Knowledge (XXG)

Provable security

Source 📝

263:. He wrote a refutation of their first paper "Another look at 'provable security'" that he titled "On post-modern cryptography". Goldreich wrote: "... we point out some of the fundamental philosophical flaws that underlie the said article and some of its misconceptions regarding theoretical research in cryptography in the last quarter of a century." In his essay Goldreich argued that the rigorous analysis methodology of provable security is the only one compatible with science, and that Koblitz and Menezes are "reactionary (i.e., they play to the hands of the opponents of progress)". 25: 248:
reference to the paper in which the researchers reported on flaws: V. Shoup; A. J. Menezes; A. Jha and M. Nandi; D. Galindo; T. Iwata, K. Ohashi, and K. Minematsu; M. Nandi; J.-S. Coron and D. Naccache; D. Chakraborty, V. Hernández-Jiménez, and P. Sarkar; P. Gaži and U. Maurer; S. A. Kakvi and E. Kiltz; and T. Holenstein, R. Künzler, and S. Tessaro.
255:
models of security; and serve to distract researchers' attention from the need for "old-fashioned" (non-mathematical) testing and analysis. Their series of papers supporting these claims have been controversial in the community. Among the researchers who have rejected the viewpoint of Koblitz–Menezes is
254:
and Menezes have written that provable security results for important cryptographic protocols frequently have fallacies in the proofs; are often interpreted in a misleading manner, giving false assurances; typically rely upon strong assumptions that may turn out to be false; are based on unrealistic
187:
model, as opposed to heuristically, with clear assumptions that the adversary has access to the system as well as enough computational resources. The proof of security (called a "reduction") is that these security requirements are met provided the assumptions about the adversary's access to the
247:
Several researchers have found mathematical fallacies in proofs that had been used to make claims about the security of important protocols. In the following partial list of such researchers, their names are followed by first a reference to the original paper with the purported proof and then a
275:
wrote letters responding to Koblitz's article, which were published in the November 2007 and January 2008 issues of the journal. Katz, who is coauthor of a highly regarded cryptography textbook, called Koblitz's article "snobbery at its purest"; and Wigderson, who is a permanent member of the
130:, both of which can rely on proofs to show the security of a particular approach. As with the cryptographic setting, this involves an attacker model and a model of the system. For example, code can be verified to match the intended functionality, described by a model: this can be done through 219:
There are several lines of research in provable security. One is to establish the "correct" definition of security for a given, intuitively understood task. Another is to suggest constructions and proofs based on general assumptions as much as possible, for instance the existence of a
326:" is the name given to provable security reductions where one quantifies security by computing precise bounds on computational effort, rather than an asymptotic bound which is guaranteed to hold for "sufficiently large" values of the 266:
In 2007, Koblitz published "The Uneasy Relationship Between Mathematics and Cryptography", which contained some controversial statements about provable security and other topics. Researchers Oded Goldreich, Boaz Barak,
119:
or other implementation-specific attacks, because they are usually impossible to model without implementing the system (and thus, the proof only applies to this implementation).
302:, recommended the Koblitz-Menezes paper "The brave new world of bodacious assumptions in cryptography" to the audience at the RSA Conference 2010 Cryptographers Panel. 54: 314:
defined objects. Instead, practice-oriented provable security is concerned with concrete objects of cryptographic practice, such as hash functions,
1119:
Holenstein, Thomas; Künzler, Robin; Tessaro, Stefano (2011), "The equivalence of the random oracle model and the ideal cipher model, revisited",
1447: 1103: 1068: 1033: 998: 963: 895: 853: 820: 785: 751: 716: 682: 642: 534: 508: 437: 366: 1084:
Coron, Jean-Sébastien; Patarin, Jacques; Seurin, Yannick (2008). "The Random Oracle Model and the Ideal Cipher Model Are Equivalent".
268: 1414: 1247: 1169: 1146: 189: 76: 944:
Bellare, Mihir; Rogaway, Phillip (2006). "The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs".
801:
Bellare, Mihir; Garray, Juan A.; Rabin, Tal (1998). "Fast batch verification for modular exponentiation and digital signatures".
