Knowledge (XXG)

Quantum chromodynamics

Source 📝

3892: 53: 6178: 6029: 6433: 6445: 2851: 1618: 2508: 2297: 2874:, which was constructed for precisely this purpose. While it is a slow and resource-intensive approach, it has wide applicability, giving insight into parts of the theory inaccessible by other means, in particular into the explicit forces acting between quarks and antiquarks in a meson. However, the 3117:
that have not yet been definitively observed experimentally. A definitive observation of a glueball with the properties predicted by QCD would strongly confirm the theory. In principle, if glueballs could be definitively ruled out, this would be a serious experimental blow to QCD. But, as of 2013,
3677:
The basic notion "frustration" of the spin-glass is actually similar to the Wilson loop quantity of the QCD. The only difference is again that in the QCD one is dealing with SU(3) matrices, and that one is dealing with a "fluctuating" quantity. Energetically, perfect absence of frustration should be
2932:
or ChiPT, which is the QCD effective theory at low energies. More precisely, it is a low energy expansion based on the spontaneous chiral symmetry breaking of QCD, which is an exact symmetry when quark masses are equal to zero, but for the u, d and s quark, which have small mass, it is still a good
955:
as a particle that could be separated and isolated, Gell-Mann often said that quarks were merely convenient mathematical constructs, not real particles. The meaning of this statement was usually clear in context: He meant quarks are confined, but he also was implying that the strong interactions
3417: 971:
The difference between Feynman's and Gell-Mann's approaches reflected a deep split in the theoretical physics community. Feynman thought the quarks have a distribution of position or momentum, like any other particle, and he (correctly) believed that the diffusion of parton momentum explained
5297:
Gross, Franz; Klempt, Eberhard; Brodsky, Stanley J.; Buras, Andrzej J.; Burkert, Volker D.; Heinrich, Gudrun; Jakobs, Karl; Meyer, Curtis A.; Orginos, Kostas; Strickland, Michael; Stachel, Johanna; Zanderighi, Giulia; Brambilla, Nora; Braun-Munzinger, Peter; Britzger, Daniel (2023-12-12).
2911:, starts from the idea that the number of colors is infinite, and makes a series of corrections to account for the fact that it is not. Until now, it has been the source of qualitative insight rather than a method for quantitative predictions. Modern variants include the 1386:
There are two different types of SU(3) symmetry: there is the symmetry that acts on the different colors of quarks, and this is an exact gauge symmetry mediated by the gluons, and there is also a flavor symmetry that rotates different flavors of quarks to each other, or
1924: 1434: 2761:" of the hadrons The order of magnitude of the "bag radius" is 1 fm (= 10 m). Moreover, the above-mentioned stiffness is quantitatively related to the so-called "area law" behavior of the expectation value of the Wilson loop product 2139: 2923:
For specific problems, effective theories may be written down that give qualitatively correct results in certain limits. In the best of cases, these may then be obtained as systematic expansions in some parameters of the QCD Lagrangian. One such
1287:, namely the asymptotic decay of non-trivial correlations, e.g. short-range deviations from almost perfect arrangements, for short distances. Here, in contrast to Wegner, we have only the dual model, which is that one described in this article. 902:
wrote a preprint with a more detailed discussion of the additional quark quantum degree of freedom. This work was also presented by Albert Tavkhelidze without obtaining consent of his collaborators for doing so at an international conference in
1406:
The approximate flavor symmetries do have associated gauge bosons, observed particles like the rho and the omega, but these particles are nothing like the gluons and they are not massless. They are emergent gauge bosons in an approximate
619:, a steady reduction in the strength of interactions between quarks and gluons as the energy scale of those interactions increases (and the corresponding length scale decreases). The asymptotic freedom of QCD was discovered in 1973 by 3878: 3678:
non-favorable and atypical for a spin glass, which means that one should add the loop product to the Hamiltonian, by some kind of term representing a "punishment". In the QCD the Wilson loop is essential for the Lagrangian rightaway.
976:. Although Gell-Mann believed that certain quark charges could be localized, he was open to the possibility that the quarks themselves could not be localized because space and time break down. This was the more radical approach of 1398:
there are vacuum condensates of all the quarks whose mass is less than the QCD scale. This includes the up and down quarks, and to a lesser extent the strange quark, but not any of the others. The vacuum is symmetric under SU(2)
2866:. This approach uses a discrete set of spacetime points (called the lattice) to reduce the analytically intractable path integrals of the continuum theory to a very difficult numerical computation that is then carried out on 3262: 1025:), in which the carrier particles of a force can themselves radiate further carrier particles. (This is different from QED, where the photons that carry the electromagnetic force do not radiate further photons.) 3761:
There is also a correspondence between confinement in QCD – the fact that the color field is only different from zero in the interior of hadrons – and the behaviour of the usual magnetic field in the theory of
1279: distances. However, as already mentioned in the original paper of Franz Wegner, a solid state theorist who introduced 1971 simple gauge invariant lattice models, the high-temperature behaviour of the 3249: 3681:
The relation between the QCD and "disordered magnetic systems" (the spin glasses belong to them) were additionally stressed in a paper by Fradkin, Huberman and Shenker, which also stresses the notion of
3492: 3661: 3697:(force proportional to the length) of a rubber band. The non-abelian character of the SU(3) corresponds thereby to the non-trivial "chemical links", which glue different loop segments together, and " 645:
of an important global symmetry of quarks, detailed below, with the result of generating masses for hadrons far above the masses of the quarks, and making pseudoscalar mesons exceptionally light.
