1281: 1278: 1261: 1258: 1256: 1255: 1246: 1237: 1228: 1214: 1199: 1196: 1195: 1192: 1189: 1187: 1185: 1183: 1178: 1175: 1171: 1170: 1168: 1166: 1164: 1162: 1160: 1157: 1154: 1150: 1145: 1144: 1142: 1140: 1138: 1135: 1132: 1129: 1126: 1120: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1095: 1094: 1091: 1086: 1083: 1080: 1077: 1072: 1069: 1063: 1062: 1059: 1054: 1051: 1049: 1047: 1044: 1039: 1033: 1032: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 1005: 1004: 1001: 998: 995: 992: 989: 986: 983: 977: 976: 973: 970: 967: 963: 962: 957: 952: 947: 942: 937: 873: 870: 867: 864: 861: 858: 855: 852: 847: 843: 840: 837: 834: 831: 826: 818: 815: 812: 807: 800: 797: 792: 786: 780: 777: 774: 771: 768: 765: 762: 744:electric field 736:arithmetic sum 724: 689: 686: 677: 670:electric field 657: 648: 639:photosystem II 538: 535: 495: 494: 401: 399: 392: 386: 383: 348: 347: 337: 323: 314: 309: 299: 277: 271: 268: 262: 259: 256: 252: 246: 242: 238: 235: 229: 226: 220: 215: 211: 207: 204: 199: 193: 190: 184: 106: 103: 95:photosynthesis 71: 70: 63: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3287: 3276: 3273: 3271: 3268: 3266: 3263: 3261: 3258: 3256: 3253: 3251: 3248: 3247: 3245: 3228: 3227:Degranulation 3224: 3222: 3218: 3212: 3209: 3207: 3204: 3202: 3199: 3197: 3194: 3192: 3189: 3187: 3184: 3182: 3181:Efferocytosis 3179: 3178: 3176: 3174: 3170: 3167: 3165: 3161: 3155: 3152: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3131: 3129: 3127: 3123: 3117: 3114: 3112: 3109: 3107: 3104: 3102: 3099: 3096: 3092: 3089: 3088: 3086: 3084: 3080: 3076: 3070: 3066: 3059: 3054: 3052: 3047: 3045: 3040: 3039: 3036: 3030: 3027: 3023: 3017: 3013: 3008: 3007: 3000: 2996: 2992: 2988: 2984: 2980: 2973: 2971: 2969: 2965: 2960: 2956: 2952: 2948: 2943: 2938: 2934: 2930: 2926: 2919: 2916: 2911: 2907: 2902: 2897: 2893: 2889: 2885: 2878: 2875: 2870: 2866: 2861: 2856: 2852: 2848: 2844: 2840: 2836: 2829: 2827: 2825: 2821: 2816: 2803: 2795: 2791: 2787: 2780: 2777: 2772: 2768: 2763: 2758: 2754: 2750: 2746: 2742: 2738: 2734: 2730: 2723: 2720: 2716: 2714:9781461504276 2710: 2706: 2702: 2698: 2691: 2689: 2687: 2683: 2678: 2672: 2668: 2661: 2658: 2647: 2643: 2637: 2634: 2623: 2619: 2612: 2609: 2598: 2591: 2588: 2583: 2579: 2574: 2569: 2564: 2559: 2555: 2551: 2547: 2540: 2537: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2504: 2500: 2496: 2489: 2482: 2479: 2474: 2470: 2466: 2462: 2457: 2452: 2448: 2444: 2440: 2433: 2431: 2427: 2422: 2418: 2413: 2408: 2404: 2400: 2396: 2392: 2388: 2384: 2380: 2373: 2370: 2365: 2361: 2356: 2351: 2346: 2341: 2337: 2333: 2329: 2322: 2319: 2314: 2308: 2304: 2297: 2295: 2293: 2291: 2289: 2287: 2283: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2246: 2242: 2235: 2232: 2226: 2221: 2218: 2216: 2213: 2211: 2208: 2206: 2205:Galvanic cell 2203: 2201: 2198: 2196: 2193: 2191: 2188: 2186: 2183: 2181: 2178: 2177: 2172: 2170: 2148: 2139: 2122: 2113: 2110: 2091: 2079: 2068: 2065: 2060: 2043: 2034: 2031: 2012: 2002: 1981: 1975: 1963: 1960: 1952: 1941: 1932: 1918: 1912: 1900: 1897: 1888: 1879: 1868: 1859: 1839: 1831: 1827: 1823: 1794: 1788: 1776: 