1625: 112: 1605: 1482: 205: 277: 111:
model (also referred to as attacker model): the aim of the proof is to show that the attacker must solve the underlying
37: 47: 41: 33: 665:
McGrew, David A.; Viega, John (2004), "The Security and Performance of the Galois/Counter Mode (GCM) of Operation",
160: 156: 140:): the security here depends not only on the correctness of the attacker model, but also on the model of the code. 58: 299: 184: 164: 108: 876:
McGrew, David A.; Fluhrer, Scott R. (2007), "The Security of the Extended Codebook (XCB) Mode of Operation",
131: 697:
Iwata, Tetsu; Ohashi, Keisuke; Minematsu, Kazuhiko (2012). "Breaking and Repairing GCM Security Proofs".
489:
Bellare, Mihir; Pietrzak, Krzysztof; Rogaway, Phillip (2005). "Improved Security Analyses for CBC MACs".
1583: 1572:
Rogaway, Phillip. "Practice-Oriented Provable Security and the Social Construction of Cryptography".
148: 549:
Jha, Ashwin; Nandi, Mridul (2016), "Revisiting structure graphs: Applications to CBC-MAC and EMAC",
311: 209: 116: 1550: 1460: 1282: 1152: 1124: 927: 859: 648: 566: 472: 401: 327: 152: 127: 100: 1049:
Kakvi, Saqib A.; Kiltz, Eike (2012). "Optimal Security Proofs for Full Domain Hash, Revisited".
616: 610: 115:
in order to break the security of the modelled system. Such a proof generally does not consider
910:
Chakraborty, Debrup; Hernández-Jiménez, Vicente; Sarkar, Palash (2015), "Another look at XCB",
1443: 1410: 1243: 1163: 1142: 1099: 1064: 1029: 994: 959: 891: 849: 816: 781: 747: 712: 678: 638: 530: 504: 433: 362: 323: 319: 201: 144: 93: 1014:
Coron, Jean-Sébastien (2002). "Optimal Security Proofs for PSS and Other Signature Schemes".
1435: 1272: 1196: 1134: 1089: 1054: 1019: 984: 949: 919: 881: 841: 806: 771: 737: 732:
Ristenpart, Thomas; Rogaway, Phillip (2007), "How to Enrich the Message Space of a Cipher",
702: 670: 628: 620: 592: 558: 522: 494: 462: 423: 391: 352: 221: 193: 1598: 1475: 136: 583:
Boneh, Dan; Franklin, Matthew (2003), "Identity-based encryption from the Weil pairing",
283: 318:, and protocols as they are deployed and used. Practice oriented provable security uses 1515: 291: 287: 256: 1380: 1352: 1324: 1619: 272: 213: 197: 123: 1185:"Critical perspectives on provable security: Fifteen years of 'Another look' papers" 931: 863: 570: 476: 405: 1576: 1286: 1156: 315: 251: 225: 176: 104: 652: 418:
Krawczyk, Hugo (2005). "HMQV: A High-Performance Secure Diffie-Hellman Protocol".
1574:
Unpublished Essay Corresponding to an Invited Talk at EUROCRYPT 2009. May 6, 2009
1453: 1263:
Koblitz, Neal; Menezes, Alfred J. (2007), "Another look at "provable security"",
1059: 886: 776: 674: 310:
Classical provable security primarily aimed at studying the relationship between
298:, former Technical Director of the Information Assurance Directorate of the U.S. 1439: 1094: 989: 742: 707: 229: 1540: 1277: 923: 596: 396: 322:
to analyse practical constructions with fixed key sizes. "Exact security" or "
295: 236: 1024: 609:
Galindo, David (2005), "Boneh-Franklin Identity Based Encryption Revisited",
1138: 1496: 232:, since the existence of one-way functions is not known to follow from the 1121:
Proceedings of the forty-third annual ACM symposium on Theory of computing
845: 562: 347:
Bellare, Mihir; Rogaway, Phillip (1995). "Optimal asymmetric encryption".
467: 1430:
Damgård, I. (2007). "A "proof-reading" of Some Issues in Cryptography".
