Knowledge (XXG)

Quantitative models of the action potential

Source 📝

841: 85: 1802: 666:. By fitting their voltage-clamp data, Hodgkin and Huxley were able to model how these equilibrium values and time constants varied with temperature and transmembrane voltage. The formulae are complex and depend exponentially on the voltage and temperature. For example, the time constant for sodium-channel activation probability 44:
illustrates how differently shaped action potentials can be generated on membranes with voltage-sensitive calcium channels and different types of sodium/potassium channels. The second type of mathematical model is a simplification of the first type; the goal is not to reproduce the experimental data,
1376:
Whereas the above models simulate the transmembrane voltage and current at a single patch of membrane, other mathematical models pertain to the voltages and currents in the ionic solution surrounding the neuron. Such models are helpful in interpreting data from extracellular electrodes, which were
1359:
The simplest models of the action potential are the "flush and fill" models (also called "integrate-and-fire" models), in which the input signal is summed (the "fill" phase) until it reaches a threshold, firing a pulse and resetting the summation to zero (the "flush" phase). All of these models are
481:
To fit their data accurately, Hodgkin and Huxley assumed that each type of ion channel had multiple "gates", so that the channel was open only if all the gates were open and closed otherwise. They also assumed that the probability of a gate being open was independent of the other gates being open;
35:
squid exemplifies such models. Although qualitatively correct, the H-H model does not describe every type of excitable membrane accurately, since it considers only two ions (sodium and potassium), each with only one type of voltage-sensitive channel. However, other ions such as
1495: 825:
is gradually increased; remarkably, the axon becomes stably quiescent again as the stimulating current is increased further still. A more general study of the types of qualitative behavior of axons predicted by the Hodgkin–Huxley equations has also been carried out.
285: 1316: 69:
responsible for some automatic reflex actions. Such networks can generate a complex temporal pattern of action potentials that is used to coordinate muscular contractions, such as those involved in breathing or fast swimming to escape a predator.
451: 1043:
that has a region of negative slope in the middle, flanked by one maximum and one minimum (Figure FHN). A much-studied simple case of the FitzHugh–Nagumo model is the Bonhoeffer-van der Pol nerve model, which is described by the equations
1133: 781: 608: 45:
but to understand qualitatively the role of action potentials in neural circuits. For such a purpose, detailed physiological models may be unnecessarily complicated and may obscure the "forest for the trees". The
810:. No general solution of these equations has been discovered. A less ambitious but generally applicable method for studying such non-linear dynamical systems is to consider their behavior in the vicinity of a 1797:{\displaystyle \phi (\mathbf {x} )={\frac {1}{4\pi \sigma _{\mathrm {outside} }}}\oint _{\mathrm {membrane} }{\frac {\partial }{\partial n}}{\frac {1}{\left|\mathbf {x} -{\boldsymbol {\xi }}\right|}}\leftdS} 24:
have been developed, which fall into two basic types. The first type seeks to model the experimental data quantitatively, i.e., to reproduce the measurements of current and voltage exactly. The renowned
1344:. True to the barnacle's physiology, the Morris–Lecar model replaces the voltage-gated sodium current of the Hodgkin–Huxley model with a voltage-dependent calcium current. There is no inactivation (no 160: 123:
of four types of ions. The two conductances on the left, for potassium (K) and sodium (Na), are shown with arrows to indicate that they can vary with the applied voltage, corresponding to the
1425: 966: 1030: 61:, which is coordinated by a burst of action potentials; entrainment can also be observed in individual neurons. Both types of models may be used to understand the behavior of small 1827: 1185: 1196: 357: 2532:
Sato S, Fukai H, Nomura T, Doi S (2005). "Bifurcation Analysis of the Hodgkin–Huxley Equations". In Reeke GN, Poznanski RR, Lindsay KA, Rosenberg JR, Sporns O (eds.).
2223: 1980: 3150:"Simple capacitor-switch model of excitatory and inhibitory neuron with all parts biologically explained allows input fire pattern dependent chaotic oscillations" 1377:
common prior to the invention of the glass pipette electrode that allowed intracellular recording. The extracellular medium may be modeled as a normal isotropic
482:
this assumption was later validated for the inactivation gate. Hodgkin and Huxley modeled the voltage-sensitive potassium channel as having four gates; letting
491:
denote the probability of a single such gate being open, the probability of the whole channel being open is the product of four such probabilities, i.e.,
893:
Because of the complexity of the Hodgkin–Huxley equations, various simplifications have been developed that exhibit qualitatively similar behavior. The
1348:
variable) and the calcium current equilibrates instantaneously, so that again, there are only two time-dependent variables: the transmembrane voltage
901:, the FHN model has only two independent variables, but exhibits a similar stability behavior to the full Hodgkin–Huxley equations. The equations are 1050: 680: 311:
are currents conveyed through the local sodium channels, potassium channels, and "leakage" channels (a catch-all), respectively. The initial term
139:
developed a set of equations to fit their experimental voltage-clamp data on the axonal membrane. The model assumes that the membrane capacitance
533: 3340: 3105: 2573: 2541: 2376: 2253: 2207: 1845:
the corresponding values just outside the membrane. Thus, given these σ and φ values on the membrane, the extracellular potential φ(
319: 853: 3359: 787: 502:. Similarly, the probability of the voltage-sensitive sodium channel was modeled to have three similar gates of probability 2400: 280:{\displaystyle C{\frac {dV}{dt}}=I_{\mathrm {tot} }=I_{\mathrm {ext} }+I_{\mathrm {Na} }+I_{\mathrm {K} }+I_{\mathrm {L} }} 3121:
Keener JP, Hoppensteadt FC, Rinzel J (1981). "Integrate-and-fire models of nerve membrane response to oscillatory input".
1190:
where the coefficient ε is assumed to be small. These equations can be combined into a second-order differential equation
1880: 1336:
A hybrid of the Hodgkin–Huxley and FitzHugh–Nagumo models was developed by Morris and Lecar in 1981, and applied to the
2981:, van der Mark J (1929). "The heartbeat considered as a relaxation oscillation, and an electrical model of the heart". 2966:, van der Mark J (1928). "The heartbeat considered as a relaxation oscillation, and an electrical model of the heart". 1397: 1365: 54: 3288:
Mauro A (1960). "Properties of thin generators pertaining to electrophysiological potentials in volume conductors".