1773: 1764: 1755: 1749: 1712: 1706: 1694: 1691: 1683: 1677: 1668: 1655: 1652:from reduced 1651: 1643: 1639: 1635: 1631: 1627: 1618: 1611: 1609: 1599: 1592: 1588: 1580: 1572: 1559: 1532: 1523: 1520: 1511: 1502: 1499: 1490: 1464: 1455: 1452: 1444: 1441: 1429: 1420: 1417: 1414: 1411: 1408: 1396: 1392: 1372: 1371:plastoquinone 1368: 1364: 1356: 1347: 1340: 1338: 1336: 1332: 1328: 1323: 1319: 1315: 1314:isomerization 1311: 1307: 1303: 1300:is through a 1299: 1295: 1286: 1279: 1277: 1275: 1271: 1268:rotation, or 1267: 1259: 1250: 1247: 1241: 1238: 1232: 1229: 1223: 1221: 1219: 1215: 1209: 1207: 1205: 1201: 1193: 1190: 1188: 1186: 1184: 1179: 1176: 1173: 1172: 1169: 1167: 1165: 1163: 1161: 1158: 1155: 1153: 1147: 1146: 1143: 1141: 1139: 1136: 1133: 1130: 1127: 1125: 1122: 1121: 1117: 1111: 1108: 1105: 1102: 1100: 1097: 1096: 1092: 1087: 1084: 1081: 1078: 1073: 1070: 1068: 1065: 1064: 1060: 1055: 1052: 1050: 1048: 1045: 1040: 1038: 1035: 1034: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1010: 1007: 1006: 1002: 999: 996: 993: 990: 987: 984: 982: 979: 978: 974: 971: 968: 965: 964: 961: 956: 951: 950:S. cerevisiae 946: 941: 934: 930: 924: 916: 914: 902: 894: 845: 838: 835: 829: 824: 805: 790: 784: 778: 775: 772: 769: 766: 763: 752: 749: 745: 741: 737: 732: 723: 718: 714: 709: 707: 703: 694: 688:Ion gradients 687: 685: 683: 675: 671: 667: 663: 654: 652: 644: 643:plastiquinone 640: 635: 632: 628: 623: 621: 617: 613: 605: 604:electron pair 601: 597: 593: 589: 585: 582: 581:mitochondrial 577: 575: 571: 567: 563: 560: 556: 552: 548: 544: 543:cell membrane 536: 534: 532: 528: 524: 520: 516: 510: 506: 502: 491: 488: 480: 477:December 2023 469: 466: 462: 459: 455: 452: 448: 445: 441: 438: –  437: 433: 432:Find sources: 426: 422: 418: 412: 411: 407: 402:This section 400: 396: 391: 390: 384: 382: 380: 376: 372: 368: 364: 359: 353: 345: 338: 335: 331: 324: 317: 310: 302: 296: 295: 294: 266: 257: 244: 240: 236: 224: 213: 209: 202: 197: 188: 174: 171: 170:thermodynamic 166: 164: 159: 155: 150: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 104: 102: 100: 96: 92: 88: 83: 80: 76: 68: 64: 61: 57: 56: 55: 53: 49: 45: 41: 32: 19: 3211:Transcytosis 3191:Phagocytosis 3011: 2982: 2978: 2932: 2928: 2918: 2891: 2887: 2877: 2842: 2838: 2802:cite journal 2779: 2736: 2732: 2722: 2696: 2666: 2660: 2649:. Retrieved 2645: 2636: 2625:. Retrieved 2621: 2611: 2600:. Retrieved 2590: 2553: 2549: 2539: 2501:(1): 19–26. 2498: 2494: 2481: 2446: 2442: 2386: 2382: 2372: 2335: 2331: 2321: 2302: 2244: 2240: 2234: 2096:cytochrome c 2017:cytochrome c 2003: 1939:cytochrome c 1866:cytochrome c 1838:cytochrome c 1824: 1623: 1591:cytochrome f 1579:plastocyanin 1567:cytochrome b 1560: 1393:through the 1367:energy level 1365:to a higher 1352: 1331:deprotonated 1327:reprotonated 1291: 1263: 1249: 1240: 1231: 917: 893:gas constant 733: 721: 710: 699: 655: 647:cytochrome b 624: 612:ATP synthase 578: 553:conduction, 540: 530: 512: 483: 474: 464: 457: 450: 443: 431: 415:Please help 403: 360: 351: 349: 342:, the local 312: 300: 167: 151: 134: 127:chloroplasts 123:mitochondria 108: 84: 72: 39: 37: 3201:Potocytosis 3196:Pinocytosis 3173:Endocytosis 1826:Complex III 1318:Schiff base 1302:proton pump 921:+70 mV 899:represents 729:−60 mV 713:Na-K-ATPase 708:transport. 