506: 1801: 2679:, the above theory gives rise to three basic interactions: a quark may emit (or absorb) a gluon, a gluon may emit (or absorb) a gluon, and two gluons may directly interact. This contrasts with 1075:. Since the force between color charges does not decrease with distance, it is believed that quarks and gluons can never be liberated from hadrons. This aspect of the theory is verified within 3745: 1295:
The color group SU(3) corresponds to the local symmetry whose gauging gives rise to QCD. The electric charge labels a representation of the local symmetry group U(1), which is gauged to give
2346: 5419: 2072: 1233:
on its direction of motion then it is called right-handed; otherwise, it is left-handed. Chirality and handedness are not the same, but become approximately equivalent at high energies.
649:
was awarded the 2008 Nobel Prize in Physics for elucidating the phenomenon in 1960, a dozen years before the advent of QCD. Lattice simulations have confirmed all his generic predictions.
1391:. Flavor SU(3) is an approximate symmetry of the vacuum of QCD, and is not a fundamental symmetry at all. It is an accidental consequence of the small mass of the three lightest quarks. 4918: 2804: 872:
Three identical quarks cannot form an antisymmetric S-state. In order to realize an antisymmetric orbital S-state, it is necessary for the quark to have an additional quantum number.
2858:⟩ plot for static quark–antiquark system held at a fixed separation, where blue is zero and red is the highest value (result of a lattice QCD simulation by M. Cardoso et al.) 2022: 1613:{\displaystyle {\mathcal {L}}_{\mathrm {QCD} }={\bar {\psi }}_{i}\left(i\gamma ^{\mu }(D_{\mu })_{ij}-m\,\delta _{ij}\right)\psi _{j}-{\frac {1}{4}}G_{\mu \nu }^{a}G_{a}^{\mu \nu }} 1403:
rotations of up and down, and to a lesser extent under rotations of up, down, and strange, or full flavor group SU(3), and the observed particles make isospin and SU(3) multiplets.
2661: 4946:
Cardoso, M.; et al. (2010). "Lattice QCD computation of the colour fields for the static hybrid quark–gluon–antiquark system, and microscopic study of the Casimir scaling".
2292:{\displaystyle G_{\mu \nu }^{a}=\partial _{\mu }{\mathcal {A}}_{\nu }^{a}-\partial _{\nu }{\mathcal {A}}_{\mu }^{a}+gf^{abc}{\mathcal {A}}_{\mu }^{b}{\mathcal {A}}_{\nu }^{c}\,,} 4562:(Dedicated to the 40th Anniversary of the Discovery of the Quantum Number Color). Report presented at the 99th Session of the JINR Scientific Council, Dubna, 19–20 January 2006. 2115: 6063: 1659: 68: 3173: 3086:
Quantitative tests of non-perturbative QCD are fewer, because the predictions are harder to make. The best is probably the running of the QCD coupling as probed through
2728: 680:, in which he related that he had been influenced by Joyce's words: "The allusion to three quarks seemed perfect." (Originally, only three quarks had been discovered.) 5459: 3118:
scientists are unable to confirm or deny the existence of glueballs definitively, despite the fact that particle accelerators have sufficient energy to generate them.
1778: 499: 3531: 2836:
to be used accurately in experiments performed at very high energies. Although limited in scope, this approach has resulted in the most precise tests of QCD to date.
1973: 609:, turning the initial hadron into a pair of hadrons instead of isolating a color charge. Although analytically unproven, color confinement is well established from 4412:
Gell-Mann, M. (1961). "The Eightfold Way: A Theory of strong interaction symmetry" (No. TID-12608; CTSL-20). California Inst. of Tech., Pasadena. Synchrotron Lab (
6713: 6207: 1945: 146: 3784: 3537:, are "frozen" to fixed values (quenching). In contrast, in the QCD they "fluctuate" (annealing), and through the large number of gauge degrees of freedom the 2818:
Further analysis of the content of the theory is complicated. Various techniques have been developed to work with QCD. Some of them are discussed briefly below.
6483: 6315: 5882: 5692: 2406: 2386: 1751: 1731: 1711: 1691: 5774: 5733: 2933:
approximate symmetry. Depending on the number of quarks that are treated as light, one uses either SU(2) ChiPT or SU(3) ChiPT. Other effective theories are
2495:). In lattice QCD, the final term of the above Lagrangian is discretized via Wilson loops, and more generally the behavior of Wilson loops can distinguish 6802: 492: 4803:
Perhaps one can guess that in the "original" model mainly the quarks would fluctuate, whereas in the present one, the "dual" model, mainly the gluons do.