1201: 1184: 954: 624: 526: 499: 428: 1545: 1053:. Lecture Notes in Computer Science. Vol. 7237. pp. 537–553. 1018:. Lecture Notes in Computer Science. Vol. 2332. pp. 272–287. 948:. Lecture Notes in Computer Science. Vol. 4004. pp. 409–426. 880:, Lecture Notes in Computer Science, vol. 4876, pp. 311–327, 840:, Lecture Notes in Computer Science, vol. 1560, pp. 197–203, 811: 805:. Lecture Notes in Computer Science. Vol. 1403. pp. 236–250. 770:. Lecture Notes in Computer Science. Vol. 8874. pp. 478–490. 736:, Lecture Notes in Computer Science, vol. 4593, pp. 101–118, 669:, Lecture Notes in Computer Science, vol. 3348, pp. 343–355, 521:, Lecture Notes in Computer Science, vol. 4052, pp. 168–179, 493:. Lecture Notes in Computer Science. Vol. 3621. pp. 527–545. 422:. Lecture Notes in Computer Science. Vol. 3621. pp. 546–566. 357: 766:
Nandi, Mridul (2014). "XLS is Not a Strong Pseudorandom Permutation".
633: 208:. Some proofs of security are in given theoretical models such as the 107:. In such a proof, the capabilities of the attacker are defined by an 96:
that can be proved. It is used in different ways by different fields.
983:. Lecture Notes in Computer Science. Vol. 5912. pp. 37–51. 701:. Lecture Notes in Computer Science. Vol. 7417. pp. 31–49. 351:. Lecture Notes in Computer Science. Vol. 950. pp. 92–111. 1434:. Lecture Notes in Computer Science. Vol. 4596. pp. 2–11. 1088:. Lecture Notes in Computer Science. Vol. 5157. pp. 1–20. 192:
hold. An early example of such requirements and proof was given by
143:
Finally, the term provable security is sometimes used by sellers of
122:
Outside of cryptography, the term is often used in conjunction with
1302: 134:. These techniques are sometimes used for evaluating products (see 1129: 979:
Gaži, Peter; Maurer, Ueli (2009). "Cascade Encryption Revisited".
290:
at ICALP 2007 on the technical issues, and it was recommended by
159:. As these products are typically not subject to scrutiny, many 1516:"The brave new world of bodacious assumptions in cryptography" 1325:"The uneasy relationship between mathematics and cryptography" 615:, Lecture Notes in Computer Science, vol. 3580, pp.  18: 190:
assumptions about the hardness of certain computational tasks
183:
if its security requirements can be stated formally in an
1217: 517:
Pietrzak, Krzysztof (2006), "A Tight Bound for EMAC",
1541:"RSA Conference 2010 USA: The Cryptographers Panel" 453:Menezes, Alfred J. (2007), "Another look at HMQV", 147:that are attempting to sell security products like 46:but its sources remain unclear because it lacks 836:Coron, Jean-Sébastien; Naccache, David (1999), 188:system are satisfied and some clearly stated 8: 280:in Princeton, accused Koblitz of "slander". 382:Shoup, Victor (2002), "OAEP reconsidered", 1514:Koblitz, Neal; Menezes, Alfred J. (2010), 163:consider this type of claim to be selling 1276: 1200: 1189:Advances in Mathematics of Communications 1128: 1093: 1058: 1023: 988: 953: 885: 810: 775: 741: 706: 632: 498: 466: 427: 395: 356: 77:Learn how and when to remove this message 1405:Katz, Jonathan; Lindell, Yehuda (2008). 