608:200 mV 133:generate a 3244:Categories 3221:Exocytosis 3144:Antiporter 2651:2019-06-07 2627:2019-06-07 2602:2019-06-07 2227:References 1638:ubiquinone 1310:wavelength 1270:metabolite 1194:8.1 - 8.2 1191:7.2 - 7.8 1076:1.3 - 1.5 1074:2.2 - 2.6 1043:0.5 - 0.8 945:Squid axon 929:millimolar 717:hydrolysis 684:gradient. 674:antiporter 499:See also: 447:newspapers 375:electrodes 141:, and the 89:and other 3139:Symporter 3134:Uniporter 2951:0022-0957 2753:0021-9193 2515:0031-6768 2465:0363-6143 2403:1469-7793 2261:1097-0290 2089:⟶ 1982:⏟ 1942:⏟ 1930:⟶ 1919:⏟ 1869:⏟ 1795:⏟ 1741:⟶ 1713:⏟ 1650:electrons 1642:ubiquinol 1634:reduction 1630:catalyzes 1626:complex I 1571:f complex 1482:⟶ 1415:ν 1308:of 568nm 1266:flagellar 1177:7.1 - 7.3 1134:300 - 400 1115:10 - 200 1079:10 - 3×10 1058:0.01 - 1 1056:30 - 100 985:100 - 140 960:Sea water 779:⁡ 761:Δ 727:of about 651:f complex 631:thylakoid 616:phosphate 566:sensation 562:secretion 404:does not 385:Chemistry 365:across a 352:generated 270:→ 258:φ 255:∇ 228:→ 210:μ 206:∇ 192:¯ 189:μ 183:∇ 115:conserved 87:batteries 3116:Carriers 3111:Channels 3093:(or non- 2999:23867107 2959:25540437 2910:24918316 2869:23507617 2771:17545292 2582:26973667 2531:18133149 2523:22526460 2473:26791490 2421:25772291 2364:25705194 2269:25384602 2173:See also 2104:oxidized 1875:oxidized 1848:at the Q 1840:at the Q 1640:(UQ) to 1320:(SB) in 1292:The way 1109:40 - 150 1000:30 - 300 725:membrane 641:(PSII), 570:relative 363:pressure 105:Overview 52:membrane 3164:Cytosis 3106:Osmosis 3012:Biology 2860:3714358 2762:1951819 2573:4770017 2556:: 218. 2412:4376416 2355:4319557 2277:2598635 2025:reduced 1948:reduced 1830:Q-cycle 1335:cytosol 1322:retinal 1316:of the 1306:photons 1298:Archaea 1244:Ionised 1046:1 - 1.5 994:10 - 20 955:E. coli 740:osmosis 706:passive 598:to the 590:is the 559:hormone 545:drives 517:, when 461:scholar 425:removed 410:sources 3018:  2997:  2957:  2949:  2908:  2867:  2857:  2769:  2759:  2751:  2711:  2673:  2580:  2570:  2529:  2521:  2513:  2471:  2463:  2419:  2409:  2401:  2362:  2352:  2338:: 29. 2309:  2275:  2267:  2259:  2054:matrix 1925:matrix 1595:heme b 1475:stroma 975:Blood 969:Blood 940:Mammal 887:where 702:active 666:stroma 645:, and 596:matrix 564:, and 507:, and 463:  456:  449:  442:  434:  336:basis) 145:helps 67:charge 2527:S2CID 2491:(PDF) 2273:S2CID 1628:(CI) 1543:lumen 1391:water 1355:light 1235:Total 1212:Bound 972:Cell 966:Cell 748:molar 634:lumen 551:nerve 549:like 525:of a 468:JSTOR 454:books 293:with 3016:ISBN 2995:PMID 2955:PMID 2947:ISSN 2906:PMID 2892:1850 2865:PMID 2843:1827 2815:help 2767:PMID 2749:ISSN 2709:ISBN 2671:ISBN 2578:PMID 2519:PMID 2511:ISSN 2469:PMID 2461:ISSN 2417:PMID 2399:ISSN 2360:PMID 2307:ISBN 2265:PMID 2257:ISSN 1665:NADH 1644:(UQH 1632:the 1226:Free 1137:5-10 1118:500 1112:560 1031:500 1013:5-15 936:Ion 676:(KEA 660:, a 618:and 440:news 408:any 406:cite 334:mole 125:and 97:and 2987:doi 2937:doi 2896:doi 2855:PMC 2847:doi 2790:doi 2757:PMC 2741:doi 2737:189 2701:doi 2568:PMC 2558:doi 2503:doi 2499:464 2451:doi 2447:310 2407:PMC 2391:doi 2387:593 2350:PMC 2340:doi 2249:doi 2245:112 2133:IMS 1988:IMS 1885:UQH 1761:UQH 1746:NAD 1636:of 1577:to 1508:PQH 1387:680 1373:(PQ 1362:680 1149:HCO 1128:138 1106:110 1093:10 1090:10 1061:50 1041:10 1022:440 1016:145 1003:10 997:300 991:400 988:4-5 738:of 704:or 620:ADP 419:by 373:or 358:. 