937: 5393: 890:. The problem considered in this preprint was suggested by Nikolay Bogolyubov, who advised Boris Struminsky in this research. In the beginning of 1965, 6192: 3412:{\displaystyle (\,s_{i}\to s_{i}\cdot \epsilon _{i}\quad \,J_{i,k}\to \epsilon _{i}J_{i,k}\epsilon _{k}\,\quad s_{k}\to s_{k}\cdot \epsilon _{k}\,)\,.} 142: 5512: 2878:
makes it difficult to use lattice methods to study QCD at high density and low temperature (e.g. nuclear matter or the interior of neutron stars).
6056: 2833: 1120: 1045: 6681: 5537: 2730:), which represents some kind of "stiffness" of the interaction between the particle and its anti-particle at large distances, similar to the 5641: 4054: 3891: 951:
Since free quark searches consistently failed to turn up any evidence for the new particles, and because an elementary particle back then was
6310: 5872: 5287: 5268: 5238: 4229: 4086: 2612: 5764: 5452: 3551:
the thermodynamics of the Mattis spin glass corresponds in fact simply to a "ferromagnet in disguise", just because these systems have no "
1160: 4260: 1044:
allowed physicists to make precise predictions of the results of many high energy experiments using the quantum field theory technique of
5620: 968:(since they were parts of hadrons). By particles, Feynman meant objects that travel along paths, elementary particles in a field theory. 6393: 5502: 4192: 605:. Due to the force between two color charges remaining constant as they are separated, the energy grows until a quark–antiquark pair is 4788: 6049: 2511:
The pattern of strong charges for the three colors of quark, three antiquarks, and eight gluons (with two of zero charge overlapping).
6449: 703:. Other than this nomenclature, the quantum parameter "color" is completely unrelated to the everyday, familiar phenomenon of color. 6476: 6217: 6032: 5712: 3182: 2703:
Detailed computations with the above-mentioned Lagrangian show that the effective potential between a quark and its anti-quark in a
172: 1283:, e.g. the strong decay of correlations at large distances, corresponds to the low-temperature behaviour of the (usually ordered!) 1252:
symmetries are those in which one transformation is applied on left-handed particles and the inverse on the right-handed particles.
4078: 6398: 5962: 5769: 5532: 69: 5565: 3558: 3422: 812: 6823: 5922: 5825: 5805: 5445: 4331: 4288: 3997: 2938: 758: 6629: 6358: 5728: 5487: 5482: 4778: 800: 1919:{\displaystyle \left(D_{\mu }\right)_{ij}=\partial _{\mu }\delta _{ij}-ig\left(T_{a}\right)_{ij}{\mathcal {A}}_{\mu }^{a}\,} 6828: 6249: 6197: 4044: 1345: 642: 468: 116: 72: 67: 5877: 4012: 3259:
quantities can independently and "randomly" take the values ±1, which corresponds to a most-simple gauge transformation
2942: 2618:
of SU(3). They have no electric charge, do not participate in the weak interactions, and have no flavor. They lie in the
6469: 6408: 6001: 5527: 4542:
A. Tavkhelidze. Proc. Seminar on High Energy Physics and Elementary Particles, Trieste, 1965, Vienna IAEA, 1965, p. 763.
4002: 2934: 754: 353: 3704: 3693:, where, analogously to Wilson loops, so-called "entangled nets" appear, which are important for the formation of the 3683: 3098:
of hadrons and their weak matrix elements are promising candidates for future quantitative tests. The whole subject of
1271: 1013:, together with physicist Murray Gell-Mann. In particular, they employed the general field theory developed in 1954 by 606: 6766: 5996: 5790: 3754:
is a characteristic correlation length for the glued loops, corresponding to the above-mentioned "bag radius", while λ
2118: 1230: 73: 70: 5570: 3758:
is the wavelength of an excitation) any non-trivial correlation vanishes totally, as if the system had crystallized.
62: 2305: 80: 71: 6597: 6570: 3555:" at all. This term is a basic measure in spin glass theory. Quantitatively it is identical with the loop product 2976: 2964: 2929: 2537: 2027: 1796: 1781: 1662: 1084: 834: 78: 63: 5738: 6363: 4022: 3042: 3009: 2628:
Each type of quark has a corresponding antiquark, of which the charge is exactly opposite. They transform in the
2597: 1420: 1080: 987: 964: 865: 79: 1269:– there is practically no interaction between the particles. This is in contrast – more precisely one would say 6703: 6368: 5974: 4695: 3127: 2629: 1018: 815:). To gain greater insight, the hadrons were sorted into groups having similar properties and masses using the 638: 564: 433: 363: 60: 6282: 5846: 5671: 5646: 5099:
Vannimenus, J.; Toulouse, G. (1977). "Theory of the frustration effect. II. Ising spins on a square lattice".
4741:
Wegner, F. (1971). "Duality in Generalized Ising Models and Phase Transitions without Local Order Parameter".
3966: 2688: 57: 4884: 2775: 2482:
correspond to the quark mass and coupling of the theory, respectively, which are subject to renormalization.
6437: 6150: 6140: 5702: 5585: 5252: 5228: 4555: 4486:
Fyodor Tkachov (2009). "A contribution to the history of quarks: Boris Struminsky's 1965 JINR publication".
4151: 4108: 4039: 3552: 3073: 2680: 2130: 1978: 1296: 1246:
symmetries (also called diagonal symmetries) mean the same transformation is applied on the two chiralities.