3369: 894: 835: 46: 811: 124: 66: 62: 2269:
Hanson, F.E.; Case, J.F.; Buck, E.; Buck, J. (1971). "Synchrony and Flash Entrainment in a New Guinea Firefly".
79: 26: 1870: 907: 41: 974: 1447: 1333:
circuits that realize the FHN and van der Pol models of the action potential have been developed by Keener.
2589:
Sabah NH, Spangler RA (1970). "Repetitive response of the Hodgkin-Huxley model for the squid giant axon".
2143:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 1810: 1459: 1322: 1141: 872: 326: 120: 2478:"Destruction of the sodium conductance inactivation by a specific protease in perfused nerve fibres from 1356:. The bursting, entrainment and other mathematical properties of this model have been studied in detail. 1311:{\displaystyle C{\frac {d^{2}V}{dt^{2}}}+\epsilon \left(V^{2}-1\right){\frac {dV}{dt}}+{\frac {V}{L}}=0.} 3148:
Cejnar, Pavel; Vyšata, Oldřich; Kukal, Jaromír; Beránek, Martin; Vališ, Martin; Procházka, Aleš (2020).
2978: 2963: 2948: 1974: 1361: 1330: 879: 50: 1487: 844:
Figure FHN: To mimick the action potential, the FitzHugh–Nagumo model and its relatives use a function
2855:
FitzHugh R (1969). "Mathematical models of axcitation and propagation in nerve". In HP Schwann (ed.).
814:. This analysis shows that the Hodgkin–Huxley system undergoes a transition from stable quiescence to 3161: 3048: 2921: 2776: 2598: 2278: 1885: 1875: 791: 446:{\displaystyle I_{\mathrm {K} }=g_{\mathrm {K} }\left(V-E_{\mathrm {K} }\right)p_{\mathrm {open,K} }} 2820:
Nagumo J, Arimoto S, Yoshizawa S (1962). "An active pulse transmission line simulating nerve axon".
840: 106:
represent the current through, and the voltage across, a small patch of membrane, respectively. The
3364: 325:
The model further assumes that a given ion channel is either fully open or closed; if closed, its
3308:
Woodbury JW (1965). "Chapter 3: Potentials in a volume conductor". In TC Ruch; HD Patton (eds.).
3017: 2937: 2837: 2745: 2345: 2302: 2217: 2134: 2085: 2036: 1987: 1920: 1475: 132: 3219: 2421:
The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System
1996:"Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo" 1933:"Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo" 3336: 3258: 3223: 3189: 3101: 3074: 2901: 2802: 2737: 2709: 2614: 2569: 2557: 2537: 2511: 2465: 2372: 2337: 2294: 2249: 2203: 2172: 2123: 2074: 2025: 1962: 340:
of the channel being open, and the difference in voltage from that ion's equilibrium voltage,
2413: 40:
may be important and there is a great diversity of channels for all ions. As an example, the
3297: 3250: 3179: 3169: 3130: 3064: 3056: 3009: 2929: 2891: 2883: 2829: 2792: 2784: 2729: 2699: 2691: 2660: 2638: 2606: 2501: 2493: 2455: 2447: 2329: 2286: 2162: 2154: 2113: 2105: 2064: 2056: 2015: 2007: 1952: 1944: 1326: 21: 2568:(2nd printing, revised and corrected ed.). New York: Springer Verlag. pp. 12–16. 3000:
Keener JP (1983). "Analogue circuitry for the van der Pol and FitzHugh-Nagumo equations".
1439: 333:. Hence, the net current through an ion channel depends on two variables: the probability 17: 2094:"The dual effect of membrane potential on sodium conductance in the giant axon of Loligo" 3165: 3052: 2925: 2780: 2602: 2282: 3212: 3184: 3149: 3092:
Rinzel J, Ermentrout GB (1989). "Analysis of Neural Excitability and Oscillations". In
3069: 3036: 2896: 2871: 2797: 2764: 2720:
Kepler TB, Abbott LF, Marder E (1992). "Reduction of conductance-based neuron models".
2704: 2679: 2506: 2477: 2460: 2435: 2167: 2142: 2118: 2093: 2069: 2044: 2020: 1995: 1957: 1932: 1890: 1471: 1467: 1463: 1443: 1382: 3060: 2788: 3353: 3329: 3093: 2664: 2610: 2561: 2436:"Destruction of Sodium Conductance Inactivation in Squid Axons Perfused with Pronase" 2396: 2364: 2195: 2191: 2138: 2089: 2040: 1991: 1924: 525: 467:= 0) when the transmembrane voltage equals the equilibrium voltage of that ion (when 136: 3241:
Ling G, Gerard RW (1949). "The normal membrane potential of frog sartorius fibers".
3021: 2941: 2841: 2349: 2306: 88:
Equivalent electrical circuit for the Hodgkin–Huxley model of the action potential.
2749: 2497: 2158: 2109: 2060: 2011: 1948: 1928: 1895: 898: 1389: 865: 457: 2320:
Guttman R, Feldman L, Jacobsson E (1980). "Frequency entrainment of squid axon".
2290: 1378: 3174: 2833: 2643: 2626: 2534:
Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics
1128:{\displaystyle C{\frac {dV}{dt}}=I-\epsilon \left({\frac {V^{3}}{3}}-V\right),} 776:{\displaystyle {\frac {1}{\tau _{h}}}=0.07e^{-V/20}+{\frac {1}{1+e^{3-V/10}}}.} 3013: 1385: 84: 3301: 3100:. Cambridge, Massachusetts: Bradford Book, The MIT Press. pp. 135–169. 2371:. Cambridge, Massachusetts: Bradford Book, The MIT Press. pp. 171–194. 3262: 3254: 3193: 2905: 2806: 2765:"Impulses and Physiological States in Theoretical Models of Nerve Membrane" 2713: 2566:
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields
2298: 2202:. Cambridge, Massachusetts: Bradford Book, The MIT Press. pp. 97–133. 2176: 2127: 2078: 2029: 1966: 351:. For example, the current through the potassium channel may be written as 3078: 2741: 2618: 2469: 2341: 603:{\displaystyle {\frac {dm}{dt}}=-{\frac {m-m_{\mathrm {eq} }}{\tau _{m}}}} 2695: 2651:
Evans JW, Feroe J (1977). "Local stability theory of the nerve impulse".