163:ion 139:ATP 48:ion 38:An 3246:: 2993:. 2983:23 2981:. 2967:^ 2953:. 2945:. 2933:66 2931:. 2927:. 2904:. 2886:. 2863:. 2853:. 2837:. 2823:^ 2806:: 2804:}} 2800:{{ 2788:. 2765:. 2755:. 2747:. 2735:. 2731:. 2707:, 2685:^ 2644:. 2620:. 2576:. 2566:. 2552:. 2548:. 2525:. 2517:. 2509:. 2497:. 2493:. 2467:. 2459:. 2445:. 2441:. 2429:^ 2415:. 2405:. 2397:. 2385:. 2381:. 2358:. 2348:. 2334:. 2330:. 2285:^ 2271:. 2263:. 2255:. 2243:. 1957:UQ 1688:UQ 1449:PQ 1217:^ 1203:^ 1174:pH 1159:29 1156:12 1099:Cl 1088:3 1082:10 1071:10 1067:Ca 1053:50 1037:Mg 1028:10 1025:30 1019:50 1009:Na 931:) 915:. 903:, 895:, 776:ln 731:. 682:pH 622:. 557:, 503:, 328:, 129:, 93:, 3097:) 3057:e 3050:t 3043:v 3024:. 3001:. 2989:: 2961:. 2939:: 2912:. 2898:: 2871:. 2849:: 2817:) 2813:( 2796:. 2792:: 2773:. 2743:: 2703:: 2679:. 2654:. 2630:. 2605:. 2584:. 2560:: 2554:7 2533:. 2505:: 2475:. 2453:: 2423:. 2393:: 2366:. 2342:: 2336:6 2315:. 2279:. 2251:: 2157:O 2149:2 2145:H 2140:+ 2137:) 2129:( 2123:+ 2119:H 2114:2 2111:+ 2108:) 2100:( 2092:2 2080:2 2076:O 2069:2 2066:1 2061:+ 2058:) 2050:( 2044:+ 2040:H 2035:4 2032:+ 2029:) 2021:( 2013:2 1976:+ 1972:H 1964:4 1961:+ 1953:+ 1933:2 1913:+ 1909:H 1901:2 1898:+ 1889:2 1880:+ 1860:2 1850:i 1846:2 1842:o 1834:2 1808:S 1805:M 1802:I 1789:+ 1785:H 1777:4 1774:+ 1765:2 1756:+ 1750:+ 1735:x 1732:i 1729:r 1726:t 1723:a 1720:m 1707:+ 1703:H 1695:4 1692:+ 1684:+ 1678:+ 1674:H 1669:+ 1646:2 1606:2 1602:H 1597:L 1583:2 1575:2 1569:6 1563:2 1547:) 1539:( 1533:+ 1529:H 1524:4 1521:+ 1512:2 1503:2 1500:+ 1491:2 1487:O 1479:) 1471:( 1465:+ 1461:H 1456:4 1453:+ 1445:2 1442:+ 1438:O 1430:2 1426:H 1421:2 1418:+ 1412:h 1409:4 1399:2 1383:2 1379:B 1375:A 1360:P 1151:3 1131:9 1103:4 1085:2 981:K 909:F 905:z 897:T 889:R 872:e 869:n 866:a 863:r 860:b 857:m 854:e 851:m 846:V 842:) 839:z 836:F 833:( 830:+ 825:) 817:t 814:u 811:o 806:c 799:n 796:i 791:c 785:( 773:T 770:R 767:= 764:G 722:V 678:3 658:3 649:6 490:) 484:( 479:) 475:( 465:· 458:· 451:· 444:· 427:. 413:. 356:φ 346:. 340:φ 326:F 321:i 315:i 313:z 307:i 301:i 298:μ 280:, 276:) 267:r 261:( 251:F 245:i 241:z 237:+ 234:) 225:r 219:( 214:i 203:= 198:i 175:: 20:)

Index

Proton electromotive force

electrochemical potential
ion
membrane
solute concentration
charge
simple diffusion
electric potential
batteries
electrochemical cells
photosynthesis
cellular respiration
potential energy
conserved
electroanalytical chemistry
mitochondria
chloroplasts
proton gradients
ATP
sodium-potassium gradient
neural synapses
electric charge
chemical species
ion
thermodynamic
electrochemical potential
Faraday constant
mole
electric potential

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.