1375: 1373: 1347: 1345: 1297: 1295: 1183:Koblitz, Neal; Menezes, Alfred (2019). 1051:Advances in Cryptology – EUROCRYPT 2012 1016:Advances in Cryptology — EUROCRYPT 2002 981:Advances in Cryptology – ASIACRYPT 2009 946:Advances in Cryptology - EUROCRYPT 2006 768:Advances in Cryptology – ASIACRYPT 2014 667:Progress in Cryptology - INDOCRYPT 2004 339: 259:, a leading theoretician and author of 1593: 1592: 1581: 1470: 1469: 1458: 1161: 803:Advances in Cryptology — EUROCRYPT'98 349:Advances in Cryptology — EUROCRYPT'94 228:is to establish such proofs based on 7: 1086:Advances in Cryptology – CRYPTO 2008 699:Advances in Cryptology – CRYPTO 2012 491:Advances in Cryptology – CRYPTO 2005 420:Advances in Cryptology – CRYPTO 2005 216:are represented by an idealization. 1432:Automata, Languages and Programming 1407:Introduction to Modern Cryptography 1218:"Another look at provable security" 612:Automata, Languages and Programming 519:Automata, Languages and Programming 306:Practice-oriented provable security 1215:These papers are all available at 551:Journal of Mathematical Cryptology 455:Journal of Mathematical Cryptology 204:and the construction based on the 14: 23: 1553:from the original on 2021-12-22 912:Cryptography and Communications 92:refers to any type or level of 1242:. Cambridge University Press. 878:Selected Areas in Cryptography 1: 1303:"On post-modern cryptography" 1168:: CS1 maint: date and year ( 294:as a good in-depth analysis. 206:quadratic residuosity problem 1060:10.1007/978-3-642-29011-4_32 887:10.1007/978-3-540-77360-3_20 777:10.1007/978-3-662-45611-8_25 675:10.1007/978-3-540-30556-9_27 278:Institute for Advanced Study 1440:10.1007/978-3-540-73420-8_2 1240:Foundations of Cryptography 1095:10.1007/978-3-540-85174-5_1 990:10.1007/978-3-642-10366-7_3 743:10.1007/978-3-540-74619-5_7 708:10.1007/978-3-642-32009-5_3 261:Foundations of Cryptography 212:, where real cryptographic 157:intrusion detection systems 1642: 1409:. Chapman & Hall/CRC. 1278:10.1007/s00145-005-0432-z 924:10.1007/s12095-015-0127-8 597:10.1137/S0097539701398521 585:SIAM Journal on Computing 397:10.1007/s00145-002-0133-9 1523:Notices Amer. Math. Soc. 1388:Notices Amer. Math. Soc. 1360:Notices Amer. Math. Soc. 1332:Notices Amer. Math. Soc. 1238:Goldreich, Oded (2003). 1025:10.1007/3-540-46035-7_18 734:Fast Software Encryption 300:National Security Agency 99:Usually, this refers to 32:This section includes a 16:Computer security method 1604:CS1 maint: postscript ( 1481:CS1 maint: postscript ( 1381:"Letters to the Editor" 1353:"Letters to the Editor" 1139:10.1145/1993636.1993650 838:Public Key Cryptography 61:more precise citations. 1626:Theory of cryptography 1323:Koblitz, Neal (2007), 103:, which are common in 1366:(12): 1454–1455, 2007 1265:Journal of Cryptology 846:10.1007/3-540-49162-7 563:10.1515/jmc-2016-0030 384:Journal of Cryptology 271:, Hugo Krawczyk, and 468:10.1515/JMC.2007.004 161:security researchers 117:side-channel attacks 1202:10.3934/amc.2019034 955:10.1007/11761679_25 625:10.1007/11523468_64 527:10.1007/11787006_15 500:10.1007/11535218_32 429:10.1007/11535218_33 210:random oracle model 101:mathematical proofs 1497:"Shtetl-Optimized" 1123:, pp. 89–98, 812:10.1007/BFb0054130 358:10.1007/BFb0053428 328:security parameter 153:antivirus software 128:security by design 34:list of references 1594:|postscript= 1591:External link in 1503:. September 2007. 