817: 688: 580: 134: 4878: 4032: 3943: 3103: 2635: 1214:
Since the strong interaction does not discriminate between different flavors of quark, QCD has approximate
1148: 1096: 833:, went on to propose in 1963 that the structure of the groups could be explained by the existence of three 61: 6787: 6649: 6155: 6013: 5937: 5932: 5867: 5795: 5697: 5600: 5575: 5492: 5184:
Bergmann, A.; Owen, A. (2004). "Dielectric relaxation spectroscopy of poly (PHD) during crystallization".
4663: 4572:
Greenberg, O. W. (1964). "Spin and Unitary Spin Independence in a Paraquark Model of Baryons and Mesons".
4027: 3763: 3067: 2925: 2875: 2353: 2122: 632: 383: 268: 208: 5748: 5651: 5615: 5560: 4049: 3055: 2941:(which expands around large ratios of energy scales). In addition to effective theories, models like the 2419:
of SU(3) (the generators of the adjoint representation). Note that the rules to move-up or pull-down the
1200: 1022: 58: 6792: 6761: 6624: 6545: 6403: 6277: 6244: 5986: 5981: 5820: 5815: 5605: 2084: 1204: 931: 780: 568: 258: 3094:. Other non-perturbative tests are currently at the level of 5% at best. Continuing work on masses and 5350: 5000: 65: 6751: 6575: 6535: 6353: 6292: 6287: 6261: 6108: 5927: 5661: 5497: 5468: 5365: 5150: 5108: 5073: 5022: 4965: 4929: 4832: 4750: 4713: 4655: 4620: 4581: 4468: 4437: 4379: 4340: 4297: 4160: 4117: 3971: 3958: 3090:
computations of heavy-quarkonium spectra. There is a recent claim about the mass of the heavy meson B
2672: 983: 560: 168: 108: 31: 4668: 3781:
of quantum chromodynamics. Mathematically, this correspondendence is supported by the second term,
2979:
was prompted by the necessity of explaining the properties of hadrons during the development of the
1627: 1170:
is based on certain symmetries of nature whose existence is deduced from observations. These can be
56: 6726: 6585: 6580: 6565: 6540: 6517: 6493: 6320: 5991: 5957: 5892: 5810: 5800: 5595: 5403: 3141: 2416: 1670: 1311: 1222: 940:, later called color charge. Han and Nambu noted that quarks might interact via an octet of vector 520: 443: 403: 218: 203: 86: 4646:
Fritzsch, H.; Gell-Mann, M.; Leutwyler, H. (1973). "Advantages of the color octet gluon picture".
2810:
enclosed by the loop. For this behavior the non-abelian behavior of the gauge group is essential.
1195:, which are symmetries whose operations must be simultaneously applied to all points of spacetime. 74: 6782: 6659: 6654: 6607: 6348: 6118: 5625: 5311: 5135: 5046: 5012: 4981: 4955: 4848: 4822: 4522: 4487: 4395: 3913: 3698: 2075: 1029: 1010: 919: 899: 891: 887: 808: 715: 616: 532: 293: 64: 4813:
M. EidemĂŒller; H.G. Dosch; M. Jamin (2000). "The field strength correlator from QCD sum rules".
4368:
Gell-Mann, M (1956). "The Interpretation of the New Particles as Displaced Charged Multiplets".
1375:(1) is exact in the classical theory, but broken in the quantum theory, an occurrence called an 378: 4786: 4256: 2710: 2707:
contains a term that increases in proportion to the distance between the quark and anti-quark (
77: 6797: 6746: 6691: 6671: 6557: 6234: 5676: 5329: 5283: 5264: 5234: 5166: 5038: 4774: 4225: 4082: 3962: 3933: 3419:
This means that thermodynamic expectation values of measurable quantities, e.g. of the energy
3095: 3032: 2571: 2496: 2492: 1975:
in the fundamental representation. An explicit representation of these generators is given by
1756: 1376: 1364: 1127: 1072: 841:. Gell-Mann also briefly discussed a field theory model in which quarks interact with gluons. 796: 602: 428: 358: 323: 253: 248: 213: 188: 164: 160: 4188: 3503: 1950: 1371:(1) corresponds to the baryon number of quarks and is an exact symmetry. The axial symmetry U 75: 59: 6736: 6676: 6602: 6413: 6160: 6145: 6086: 5947: 5373: 5321: 5299: 5193: 5158: 5116: 5081: 5030: 4973: 4840: 4758: 4721: 4673: 4628: 4608: 4589: 4525:, B. Struminsky, A. Tavkhelidze. On composite models in the theory of elementary particles. 4445: 4387: 4370: 4348: 4305: 4213: 4168: 4125: 3992: 3767: 3131: 2827: 2468: 1167: 1088: 1057: 1056:
in 1979. These experiments became more and more precise, culminating in the verification of
895: 849: 822: 804: 784: 772: 684: 666:
in its present sense. It originally comes from the phrase "Three quarks for Muster Mark" in
659: 588: 413: 408: 308: 283: 243: 100: 44: 3873:{\displaystyle \propto gG_{\mu }^{a}{\bar {\psi }}_{i}\gamma ^{\mu }T_{ij}^{a}\psi _{j}\,,} 998:
in 1969. This led physicists to abandon the S-matrix approach for the strong interactions.