2515: 2451: 1341: 864:
plot). For comparison, a normal resistor would have a positive slope, by
815: 2887: 1462:. Maxwell's equations can be reduced to a relatively simple problem of 2933: 2733: 2333: 58: 37: 1325:
equation has stimulated much research in the mathematics of nonlinear
1337: 31: 3134: 2045:"The components of membrane conductance in the giant axon of Loligo" 1807:
where the integration is over the complete surface of the membrane;
1466:, since the ionic concentrations change too slowly (compared to the 2872:"ACTIVATION OF PASSIVE IRON AS A MODEL FOR THE EXCITATION OF NERVE" 115:
represents the capacitance of the membrane patch, whereas the four
1837:
are the conductivity and potential just within the membrane, and σ
839: 83: 2363:
Getting PA (1989). "Reconstruction of Small Neural Networks". In
786:
In summary, the Hodgkin–Huxley equations are complex, non-linear
329:
is zero, whereas if open, its conductance is some constant value
3227: 2194:, Adams PR (1989). "Multiple Channels and Calcium Dynamics". In 506:
and a fourth gate, associated with inactivation, of probability
2680:"Thresholds and Plateaus in the Hodgkin-Huxley Nerve Equations" 897:
is a typical example of such a simplified system. Based on the
318:
represents the current arriving from external sources, such as
670:
varies as 3 with the Celsius temperature θ, and with voltage
644:
probability will always roughly equal its equilibrium value
3037:"Voltage oscillations in the barnacle giant muscle fiber" 2536:(2nd ed.). Boca Raton: CRC Press. pp. 459–478. 49:
is typical of this class, which is often studied for its
3276:
Lorente de No R (1947). "A Study of Nerve Physiology".
3098:
Methods in Neuronal Modeling: From Synapses to Networks
2369:
Methods in Neuronal Modeling: From Synapses to Networks
2200:
Methods in Neuronal Modeling: From Synapses to Networks
57:
in nature, for example in the synchronized lighting of
524:. The probabilities for each gate are assumed to obey 1813: 1498: 1400: 1199: 1144: 1053: 977: 910: 683: 536: 360: 163: 2912:
Bonhoeffer KF (1953). "Modelle der Nervenerregung".
2239: 2237: 2235: 2233: 3328: 3211: 3002:IEEE Transactions on Systems, Man, and Cybernetics 2397:http://www.els.net/elsonline/figpage/I0000206.html 1821: 1796: 1419: 1310: 1179: 1127: 1024: 960: 775: 602: 445: 279: 2627:"Nerve axon equations. I. Linear approximations" 1420:{\displaystyle \mathbf {j} =\sigma \mathbf {E} } 3335:. Princeton, New Jersey: Princeton University. 3205: 3203: 2391:Hooper, Scott L. "Central Pattern Generators." 322:from the dendrites or a scientist's electrode. 1915: 1913: 1911: 2246:An introduction to the mathematics of neurons 1861:can be calculated from this potential field. 1381:; in such solutions, the current follows the 147:changes with the total transmembrane current 143:is constant; thus, the transmembrane voltage 8: 2527: 2525: 2423:. New York: Springer Verlag. pp. 29–49. 2399:(2 of 2) Online: Accessed 27 November 2007 2222:: CS1 maint: multiple names: authors list ( 1979:: CS1 maint: multiple names: authors list ( 2434:Armstrong CM, Bezanilla F, Rojas E (1973). 3218:. New York: John Wiley and Sons. pp.  634:changes on a time-scale more slowly than τ 3331:From Clocks to Chaos: The Rhythms of Life 3183: 3173: 3068: 2895: 2796: 2703: 2642: 2505: 2459: 2248:. Cambridge: Cambridge University Press. 2166: 2117: 2068: 2019: 1956: 1814: 1812: 1775: 1750: 1749: 1723: 1722: 1707: 1679: 1678: 1649: 1648: 1627: 1619: 1609: 1594: 1566: 1565: 1533: 1532: 1516: 1505: 1497: 1412: 1401: 1399: 1292: 1269: 1252: 1228: 1210: 1203: 1198: 1148: 1143: 1100: 1094: 1057: 1052: 981: 976: 961:{\displaystyle C{\frac {dV}{dt}}=I-g(V),} 914: 909: 757: 747: 731: 718: 711: 693: 684: 682: 592: 577: 576: 563: 537: 535: 421: 420: 404: 403: 381: 380: 366: 365: 359: 270: 269: 255: 254: 237: 236: 216: 215: 195: 194: 167: 162: 1025:{\displaystyle L{\frac {dI}{dt}}=E-V-RI} 818:oscillations as the stimulating current 2859:. New York: McGraw-Hill. pp. 1–85. 1907: 1815: 1776: 1708: 1628: 460:. By definition, no net current flows ( 2951:(1926). "On relaxation-oscillations". 