1501:scottaaronson.com 1471:|postscript= 1468:External link in 1449:978-3-540-73419-2 1105:978-3-540-85173-8 1070:978-3-642-29010-7 1035:978-3-540-43553-2 1000:978-3-642-10365-0 965:978-3-540-34546-6 897:978-3-540-77359-7 855:978-3-540-65644-9 822:978-3-540-64518-4 787:978-3-662-45607-1 753:978-3-540-74617-1 718:978-3-642-32008-8 684:978-3-540-24130-0 644:978-3-540-27580-0 536:978-3-540-35907-4 510:978-3-540-28114-6 439:978-3-540-28114-6 368:978-3-540-60176-0 324:concrete security 320:concrete security 202:semantic security 181:provable security 145:security software 94:computer security 90:Provable security 87: 86: 79: 1633: 1610: 1609: 1602: 1596: 1595: 1589: 1587: 1579: 1569: 1563: 1562: 1560: 1558: 1537: 1531: 1530: 1520: 1511: 1505: 1504: 1493: 1487: 1486: 1479: 1473: 1472: 1466: 1464: 1456: 1427: 1421: 1420: 1402: 1396: 1395: 1385: 1377: 1368: 1367: 1357: 1349: 1340: 1339: 1329: 1320: 1314: 1313: 1311: 1309: 1299: 1290: 1289: 1280: 1260: 1254: 1253: 1235: 1229: 1228: 1226: 1224: 1213: 1207: 1206: 1204: 1180: 1174: 1173: 1167: 1159: 1132: 1116: 1110: 1109: 1097: 1081: 1075: 1074: 1062: 1046: 1040: 1039: 1027: 1011: 1005: 1004: 992: 976: 970: 969: 957: 941: 935: 934: 907: 901: 900: 889: 873: 867: 866: 833: 827: 826: 814: 798: 792: 791: 779: 763: 757: 756: 745: 729: 723: 722: 710: 694: 688: 687: 662: 656: 655: 636: 606: 600: 599: 580: 574: 573: 557:(3–4): 157–180, 546: 540: 539: 514: 502: 486: 480: 479: 470: 450: 444: 443: 431: 415: 409: 408: 399: 379: 373: 372: 360: 344: 235: 222:one-way function 82: 75: 71: 68: 62: 57:this section by 48:inline citations 27: 26: 19: 1641: 1640: 1636: 1635: 1634: 1632: 1631: 1630: 1616: 1615: 1614: 1613: 1603: 1590: 1580: 1571: 1570: 1566: 1556: 1554: 1539: 1538: 1534: 1518: 1513: 1512: 1508: 1495: 1494: 1490: 1480: 1467: 1457: 1450: 1429: 1428: 1424: 1417: 1404: 1403: 1399: 1383: 1379: 1378: 1371: 1355: 1351: 1350: 1343: 1327: 1322: 1321: 1317: 1307: 1305: 1301: 1300: 1293: 1262: 1261: 1257: 1250: 1237: 1236: 1232: 1222: 1220: 1216: 1214: 1210: 1182: 1181: 1177: 1160: 1149: 1118: 1117: 1113: 1106: 1083: 1082: 1078: 1071: 1048: 1047: 1043: 1036: 1013: 1012: 1008: 1001: 978: 977: 973: 966: 943: 942: 938: 909: 908: 904: 898: 875: 874: 870: 856: 835: 834: 830: 823: 800: 799: 795: 788: 765: 764: 760: 754: 731: 730: 726: 719: 696: 695: 691: 685: 664: 663: 659: 645: 608: 607: 603: 582: 581: 577: 548: 547: 543: 537: 516: 511: 488: 487: 483: 452: 451: 447: 440: 417: 416: 412: 381: 380: 376: 369: 346: 345: 341: 336: 308: 245: 233: 179:, a system has 173: 171:In cryptography 137:Common Criteria 132:static checking 83: 72: 66: 63: 52: 38:related reading 28: 24: 17: 12: 11: 5: 1639: 1637: 1629: 1628: 1618: 1617: 1612: 1611: 1564: 1532: 1506: 1488: 1448: 1422: 1415: 1397: 1394:(1): 6–7, 2008 1369: 1341: 1315: 1291: 1255: 1248: 1230: 1208: 1195:(4): 517–558. 