76: 66: 6756: 6666: 6612: 6512: 6335: 6202: 5969: 5707: 5656: 5432: 4792: 4704: 4559: 4428: 3690: 3667:. However, for a Mattis spin glass – in contrast to "genuine" spin glasses – the quantity 3038: 3017: 2692: 2676: 1424: 1192: 1152: 1049: 1006: 977: 959: 726: 458: 343: 333: 328: 318: 278: 273: 233: 120: 3109:
One qualitative prediction of QCD is that there exist composite particles made solely of
1929: 473: 5369: 5154: 5112: 5077: 5026: 4969: 4836: 4754: 4717: 4659: 4624: 4585: 4472: 4441: 4383: 4344: 4301: 4164: 4121: 6686: 6641: 6619: 6507: 6373: 6072: 5912: 5887: 5666: 5257: 5248: 4691: 3908: 3897: 3694: 3061: 2867: 2731: 2391: 2371: 1785: 1736: 1716: 1696: 1676: 1226: 1174: 1136: 1037: 1014: 927: 845: 830: 764: 668: 646: 628: 584: 398: 368: 313: 303: 288: 198: 104: 40: 5325: 5120: 4844: 4449: 3701:" means in the polymer analogy simply the fact that in the short-wave limit, i.e. for 3008:
The first evidence for quarks as real constituent elements of hadrons was obtained in
1275:– to what one is used to, since usually one connects the absence of interactions with 17: 6817: 6343: 6302: 6008: 5942: 5917: 5517: 5085: 4985: 4677: 4413: 4399: 3987: 2967:
one can derive sets of relations that connect different observables with each other.
2958: 2897: 2891: 2619: 2579: 1789: 1300: 1041: 1005:
as the source of a "strong field" was developed into the theory of QCD by physicists
962:
argued that high energy experiments showed quarks are real particles: he called them
923: 857: 792: 768: 730: 719: 624: 576: 418: 373: 338: 193: 5050: 4852: 4244: 3106:
is a non-perturbative test bed for QCD that still remains to be properly exploited.
6721: 6325: 6256: 6165: 6123: 6113: 5952: 5862: 5580: 5522: 5507: 4007: 3953: 3099: 3047: 2946: 2608: 2575: 2529: 1208: 1182: 1132: 1002: 934: 911: 853: 826: 700: 692: 478: 448: 423: 393: 263: 238: 223: 112: 1151:
should be formed at high temperature and density. What are the properties of this
930:
independently resolved the problem by proposing that quarks possess an additional
5214:'s braid group, which is nonabelian, since one braid can wind around another one. 6239: 6133: 6101: 6096: 5610: 5429: 4173: 4146: 4130: 4103: 3982: 3087: 2980: 2863: 2845: 2593: 2544: 2533: 2487: 2349: 1419:
The dynamics of the quarks and gluons are defined by the quantum chromodynamics
1186: 1076: 1033: 941: 673: 620: 610: 453: 438: 388: 348: 298: 5034: 4977: 4593: 1221:
There are additional global symmetries whose definitions require the notion of
6741: 6731: 5389: 5211: 4632: 3938: 3887: 3135: 1395: 1349: 1240:
symmetries involve independent transformations of these two types of particle.
1143: 1092: 463: 228: 5333: 5162: 5042: 6592: 6461: 5743: 4221: 2850: 2758: 1380: 1178: 4726: 4699: 1139:. How does QCD give rise to the physics of nuclei and nuclear constituents? 860:
with parallel spins (this situation was peculiar, because since quarks are
676:. On June 27, 1978, Gell-Mann wrote a private letter to the editor of the 6418: 5841: 5437: 3114: 3051: 1788:
connecting the spinor representation to the vector representation of the
991: 915: 5064:
Mattis, D. C. (1976). "Solvable Spin Systems with Random Interactions".
6091: 5259:
Quarks & Leptons: An Introductory Course in Modern Particle Physics
5017: 4827: 4391: 4353: 4326: 4310: 4283: 3538: 2912: 2862:
Among non-perturbative approaches to QCD, the most well established is
2747: 2525: 1408: 1400: 973: 904: 861: 788: 745:, "color") is applied to the theory of color charge, "chromodynamics". 552: 5424: 5377: 5170: 4762: 6696: 3928: 2735: 2684: 776: 548: 544: 5197: 579:
of the theory, just as photons are for the electromagnetic force in
5316: 3689:
A further analogy consists in the already mentioned similarity to
1177:, which are the symmetries that act independently at each point in 1111: 779:. It seemed that such a large number of particles could not all be 5411: 5398: 4960: 4530: 4509:
B. V. Struminsky, Magnetic moments of baryons in the quark model.
4492: 3923: 3918: 3110: 3021: 2871: 2849: 2743: 2704: 2604: 2547: 2506: 1666: 1053: 945: 877:
B. V. Struminsky, Magnetic moments of barions in the quark model,
844:
Perhaps the first remark that quarks should possess an additional
838: 696: 540: 536: 6041: 4552: 986:
proposed that pointlike partons would imply certain relations in
4881:
only at extremely large pressures and/or temperatures, e.g. for
4526: 4510: 4426:
M. Gell-Mann (1964). "A Schematic Model of Baryons and Mesons".
3013: 1065: 995: 878: 556: 6465: 6045: 5441: 4865:
See all standard textbooks on the QCD, e.g., those noted above
2532:
whose gauging is the content of QCD. Quarks are represented by
956:
could probably not be fully described by quantum field theory.