2215: 1972: 3278:Stud. Rockefeller Inst. Med. Research 1849:) can be calculated for any position 1388:, according to the continuum form of 1372:Extracellular potentials and currents 20:, several mathematical models of the 7: 1822:{\displaystyle {\boldsymbol {\xi }}} 1180:{\displaystyle L{\frac {dI}{dt}}=-V} 626:depend on the instantaneous voltage 3123:SIAM Journal on Applied Mathematics 1458:, which in turn may be found using 1446:, respectively, and where σ is the 1352:and the potassium gate probability 3312:. Philadelphia: W. B. Saunders Co. 1766: 1763: 1760: 1757: 1754: 1751: 1739: 1736: 1733: 1730: 1727: 1724: 1698: 1695: 1692: 1689: 1686: 1683: 1680: 1668: 1665: 1662: 1659: 1656: 1653: 1650: 1600: 1596: 1588: 1585: 1582: 1579: 1576: 1573: 1570: 1567: 1552: 1549: 1546: 1543: 1540: 1537: 1534: 620:and the relaxation time constant τ 581: 578: 437: 431: 428: 425: 422: 405: 382: 367: 320:excitatory postsynaptic potentials 271: 256: 241: 238: 223: 220: 217: 202: 199: 196: 14: 613:where both the equilibrium value 1829:is a position on the membrane, σ 1620: 1506: 1413: 1402: 854:negative differential resistance 2419:. In Bower J, Beeman D (eds.). 788:ordinary differential equations 2591:Journal of Theoretical Biology 2498:10.1113/jphysiol.1976.sp011608 2159:10.1113/jphysiol.1952.sp004764 2110:10.1113/jphysiol.1952.sp004719 2061:10.1113/jphysiol.1952.sp004718 2012:10.1113/jphysiol.1952.sp004717 1949:10.1113/jphysiol.1952.sp004717 1853:; in turn, the electric field 1780: 1772: 1712: 1704: 1510: 1502: 952: 946: 125:voltage-sensitive ion channels 1: 3061:10.1016/S0006-3495(81)84782-0 2789:10.1016/S0006-3495(61)86902-6 1482:) at any extracellular point 1438:are vectors representing the 1039:is a function of the voltage 3210:Stevens, Charles F. (1966). 2665:10.1016/0025-5564(77)90076-1 2611:10.1016/0022-5193(70)90017-2 2412:Nelson ME, Rinzel J (1994). 2291:10.1126/science.174.4005.161 1881:Models of neural computation 794:: the transmembrane voltage 3327:Glass L, Mackey MC (1988). 655:changes more quickly, then 3386: 3175:10.1038/s41598-020-63834-7 3035:Morris C, Lecar H (1981). 2834:10.1109/JRPROC.1962.288235 2644:10.1512/iumj.1972.21.21071 2414:"The Hodgkin–Huxley Model" 833: 154:according to the equation 77: 67:central pattern generators 63:biological neural networks 3310:Physiology and Biophysics 3214:Neurophysiology: A Primer 3014:10.1109/TSMC.1983.6313098 856:(a negative slope on the 3302:10.1152/jn.1960.23.2.132 2476:Rojas E, Rudy B (1976). 2244:Hoppensteadt FC (1986). 1871:Biological neuron models 798:, and the probabilities 630:across the membrane. If 42:cardiac action potential 456:which is equivalent to 3255:10.1002/jcp.1030340304 3243:J. Cell. Comp. Physiol 2968:Philosophical Magazine 2953:Philosophical Magazine 2870:Bonhoeffer KF (1948). 2857:Biological Engineering 2822:Proceedings of the IRE 2722:Biological Cybernetics 1823: 1798: 1474:to be important. The 1421: 1360:capable of exhibiting 1312: 1181: 1129: 1026: 962: 890: 777: 604: 447: 281: 128: 3360:Mathematical modeling 2631:Indiana Univ. Math. J 2000:Journal of Physiology 1937:Journal of Physiology 1824: 1799: 1422: 1313: 1182: 1130: 1027: 963: 895:FitzHugh–Nagumo model 843: 836:FitzHugh–Nagumo model 830:FitzHugh–Nagumo model 792:independent variables 778: 605: 448: 282: 87: 47:FitzHugh–Nagumo model 29:of the axon from the 2983:Arch. Neerl. Physiol 2696:10.1085/jgp.43.5.867 2452:10.1085/jgp.62.4.375 1886:Saltatory conduction 1876:GHK current equation 1857:and current density 1811: 1496: 1486:can be solved using 1398: 1368:in nervous systems. 1197: 1142: 1051: 975: 908: 681: 534: 526:first-order kinetics 358: 161: 80:Hodgkin–Huxley model 74:Hodgkin–Huxley model 51:entrainment behavior 27:Hodgkin–Huxley model 3166:2020NatSR..10.7353C 3053:1981BpJ....35..193M 3041:Biophysical Journal 2926:1953NW.....40..301B 2914:Naturwissenschaften 2888:10.1085/jgp.32.1.69 2781:1961BpJ.....1..445F 2769:Biophysical Journal 2763:FitzHugh R (1961). 2678:FitzHugh R (1960). 2603:1970JThBi..29..155S 2367:and I Segev (ed.). 2283:1971Sci...174..161H 1460:Maxwell's equations 3154:Scientific Reports 2934:10.1007/BF00632438 2734:10.1007/BF00197717 2334:10.1007/BF01869347 1819: 1794: 1488:Green's identities 1476:electric potential 1454:can be found from 1417: 1308: 1177: 1125: 1022: 958: 891: 878:is the inverse of 773: 600: 443: 277: 133:Alan Lloyd Hodgkin 129: 3370:Action potentials 3342:978-0-691-08496-1 3107:978-0-262-11133-1 3096:, I Segev (ed.). 2828:(10): 2061–2070. 2625:Evans JW (1972). 2575:978-0-387-90819-9 2543:978-0-415-32868-5 2378:978-0-262-11133-1 2277:(4005): 161–164. 2255:978-0-521-31574-6 2209:978-0-262-11133-1 2198:, I Segev (ed.). 