1175: 1147: 1111: 1104: 1076: 1069: 1041: 1034: 1006: 999: 971: 964: 936: 918:(4): 439–468, 902: 896: 868: 854: 828: 821: 793: 786: 758: 752: 724: 717: 689: 683: 657: 643: 601: 591:(3): 586–615, 575: 541: 535: 509: 481: 445: 438: 410: 390:(4): 223–249, 374: 367: 338: 337: 335: 332: 312:asymptotically 307: 304: 292:Scott Aaronson 288:position paper 286:later wrote a 257:Oded Goldreich 244: 241: 214:hash functions 172: 169: 85: 84: 67:September 2018 42:external links 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1638: 1627: 1624: 1623: 1621: 1607: 1600: 1585: 1578: 1575: 1568: 1565: 1552: 1548: 1547: 1542: 1536: 1533: 1528: 1524: 1517: 1510: 1507: 1502: 1498: 1492: 1489: 1484: 1477: 1462: 1455: 1451: 1445: 1441: 1437: 1433: 1426: 1423: 1418: 1416:9781584885511 1412: 1408: 1401: 1398: 1393: 1389: 1382: 1376: 1374: 1370: 1365: 1361: 1354: 1348: 1346: 1342: 1337: 1333: 1326: 1319: 1316: 1304: 1298: 1296: 1292: 1288: 1284: 1279: 1274: 1270: 1266: 1259: 1256: 1251: 1249:9780521791724 1245: 1241: 1234: 1231: 1219: 1212: 1209: 1203: 1198: 1194: 1190: 1186: 1179: 1176: 1171: 1165: 1158: 1154: 1150: 1148:9781450306911 1144: 1140: 1136: 1131: 1126: 1122: 1115: 1112: 1107: 1101: 1096: 1091: 1087: 1080: 1077: 1072: 1066: 1061: 1056: 1052: 1045: 1042: 1037: 1031: 1026: 1021: 1017: 1010: 1007: 1002: 996: 991: 986: 982: 975: 972: 967: 961: 956: 951: 947: 940: 937: 933: 929: 925: 921: 917: 913: 906: 903: 899: 893: 888: 883: 879: 872: 869: 865: 861: 857: 851: 847: 843: 839: 832: 829: 824: 818: 813: 808: 804: 797: 794: 789: 783: 778: 773: 769: 762: 759: 755: 749: 744: 739: 735: 728: 725: 720: 714: 709: 704: 700: 693: 690: 686: 680: 676: 672: 668: 661: 658: 654: 650: 646: 640: 635: 630: 626: 622: 618: 614: 613: 605: 602: 598: 594: 590: 586: 579: 576: 572: 568: 564: 560: 556: 552: 545: 542: 538: 532: 528: 524: 520: 512: 506: 501: 496: 492: 485: 482: 478: 474: 469: 464: 460: 456: 449: 446: 441: 435: 430: 425: 421: 414: 411: 407: 403: 398: 393: 389: 385: 378: 375: 370: 364: 359: 354: 350: 343: 340: 333: 331: 329: 325: 321: 317: 316:block ciphers 313: 305: 303: 301: 297: 293: 289: 285: 281: 279: 274: 273:Avi Wigderson 270: 269:Jonathan Katz 264: 262: 258: 253: 249: 243:Controversies 242: 240: 238: 231: 227: 223: 217: 215: 211: 207: 203: 199: 195: 191: 186: 182: 178: 170: 168: 166: 162: 158: 154: 150: 146: 141: 139: 138: 133: 129: 125: 124:secure coding 120: 118: 114: 110: 106: 102: 97: 95: 91: 81: 78: 70: 60: 56: 50: 49: 43: 39: 35: 30: 21: 20: 1584:cite journal 1573: 1567: 1555:. Retrieved 1544: 1535: 1526: 1522: 1509: 1500: 1491: 1431: 1425: 1406: 1400: 1391: 1387: 1363: 1359: 1338:(8): 972–979 1335: 1331: 1318: 1306:. Retrieved 1268: 1264: 1258: 1239: 1233: 1221:. Retrieved 1211: 1192: 1188: 1178: 1120: 1114: 1085: 1079: 1050: 1044: 1015: 1009: 980: 974: 945: 939: 915: 911: 905: 877: 871: 837: 831: 802: 796: 767: 761: 733: 727: 698: 692: 666: 660: 611: 604: 588: 584: 578: 554: 550: 544: 518: 