775:
discovered a large and ever-growing number of particles called
4513:-Preprint P-1939, Dubna, Russia. Submitted on January 7, 1965. 3244:{\displaystyle J_{i,k}=\epsilon _{i}\,J_{0}\,\epsilon _{k}\,.} 3077: 2507: 1661:
is the quark field, a dynamical function of spacetime, in the
1087:
requires a claimant to produce such a proof. Other aspects of
1061: 5300:"50 Years of quantum chromodynamics: Introduction and Review" 4700:"Conservation of Isotopic Spin and Isotopic Gauge Invariance" 740: 734: 3428: 3179: =1,...,N, with the special fixed "random" couplings 2983:. The notion of color was necessitated by the puzzle of the 2683:, in which only the first kind of interaction occurs, since 2312: 2269: 2250: 2209: 2177: 1899: 1441: 631:
in the same year. For this work, all three shared the 2004
51: 3487:{\textstyle {\mathcal {H}}:=-\sum s_{i}\,J_{i,k}\,s_{k}\,,} 3138:, which are systems with the usual spin degrees of freedom 3027:
Several good quantitative tests of perturbative QCD exist:
2937:(which expands around heavy quark mass near infinity), and 2832:
This approach is based on asymptotic freedom, which allows
1947:
to the gluon fields via the infinitesimal SU(3) generators
1079:
computations, but is not mathematically proven. One of the
3656:{\displaystyle P_{W}:\,=\,J_{i,k}J_{k,l}...J_{n,m}J_{m,i}} 2578:
doublets. They carry global quantum numbers including the
543:. Quarks are fundamental particles that make up composite 3766:: there the magnetism is confined to the interior of the 1218:, which is broken by the differing masses of the quarks. 571:. The QCD analog of electric charge is a property called 5227:
Greiner, Walter; Schramm, Stefan; Stein, Eckart (2007).
5210:
Mathematically, the flux-line lattices are described by
4551:
V. A. Matveev and A. N. Tavkhelidze (INR, RAS, Moscow)
4147:"Reliable perturbative results for strong interactions" 3774:
of that theory is analogous to the confinement radius
2768:
of the ordered coupling constants around a closed loop
1265:
means that at large energy – this corresponds also to
1225:, discrimination between left and right-handed. If the 5384: 5338:
A highly technical review with almost 5000 references.
3425: 2742:  of the quarks to the interior of hadrons, i.e. 4887: 3787: 3707: 3561: 3506: 3265: 3185: 3144: 2778: 2713: 2638: 2394: 2374: 2308: 2142: 2087: 2030: 1981: 1953: 1932: 1804: 1759: 1739: 1719: 1699: 1679: 1630: 1437: 881:-Preprint P-1939, Dubna, Submitted on January 7, 1965 4104:"Ultraviolet behavior of non-abelian gauge theories" 1310:
flavors of massless quarks, then there is a global (
6775: 6712: 6640: 6556: 6528: 6500: 6386: 6334: 6301: 6270: 6227: 6216: 6185: 6079: 5905: 5855: 5834: 5783: 5757: 5721: 5685: 5634: 5553: 5546: 5475: 4932:. (July 1979). The bag model of quark confinement. 994:and protons, which were verified in experiments at 5256: 4912: 4771:Lattice Gauge Theories and Monte Carlo Simulations 3872: 3739: 3655: 3525: 3486: 3411: 3243: 3167: 2798: 2722: 2655: 2400: 2380: 2340: 2291: 2109: 2066: 2016: 1967: 1939: 1918: 1772: 1745: 1725: 1705: 1685: 1653: 1612: 5407:The Weight of the World Is Quantum Chromodynamics 3740:{\displaystyle 0\leftarrow \lambda _{w}\ll R_{c}} 2949:are often used when discussing general features. 2550:. They also carry electric charge (either − 1926:couples the quark field with a coupling strength 4609:"Three-Triplet Model with Double SU(3) Symmetry" 4553:The quantum number color, colored quarks and QCD 848:was made as a short footnote in the preprint of 4773:. Singapore: World Scientific. pp. 60–73. 870: 725:Since the theory of electric charge is dubbed " 55: 6208:Mathematical formulation of the Standard Model 5415:Quantum chromodynamics with advanced computing 5399:Ab Initio Determination of Light Hadron Masses 2341:{\displaystyle {\mathcal {A}}_{\mu }^{a}(x)\,} 914:; in the quark model, it is composed of three 6477: 6057: 5453: 5136:"Gauge symmetries in random magnetic systems" 4505: 4503: 3001:. This has been dealt with in the section on 2067:{\displaystyle \lambda _{a}\,(a=1\ldots 8)\,} 837:of smaller particles inside the hadrons: the 500: 8: 2793: 2780: 910:A similar mysterious situation was with the 4327:"Charge Independence Theory of V Particles" 3122:Cross-relations to condensed matter physics 2352:, dynamical functions of spacetime, in the 6484: 