1637: 1607: 1559: 1366:commonly observed 1327:dynamical systems 1300: 1287: 1235: 1166: 1109: 1075: 999: 932: 768: 699: 598: 555: 185: 55:commonly observed 53:. Entrainment is 3377: 3346: 3334: 3314: 3313: 3305: 3285: 3273: 3267: 3266: 3238: 3232: 3231: 3217: 3207: 3198: 3197: 3187: 3177: 3145: 3139: 3138: 3118: 3112: 3111: 3089: 3083: 3082: 3072: 3032: 3026: 3025: 3008:(5): 1010–1014. 2997: 2991: 2990: 2975: 2960: 2945: 2909: 2899: 2867: 2861: 2860: 2852: 2846: 2845: 2817: 2811: 2810: 2800: 2760: 2754: 2753: 2717: 2707: 2675: 2669: 2668: 2648: 2646: 2622: 2586: 2580: 2579: 2554: 2548: 2547: 2529: 2520: 2519: 2509: 2473: 2463: 2431: 2425: 2424: 2418: 2409: 2403: 2389: 2383: 2382: 2360: 2354: 2353: 2317: 2311: 2310: 2266: 2260: 2259: 2241: 2228: 2227: 2221: 2213: 2187: 2181: 2180: 2170: 2131: 2121: 2082: 2072: 2033: 2023: 1984: 1978: 1970: 1960: 1917: 1828: 1826: 1825: 1820: 1818: 1803: 1801: 1800: 1795: 1787: 1783: 1779: 1771: 1770: 1769: 1744: 1743: 1742: 1711: 1703: 1702: 1701: 1673: 1672: 1671: 1638: 1636: 1632: 1631: 1623: 1610: 1608: 1606: 1595: 1593: 1592: 1591: 1560: 1558: 1557: 1556: 1555: 1517: 1509: 1472:magnetic effects 1426: 1424: 1423: 1418: 1416: 1405: 1317: 1315: 1314: 1309: 1301: 1293: 1288: 1286: 1278: 1270: 1268: 1264: 1257: 1256: 1236: 1234: 1233: 1232: 1219: 1215: 1214: 1204: 1186: 1184: 1183: 1178: 1167: 1165: 1157: 1149: 1134: 1132: 1131: 1126: 1121: 1117: 1110: 1105: 1104: 1095: 1076: 1074: 1066: 1058: 1031: 1029: 1028: 1023: 1000: 998: 990: 982: 967: 965: 964: 959: 933: 931: 923: 915: 782: 780: 779: 774: 769: 767: 766: 765: 761: 732: 727: 726: 722: 700: 698: 697: 685: 659:will lag behind 609: 607: 606: 601: 599: 597: 596: 587: 586: 585: 584: 564: 556: 554: 546: 538: 452: 450: 449: 444: 442: 441: 440: 415: 411: 410: 409: 408: 387: 386: 385: 372: 371: 370: 286: 284: 283: 278: 276: 275: 274: 261: 260: 259: 246: 245: 244: 228: 227: 226: 207: 206: 205: 186: 184: 176: 168: 119:s represent the 22:action potential 3385: 3384: 3380: 3379: 3378: 3376: 3375: 3374: 3350: 3349: 3343: 3326: 3323: 3321:Further reading 3318: 3317: 3307: 3306: 3290:J. Neurophysiol 3287: 3286: 3275: 3274: 3270: 3240: 3239: 3235: 3209: 3208: 3201: 3147: 3146: 3142: 3135:10.1137/0141042 3120: 3119: 3115: 3108: 3091: 3090: 3086: 3034: 3033: 3029: 2999: 2998: 2994: 2977: 2976: 2962: 2961: 2947: 2946: 2920:(11): 301–311. 2911: 2910: 2876:J. Gen. Physiol 2869: 2868: 2864: 2854: 2853: 2849: 2819: 2818: 2814: 2762: 2761: 2757: 2719: 2718: 2684:J. Gen. Physiol 2677: 2676: 2672: 2650: 2649: 2624: 2623: 2588: 2587: 2583: 2576: 2556: 2555: 2551: 2544: 2531: 2530: 2523: 2475: 2474: 2440:J. Gen. Physiol 2433: 2432: 2428: 2416: 2411: 2410: 2406: 2390: 2386: 2379: 2362: 2361: 2357: 2319: 2318: 2314: 2268: 2267: 2263: 2256: 2243: 2242: 2231: 2214: 2210: 2189: 2188: 2184: 2133: 2132: 2084: 2083: 2035: 2034: 1986: 1985: 1971: 1919: 1918: 1909: 1904: 1867: 1844: 1840: 1836: 1832: 1809: 1808: 1745: 1718: 1674: 1644: 1643: 1639: 1618: 1614: 1599: 1561: 1528: 1521: 1494: 1493: 1440:current density 1396: 1395: 1374: 1279: 1271: 1248: 1247: 1243: 1224: 1220: 1206: 1205: 1195: 1194: 1158: 1150: 1140: 1139: 1096: 1093: 1089: 1067: 1059: 1049: 1048: 991: 983: 973: 972: 924: 916: 906: 905: 838: 832: 824: 743: 736: 707: 689: 679: 678: 665: 650: 639: 625: 619: 588: 572: 565: 547: 539: 532: 531: 516: 497: 490: 477: 466: 416: 399: 392: 388: 376: 361: 356: 355: 350: 339: 317: 310: 303: 296: 265: 250: 232: 211: 190: 177: 169: 159: 158: 153: 114: 105: 96: 82: 76: 18:neurophysiology 12: 11: 5: 3383: 3381: 3373: 3372: 3367: 3362: 3352: 3351: 3348: 3347: 3341: 3322: 3319: 3316: 3315: 3296:(2): 132–143. 3268: 3249:(3): 383–396. 3233: 3199: 3140: 3129:(3): 503–517. 3113: 3106: 3084: 3047:(1): 193–213. 3027: 2992: 2862: 2847: 2812: 2775:(6): 445–466. 2755: 2728:(5): 381–387. 2690:(5): 867–896. 2670: 2659:(1–2): 23–50. 2637:(9): 877–885. 2597:(2): 155–171. 2581: 2574: 2558:Guckenheimer J 2549: 2542: 2521: 2492:(2): 501–531. 2446:(4): 375–391. 2426: 2404: 2384: 2377: 2355: 2322:J. Membr. Biol 2312: 2261: 2254: 2229: 2208: 2182: 2153:(4): 500–544. 2104:(4): 497–506. 2055:(4): 473–496. 2006:(4): 449–472. 1943:(4): 424–448. 