490: 484: 458: 454: 448: 419: 413: 387: 383: 377: 348: 342: 309: 284:Ivan Damgård 282: 265: 260: 250: 246: 226:open problem 218: 180: 177:cryptography 174: 142: 135: 121: 113:hard problem 105:cryptography 98: 89: 88: 73: 64: 53:Please help 45: 1271:(1): 3–37, 185:adversarial 109:adversarial 59:introducing 634:2066/33216 334:References 296:Brian Snow 237:conjecture 224:. A major 194:Goldwasser 1529:: 357–365 1461:cite book 1130:1011.1264 461:: 47–64, 149:firewalls 1620:Category 1577:preprint 1551:Archived 1454:preprint 1308:12 April 1223:12 April 1164:citation 932:17251595 864:11711093 571:33121117 477:15540513 406:26919974 165:snakeoil 1557:9 April 1546:YouTube 1452:.  1287:7601573 1157:2960550 617:791–802 252:Koblitz 55:improve 1446:  1413:  1285:  1246:  1155:  1145:  1102:  1067:  1032:  997:  962:  930:  894:  862:  852:  819:  784:  750:  715:  681:  653:605011 651:  641:  569:  533:  515:; and 507:  475:  436:  404:  365:  234:P ≠ NP 230:P ≠ NP 198:Micali 1519:(PDF) 1384:(PDF) 1356:(PDF) 1328:(PDF) 1283:S2CID 1153:S2CID 1125:arXiv 928:S2CID 860:S2CID 649:S2CID 567:S2CID 473:S2CID 402:S2CID 40:, or 1606:link 1599:help 1559:2018 1483:link 1476:help 1444:ISBN 1411:ISBN 1310:2018 1244:ISBN 1225:2018 1170:link 1143:ISBN 1100:ISBN 1065:ISBN 1030:ISBN 995:ISBN 960:ISBN 892:ISBN 850:ISBN 817:ISBN 782:ISBN 748:ISBN 713:ISBN 679:ISBN 639:ISBN 531:ISBN 505:ISBN 434:ISBN 363:ISBN 200:for 196:and 155:and 126:and 1436:doi 1273:doi 1197:doi 1135:doi 1090:doi 1055:doi 1020:doi 985:doi 950:doi 920:doi 882:doi 842:doi 807:doi 772:doi 738:doi 703:doi 671:doi 629:hdl 621:doi 593:doi 559:doi 523:doi 495:doi 463:doi 424:doi 392:doi 353:doi 175:In 1622:: 1588:: 1586:}} 1582:{{ 1549:. 1543:. 1527:57 1525:, 1521:, 1499:. 1465:: 1463:}} 1459:{{ 1442:. 1392:55 1390:, 1386:, 1372:^ 1364:54 1362:, 1358:, 1344:^ 1336:54 1334:, 1330:, 1294:^ 1281:, 1269:20 1267:, 1193:13 1191:. 1187:. 1166:}} 1162:{{ 1151:, 1141:, 1133:, 1098:. 1063:. 1028:. 993:. 958:. 926:, 914:, 890:, 858:, 848:, 815:. 780:. 746:, 711:. 677:, 647:, 637:, 627:, 619:, 589:32 587:, 565:, 555:10 553:, 529:, 503:. 471:, 457:, 432:. 400:, 388:15 386:, 361:. 330:. 239:. 167:. 151:, 44:, 36:, 1608:) 1601:) 1597:( 1561:. 1485:) 1478:) 1474:( 1438:: 1419:. 1312:. 1275:: 1252:. 1227:. 1205:. 1199:: 1172:) 1137:: 1127:: 1108:. 1092:: 1073:. 1057:: 1038:. 1022:: 1003:. 987:: 968:. 952:: 922:: 916:7 884:: 844:: 825:. 809:: 790:. 774:: 740:: 721:. 705:: 673:: 631:: 623:: 595:: 561:: 525:: 513:. 497:: 465:: 459:1 442:. 426:: 394:: 371:. 355:: 80:) 74:( 69:) 65:( 51:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
computer security
mathematical proofs
cryptography
adversarial
hard problem
side-channel attacks
secure coding
security by design
static checking
Common Criteria
security software
firewalls
antivirus software
intrusion detection systems
security researchers
snakeoil
cryptography
adversarial
assumptions about the hardness of certain computational tasks
Goldwasser
Micali
semantic security
quadratic residuosity problem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.