6470: 6462: 6224: 6064: 6050: 6042: 5550: 5460: 5446: 5438: 5001:"Experimental tests of asymptotic freedom" 4075:An introduction to the confinement problem 1131:: the equations of QCD remain unsolved at 783:. First, the particles were classified by 507: 493: 36: 30:"QCD" redirects here. For other uses, see 5315: 5101:Journal of Physics C: Solid State Physics 5016: 4959: 4904: 4886: 4826: 4725: 4667: 4491: 4352: 4309: 4172: 4129: 3866: 3860: 3850: 3842: 3832: 3822: 3811: 3810: 3803: 3798: 3786: 3731: 3718: 3706: 3641: 3625: 3600: 3584: 3579: 3575: 3566: 3560: 3511: 3505: 3480: 3474: 3469: 3457: 3452: 3446: 3427: 3426: 3424: 3405: 3401: 3395: 3382: 3369: 3363: 3357: 3341: 3331: 3312: 3307: 3300: 3287: 3274: 3269: 3264: 3237: 3231: 3226: 3220: 3215: 3209: 3190: 3184: 3164: 3149: 3143: 3134:forms the basis of the well-known Mattis 2787: 2779: 2777: 2712: 2642: 2640: 2639: 2637: 2393: 2373: 2337: 2322: 2317: 2311: 2310: 2307: 2285: 2279: 2274: 2268: 2267: 2260: 2255: 2249: 2248: 2235: 2219: 2214: 2208: 2207: 2200: 2187: 2182: 2176: 2175: 2168: 2155: 2147: 2141: 2106: 2100: 2092: 2086: 2063: 2041: 2035: 2029: 2013: 2005: 1999: 1986: 1980: 1964: 1958: 1952: 1936: 1931: 1915: 1909: 1904: 1898: 1897: 1887: 1877: 1850: 1840: 1824: 1814: 1803: 1764: 1758: 1738: 1718: 1698: 1678: 1650: 1635: 1629: 1601: 1596: 1586: 1578: 1564: 1555: 1537: 1532: 1517: 1507: 1494: 1476: 1465: 1464: 1447: 1446: 1440: 1439: 1436: 1303:. If one considers a version of QCD with 1185:and requires the introduction of its own 864:, such a combination is forbidden by the 706:The force between quarks is known as the 695:" by loose analogy to the three kinds of 583:. The theory is an important part of the 27:Theory of the strong nuclear interactions 5005:Progress in Particle and Nuclear Physics 3126:There are unexpected cross-relations to 3016:. The first evidence for gluons came in 2485:An important theoretical concept is the 1071:The other side of asymptotic freedom is 613:calculations and decades of experiments. 4913:{\displaystyle T\approx 5\cdot 10^{12}} 4065: 2896:A well-known approximation scheme, the 2799:{\displaystyle \,\langle P_{W}\rangle } 1181:. Each such symmetry is the basis of a 1048:. Evidence of gluons was discovered in 598:QCD exhibits three salient properties: 592: 39: 6682:Atomic, molecular, and optical physics 5538:Two-dimensional conformal field theory 2691:must be considered too (except in the 2017:{\displaystyle T_{a}=\lambda _{a}/2\,} 1199:QCD is a non-abelian gauge theory (or 1147:: the equations of QCD predict that a 886:Boris Struminsky was a PhD student of 5430:Cern Courier, The history of QCD with 4821:(1–3). Heidelberg, Germany: 421–425. 4284:"Charge Independence for V-particles" 3770:, i.e., the London penetration depth 3541:plays an important role (see below). 3533:, which in the QCD correspond to the 2656:{\displaystyle {\bar {\mathbf {3} }}} 2356:of the SU(3) gauge group, indexed by 2123:electromagnetic field strength tensor 1383:are closely related to this anomaly. 1149:plasma (or soup) of quarks and gluons 1091:QCD are the exploration of phases of 821:, invented in 1961 by Gell-Mann and 7: 6444: 1379:. Gluon field configurations called 829:, correcting an earlier approach of 691:or QED) are usually referred to as " 3082:Heavy-quark production in colliders 2687:have no charge. Diagrams involving 1207:gauge group obtained by taking the 1161:(more unsolved problems in physics) 4463:M. Gell-Mann; H. Fritzsch (2010). 2197: 2165: 2110:{\displaystyle G_{\mu \nu }^{a}\,} 1837: 1454: 1451: 1448: 595:has been gathered over the years. 25: 6033:Template:Quantum mechanics topics 4465:Murray Gell-Mann: Selected Papers 4189:"The Nobel Prize in Physics 2004" 4055:Yang–Mills existence and mass gap 3880:on the r.h.s. of the Lagrangian. 3035:as deduced from many observations 1060:at the level of a few percent at 918:with parallel spins. In 1964–65, 799:; then, in 1953–56, according to 173:Physics beyond the Standard Model 6443: 6432: 6431: 6176: 6028: 6027: 5420:Standard model gets right answer 4282:Nakano, T; Nishijima, N (1953). 3890: 2738:band (see below). This leads to 2643: 2463:indices one has the non-trivial 6803:Timeline of physics discoveries 5326:10.1140/epjc/s10052-023-11949-2 5304:The European Physical Journal C 5233:. Berlin Heidelberg: Springer. 