1906: 1905: 1903: 1900: 1899: 1898: 1893: 1891:Bioelectronics 1888: 1883: 1878: 1873: 1866: 1863: 1842: 1838: 1834: 1830: 1817: 1805: 1804: 1793: 1790: 1786: 1782: 1778: 1774: 1768: 1765: 1762: 1759: 1756: 1753: 1748: 1741: 1738: 1735: 1732: 1729: 1726: 1721: 1717: 1714: 1710: 1706: 1700: 1697: 1694: 1691: 1688: 1685: 1682: 1677: 1670: 1667: 1664: 1661: 1658: 1655: 1652: 1647: 1642: 1635: 1630: 1626: 1622: 1617: 1613: 1605: 1602: 1598: 1590: 1587: 1584: 1581: 1578: 1575: 1572: 1569: 1564: 1554: 1551: 1548: 1545: 1542: 1539: 1536: 1531: 1527: 1524: 1520: 1515: 1512: 1508: 1504: 1501: 1468:speed of light 1464:electrostatics 1444:electric field 1428: 1427: 1415: 1411: 1408: 1404: 1379:ionic solution 1373: 1370: 1319: 1318: 1307: 1304: 1299: 1296: 1291: 1285: 1282: 1277: 1274: 1267: 1263: 1260: 1255: 1251: 1246: 1242: 1239: 1231: 1227: 1223: 1218: 1213: 1209: 1202: 1188: 1187: 1176: 1173: 1170: 1164: 1161: 1156: 1153: 1147: 1136: 1135: 1124: 1120: 1116: 1113: 1108: 1103: 1099: 1092: 1088: 1085: 1082: 1079: 1073: 1070: 1065: 1062: 1056: 1033: 1032: 1021: 1018: 1015: 1012: 1009: 1006: 1003: 997: 994: 989: 986: 980: 969: 968: 957: 954: 951: 948: 945: 942: 939: 936: 930: 927: 922: 919: 913: 834:Main article: 831: 828: 822: 784: 783: 772: 764: 760: 756: 753: 750: 746: 742: 739: 735: 730: 725: 721: 717: 714: 710: 706: 703: 696: 692: 688: 663: 651:; however, if 648: 635: 621: 617: 611: 610: 595: 591: 583: 580: 575: 571: 568: 562: 559: 553: 550: 545: 542: 514: 495: 486: 475: 464: 454: 453: 439: 436: 433: 430: 427: 424: 419: 414: 407: 402: 398: 395: 391: 384: 379: 375: 369: 364: 348: 337: 315: 308: 301: 294: 288: 287: 273: 268: 264: 258: 253: 249: 243: 240: 235: 231: 225: 222: 219: 214: 210: 204: 201: 198: 193: 189: 183: 180: 175: 172: 166: 151: 110: 101: 92: 78:Main article: 75: 72: 65:, such as the 13: 10: 9: 6: 4: 3: 2: 3382: 3371: 3368: 3366: 3363: 3361: 3358: 3357: 3355: 3344: 3338: 3333: 3332: 3325: 3324: 3320: 3311: 3303: 3299: 3295: 3291: 3283: 3279: 3272: 3269: 3264: 3260: 3256: 3252: 3248: 3244: 3237: 3234: 3229: 3225: 3221: 3216: 3215: 3206: 3204: 3200: 3195: 3191: 3186: 3181: 3176: 3171: 3167: 3163: 3159: 3155: 3151: 3144: 3141: 3136: 3132: 3128: 3124: 3117: 3114: 3109: 3103: 3099: 3095: 3088: 3085: 3080: 3076: 3071: 3066: 3062: 3058: 3054: 3050: 3046: 3042: 3038: 3031: 3028: 3023: 3019: 3015: 3011: 3007: 3003: 2996: 2993: 2988: 2984: 2980: 2979:van der Pol B 2973: 2969: 2965: 2964:van der Pol B 2958: 2954: 2950: 2949:van der Pol B 2943: 2939: 2935: 2931: 2927: 2923: 2919: 2915: 2907: 2903: 2898: 2893: 2889: 2885: 2881: 2877: 2873: 2866: 2863: 2858: 2851: 2848: 2843: 2839: 2835: 2831: 2827: 2823: 2816: 2813: 2808: 2804: 2799: 2794: 2790: 2786: 2782: 2778: 2774: 2770: 2766: 2759: 2756: 2751: 2747: 2743: 2739: 2735: 2731: 2727: 2723: 2715: 2711: 2706: 2701: 2697: 2693: 2689: 2685: 2681: 2674: 2671: 2666: 2662: 2658: 2654: 2645: 2640: 2636: 2632: 2628: 2620: 2616: 2612: 2608: 2604: 2600: 2596: 2592: 2585: 2582: 2577: 2571: 2567: 2563: 2559: 2553: 2550: 2545: 2539: 2535: 2528: 2526: 2522: 2517: 2513: 2508: 2503: 2499: 2495: 2491: 2487: 2483: 2481: 2471: 2467: 2462: 2457: 2453: 2449: 2445: 2441: 2437: 2430: 2427: 2422: 2415: 2408: 2405: 2401: 2398: 2394: 2393:Embryonic ELS 2388: 2385: 2380: 2374: 2370: 2366: 2359: 2356: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2316: 2313: 2308: 2304: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2272: 2265: 2262: 2257: 2251: 2247: 2240: 2238: 2236: 2234: 2230: 2225: 2219: 2211: 2205: 2201: 2197: 2193: 2186: 2183: 2178: 2174: 2169: 2164: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2129: 2125: 2120: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2087: 2080: 2076: 2071: 2066: 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2031: 2027: 2022: 2017: 2013: 2009: 2005: 2001: 1997: 1993: 1989: 1982: 1976: 1968: 1964: 1959: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1922: 1916: 1914: 1912: 1908: 1901: 1897: 1894: 1892: 1889: 1887: 1884: 1882: 1879: 1877: 1874: 1872: 1869: 1868: 1864: 1862: 1860: 1856: 1852: 1848: 1791: 1788: 1784: 1746: 1719: 1715: 1675: 1645: 1640: 1633: 1624: 1615: 1611: 1603: 1562: 1529: 1525: 1522: 1518: 1513: 1499: 1492: 1491: 1490: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1409: 1406: 1394: 1393: 1392: 1391: 1387: 1384: 1380: 1371: 1369: 1367: 1363: 1357: 1355: 1351: 1347: 1343: 1339: 1334: 1332: 1328: 1324: 1305: 1302: 1297: 1294: 1289: 1283: 1280: 1275: 1272: 1265: 1261: 1258: 1253: 1249: 1244: 1240: 1237: 1229: 1225: 1221: 1216: 1211: 1207: 1200: 1193: 1192: 1191: 1174: 1171: 1168: 1162: 1159: 1154: 1151: 1145: 1138: 1137: 1122: 1118: 1114: 1111: 1106: 1101: 1097: 1090: 1086: 1083: 1080: 1077: 1071: 1068: 1063: 1060: 1054: 1047: 1046: 1045: 1042: 1038: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 995: 992: 987: 984: 978: 971: 970: 955: 949: 943: 940: 937: 934: 928: 925: 920: 917: 911: 904: 903: 902: 900: 896: 888: 884: 881: 877: 874: 870: 867: 863: 859: 855: 851: 847: 842: 837: 829: 827: 821: 817: 813: 809: 805: 801: 797: 793: 789: 770: 762: 758: 754: 751: 748: 744: 740: 737: 733: 728: 723: 719: 715: 712: 708: 704: 701: 694: 690: 686: 677: 676: 675: 673: 669: 662: 658: 654: 647: 643: 638: 633: 629: 624: 616: 593: 589: 573: 569: 566: 560: 557: 551: 548: 543: 540: 530: 529: 528: 527: 523: 520: 513: 509: 505: 501: 494: 489: 485: 479: 474: 470: 463: 459: 434: 417: 412: 400: 396: 393: 389: 377: 373: 362: 354: 353: 352: 347: 343: 336: 332: 328: 323: 321: 314: 307: 300: 293: 266: 262: 251: 247: 233: 229: 212: 208: 191: 187: 181: 178: 173: 170: 164: 157: 156: 155: 150: 146: 142: 138: 137:Andrew Huxley 134: 126: 122: 118: 113: 109: 104: 100: 95: 91: 86: 81: 73: 71: 68: 64: 60: 56: 52: 48: 43: 39: 34: 33: 28: 23: 19: 3330: 3309: 3293: 3289: 3281: 3277: 3271: 3246: 3242: 3236: 3213: 3157: 3153: 3143: 3126: 3122: 3116: 3097: 3087: 3044: 3040: 3030: 3005: 3001: 2995: 2986: 2982: 2971: 2967: 2956: 2952: 2917: 2913: 2882:(1): 69–91. 2879: 2875: 2865: 2856: 2850: 2825: 2821: 2815: 2772: 2768: 2758: 2725: 2721: 2687: 2683: 2673: 2656: 2653:Math. Biosci 2652: 2634: 2630: 2594: 2590: 2584: 2565: 2552: 2533: 2489: 2485: 2479: 2443: 2439: 2429: 2420: 2407: 2392: 2387: 2368: 2358: 2325: 2321: 2315: 2274: 2270: 2264: 2245: 2199: 2185: 2150: 2146: 2101: 2097: 2052: 2048: 2003: 1999: 1975:cite journal 1940: 1936: 1896:Cable theory 1858: 1854: 1850: 1846: 1806: 1483: 1479: 1455: 1451: 1448:conductivity 1435: 1431: 1429: 1375: 1358: 1353: 1349: 1345: 1335: 1320: 1189: 1040: 1036: 1034: 899:tunnel diode 892: 886: 882: 875: 871:, where the 868: 861: 857: 849: 845: 819: 807: 803: 799: 795: 785: 671: 667: 660: 656: 652: 645: 641: 636: 631: 627: 622: 614: 612: 521: 518: 511: 507: 503: 499: 492: 487: 483: 480: 472: 468: 461: 455: 345: 341: 334: 330: 324: 312: 305: 298: 291: 289: 148: 144: 140: 130: 121:conductances 116: 111: 107: 102: 98: 93: 89: 30: 15: 3284:: Chap. 16. 3160:(1): 7353. 2328:(1): 9–18. 2190:Yamada WM, 1386:field lines 1364:, which is 1362:entrainment 1323:van der Pol 873:conductance 812:fixed point 327:conductance 3365:Capacitors 3354:Categories 2989:: 418–443. 2974:: 763–775. 2959:: 978–992. 2486:J. Physiol 2135:Hodgkin AL 2086:Hodgkin AL 2037:Hodgkin AL 1988:Hodgkin AL 1921:Hodgkin AL 1902:References 880:resistance 2218:cite book 2147:J Physiol 2139:Huxley AF 2098:J Physiol 2090:Huxley AF 2049:J Physiol 2041:Huxley AF 1992:Huxley AF 1925:Huxley AF 1816:ξ 1777:ξ 1747:ϕ 1720:σ 1716:− 1709:ξ 1676:ϕ 1646:σ 1629:ξ 1625:− 1601:∂ 1597:∂ 1563:∮ 1530:σ 1526:π 1500:ϕ 1450:. Thus, 1410:σ 1390:Ohm's Law 1342:barnacles 1340:fiber of 1259:− 1241:ϵ 1172:− 1112:− 1087:ϵ 1084:− 1014:− 1008:− 941:− 866:Ohm's law 752:− 713:− 691:τ 590:τ 570:− 561:− 458:Ohm's law 397:− 59:fireflies 3263:15410483 3228:66015872 3194:32355185 3022:20077648 2942:19149460 2906:18885679 2842:51648050 2807:19431309 2714:13823315 2564:(1986). 2562:Holmes P 2350:10775478 2307:41760422 2299:17742039 2177:12991237 2141:(1952). 2128:14946715 2092:(1952). 2079:14946714 2043:(1952). 2030:14946713 1994:(1952). 1967:14946713 1931:(1952). 1865:See also 1383:electric 816:bursting 790:in four 515:open, Na 510:; thus, 344:− 131:In 1952 3185:7192907 3162:Bibcode 3094:C. Koch 3079:7260316 3070:1327511 3049:Bibcode 2922:Bibcode 2897:2213747 2798:1366333 2777:Bibcode 2750:6789007 2742:1562643 2705:2195039 2619:5500466 2599:Bibcode 2507:1307656 2470:4755846 2461:2226121 2395:(1999) 2342:7441721 2279:Bibcode 2271:Science 2196:C. Koch 2168:1392413 2119:1392212 2070:1392209 2021:1392213 1958:1392213 1843:outside 1839:outside 852:) with 496:open, K 38:calcium 3339:  3261:  3226:  3222:–173. 3192:  3182:  3104:  3077:  3067:  3020:  2940:  2904:  2894:  2840:  2805:  2795:  2748:  2740:  2712:  2702:  2617:  2572:  2540:  2516:994046 2514:  2504:  2480:Loligo 2468:  2458:  2375:  2365:C Koch 2348:  2340:  2305:  2297:  2252:  2206:  2192:Koch C 2175:  2165:  2126:  2116:  2077:  2067:  2028:  2018:  1965:  1955:  1929:Katz B 1835:inside 1831:inside 1470:) for 1430:where 1338:muscle 1331:Op-amp 1035:where 869:I = GV 640:, the 304:, and 290:where 32:Loligo 3018:S2CID 2938:S2CID 2838:S2CID 2746:S2CID 2417:(PDF) 2346:S2CID 2303:S2CID 1841:and φ 1833:and φ 1321:This 3337:ISBN 3259:PMID 3224:LCCN 3190:PMID 3102:ISBN 3075:PMID 2902:PMID 2803:PMID 2738:PMID 2710:PMID 2615:PMID 2570:ISBN 2538:ISBN 2512:PMID 2466:PMID 2373:ISBN 2338:PMID 2295:PMID 2250:ISBN 2224:link 2204:ISBN 2173:PMID 2124:PMID 2075:PMID 2026:PMID 1981:link 1963:PMID 1442:and 1434:and 1037:g(V) 860:vs. 806:and 705:0.07 338:open 135:and 97:and 3298:doi 3282:132 3251:doi 3220:161 3180:PMC 3170:doi 3131:doi 3065:PMC 3057:doi 3010:doi 2930:doi 2892:PMC 2884:doi 2830:doi 2793:PMC 2785:doi 2730:doi 2700:PMC 2692:doi 2661:doi 2639:doi 2607:doi 2502:PMC 2494:doi 2490:262 2456:PMC 2448:doi 2330:doi 2287:doi 2275:174 2163:PMC 2155:doi 2151:117 2114:PMC 2106:doi 2102:116 2065:PMC 2057:doi 2053:116 2016:PMC 2008:doi 2004:116 1953:PMC 1945:doi 1941:116 885:=1/ 823:ext 674:as 478:). 316:ext 152:tot 16:In 3356:: 3294:23 3292:. 3280:. 3257:. 3247:34 3245:. 3202:^ 3188:. 3178:. 3168:. 3158:10 3156:. 3152:. 3127:41 3125:. 3073:. 3063:. 3055:. 3045:35 3043:. 3039:. 3016:. 3006:13 3004:. 2987:14 2985:. 2970:. 2955:. 2936:. 2928:. 2918:40 2916:. 2900:. 2890:. 2880:32 2878:. 2874:. 2836:. 2826:50 2824:. 2801:. 2791:. 2783:. 2771:. 2767:. 2744:. 2736:. 2726:66 2724:. 2708:. 2698:. 2688:43 2686:. 2682:. 2657:37 2655:. 2635:21 2633:. 2629:. 2613:. 2605:. 2595:29 2593:. 2560:, 2524:^ 2510:. 2500:. 2488:. 2484:. 2464:. 2454:. 2444:62 2442:. 2438:. 2344:. 2336:. 2326:56 2324:. 2301:. 2293:. 2285:. 2273:. 2232:^ 2220:}} 2216:{{ 2171:. 2161:. 2149:. 2145:. 2137:, 2122:. 2112:. 2100:. 2096:. 2088:, 2073:. 2063:. 2051:. 2047:. 2039:, 2024:. 2014:. 2002:. 1998:. 1990:, 1977:}} 1973:{{ 1961:. 1951:. 1939:. 1935:. 1927:, 1923:, 1910:^ 1478:φ( 1329:. 1306:0. 802:, 763:10 724:20 664:eq 649:eq 618:eq 517:= 498:= 471:= 349:eq 297:, 295:Na 117:g' 3345:. 3304:. 3300:: 3265:. 3253:: 3230:. 3196:. 3172:: 3164:: 3137:. 3133:: 3110:. 3081:. 3059:: 3051:: 3024:. 3012:: 2972:6 2957:2 2944:. 2932:: 2924:: 2908:. 2886:: 2844:. 2832:: 2809:. 2787:: 2779:: 2773:1 2752:. 2732:: 2716:. 2694:: 2667:. 2663:: 2647:. 2641:: 2621:. 2609:: 2601:: 2578:. 2546:. 2518:. 2496:: 2482:" 2472:. 2450:: 2402:. 2381:. 2352:. 2332:: 2309:. 2289:: 2281:: 2258:. 2226:) 2212:. 2179:. 2157:: 2130:. 2108:: 2081:. 2059:: 2032:. 2010:: 1983:) 1969:. 1947:: 1859:j 1855:E 1851:x 1847:x 1792:S 1789:d 1785:] 1781:) 1773:( 1767:e 1764:d 1761:i 1758:s 1755:n 1752:i 1740:e 1737:d 1734:i 1731:s 1728:n 1725:i 1713:) 1705:( 1699:e 1696:d 1693:i 1690:s 1687:t 1684:u 1681:o 1669:e 1666:d 1663:i 1660:s 1657:t 1654:u 1651:o 1641:[ 1634:| 1621:x 1616:| 1612:1 1604:n 1589:e 1586:n 1583:a 1580:r 1577:b 1574:m 1571:e 1568:m 1553:e 1550:d 1547:i 1544:s 1541:t 1538:u 1535:o 1523:4 1519:1 1514:= 1511:) 1507:x 1503:( 1484:x 1480:x 1456:E 1452:j 1436:E 1432:j 1414:E 1407:= 1403:j 1354:n 1350:V 1346:h 1303:= 1298:L 1295:V 1290:+ 1284:t 1281:d 1276:V 1273:d 1266:) 1262:1 1254:2 1250:V 1245:( 1238:+ 1230:2 1226:t 1222:d 1217:V 1212:2 1208:d 1201:C 1175:V 1169:= 1163:t 1160:d 1155:I 1152:d 1146:L 1123:, 1119:) 1115:V 1107:3 1102:3 1098:V 1091:( 1081:I 1078:= 1072:t 1069:d 1064:V 1061:d 1055:C 1041:V 1020:I 1017:R 1011:V 1005:E 1002:= 996:t 993:d 988:I 985:d 979:L 956:, 953:) 950:V 947:( 944:g 938:I 935:= 929:t 926:d 921:V 918:d 912:C 889:. 887:R 883:G 876:G 862:V 858:I 850:V 848:( 846:g 820:I 808:n 804:h 800:m 796:V 771:. 759:/ 755:V 749:3 745:e 741:+ 738:1 734:1 729:+ 720:/ 716:V 709:e 702:= 695:h 687:1 672:V 668:h 661:m 657:m 653:V 646:m 642:m 637:m 632:V 628:V 623:m 615:m 594:m 582:q 579:e 574:m 567:m 558:= 552:t 549:d 544:m 541:d 522:h 519:m 512:p 508:h 504:m 500:n 493:p 488:n 484:p 476:K 473:E 469:V 465:K 462:I 438:K 435:, 432:n 429:e 426:p 423:o 418:p 413:) 406:K 401:E 394:V 390:( 383:K 378:g 374:= 368:K 363:I 346:V 342:V 335:p 331:g 313:I 309:L 306:I 302:K 299:I 292:I 272:L 267:I 263:+ 257:K 252:I 248:+ 242:a 239:N 234:I 230:+ 224:t 221:x 218:e 213:I 209:= 203:t 200:o 197:t 192:I 188:= 182:t 179:d 174:V 171:d 165:C 149:I 145:V 141:C 127:. 112:m 108:C 103:m 99:V 94:m 90:I

Index

neurophysiology
action potential
Hodgkin–Huxley model
Loligo
calcium
cardiac action potential
FitzHugh–Nagumo model
entrainment behavior
commonly observed
fireflies
biological neural networks
central pattern generators
Hodgkin–Huxley model

conductances
voltage-sensitive ion channels
Alan Lloyd Hodgkin
Andrew Huxley
excitatory postsynaptic potentials
conductance
Ohm's law
first-order kinetics
ordinary differential equations
independent variables
fixed point
bursting
FitzHugh–Nagumo model

negative differential resistance
Ohm's law

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.