4332:Progress of Theoretical Physics 4289:Progress of Theoretical Physics 4263:from the original on 2007-08-20 4195:from the original on 2010-11-06 4102:D.J. Gross; F. Wilczek (1973). 3998:Soft-collinear effective theory 3364: 3306: 3064:produced in hadronic collisions 2939:soft-collinear effective theory 2117:represents the gauge invariant 759:History of quantum field theory 6359:Causal dynamical triangulation 5282:. Cambridge University Press. 4607:Han, M. Y.; Nambu, Y. (1965). 3816: 3711: 3402: 3375: 3324: 3280: 3266: 2647: 2625:of all these symmetry groups. 2334: 2328: 2060: 2042: 1654:{\displaystyle \psi _{i}(x)\,} 1647: 1641: 1514: 1500: 1470: 1032:in the strong interactions by 1: 6198:Spontaneous symmetry breaking 4845:10.1016/S0920-5632(00)00598-3 4450:10.1016/S0031-9163(64)92001-3 4045:Symmetry in quantum mechanics 3168:{\displaystyle s_{i}=\pm 1\,} 3130:. For example, the notion of 3041:in polarized and unpolarized 1229:of a particle has a positive 718:, and is responsible for the 687:in QCD (as opposed to one in 643:spontaneous symmetry breaking 593:experimental evidence for QCD 117:Spontaneous symmetry breaking 5086:10.1016/0375-9601(76)90396-0 4769:Rebbi, Claudio, ed. (1983). 4678:10.1016/0370-2693(73)90625-4 4003:Heavy quark effective theory 3002: 2935:heavy quark effective theory 2757:, corresponding to former " 1344:(1). The chiral symmetry is 1211:to define a local symmetry. 755:History of quantum mechanics 741: 6767:Quantum information science 5997:Quantum information science 5280:Quarks, Gluons and Lattices 5121:10.1088/0022-3719/10/18/008 4174:10.1103/PhysRevLett.30.1346 4131:10.1103/PhysRevLett.30.1343 3768:Abrikosov flux-line lattice 3499:coupling degrees of freedom 3033:running of the QCD coupling 2467:rules corresponding to the 2119:gluon field strength tensor 1363:) with the formation of a 1257:Additional remarks: duality 1114:Unsolved problem in physics 813:Gell-Mann–Nishijima formula 771:in the 1950s, experimental 6845: 6598:Classical electromagnetism 5035:10.1016/j.ppnp.2006.06.001 4978:10.1103/PhysRevD.81.034504 4594:10.1103/PhysRevLett.13.598 2965:Operator product expansion 2956: 2930:chiral perturbation theory 2889: 2843: 2825: 2671:According to the rules of 2538:fundamental representation 1797:gauge covariant derivative 1782:gauge covariant derivative 1663:fundamental representation 1314:) flavor symmetry group SU 1085:Clay Mathematics Institute 752: 735: 147:Standard Model mathematics 29: 6427: 6364:Canonical quantum gravity 6174: 6022: 5433:Prof. Dr. Harald Fritzsch 5263:. John Wiley & Sons. 5134:Fradkin, Eduardo (1978). 4999:Bethke, S. (2007-04-01). 4815:Nucl. Phys. B Proc. Suppl 4633:10.1103/PhysRev.139.B1006 4023:Deep inelastic scattering 3974:– a more general category 3043:deep inelastic scattering 3010:deep inelastic scattering 2723:{\displaystyle \propto r} 1409:string description of QCD 1081:Millennium Prize Problems 988:deep inelastic scattering 866:Pauli exclusion principle 852:in connection with the Ω 678:Oxford English Dictionary 6704:Condensed matter physics 6369:Superfluid vacuum theory 5278:Creutz, Michael (1985). 5163:10.1103/physrevb.18.4789 4920:  K or larger. 4218:The Quark and the Jaguar 4013:Nambu–Jona-Lasinio model 3674:never becomes negative. 3128:condensed matter physics 2943:Nambu–Jona-Lasinio model 2699:Area law and confinement 2630:conjugate representation 2611:, since they lie in the 2515:Quarks are massive spin- 1773:{\displaystyle D_{\mu }} 1367:. The vector symmetry, U 1135:relevant for describing 856:being composed of three 639:Chiral symmetry breaking 565:non-abelian gauge theory 6151:Quantum electrodynamics 6141:Electroweak interaction 5693:2D free massless scalar 5586:Quantum electrodynamics 5513:QFT in curved spacetime 4152:Physical Review Letters 4109:Physical Review Letters 4040:Quantum electrodynamics 3764:type-II superconductors 3526:{\displaystyle J_{i,k}} 3074:Event shape observables 2806:is proportional to the 2499:and deconfined phases. 2435:, (+, ..., +), so that 2131:quantum electrodynamics 1968:{\displaystyle T_{a}\,} 1001:In 1973 the concept of 689:quantum electrodynamics 627:, and independently by 581:quantum electrodynamics 135:Electroweak interaction 6824:Quantum chromodynamics 6788:Nobel Prize in Physics 6650:Relativistic mechanics 6129:Quantum chromodynamics 6014:Quantum thermodynamics 5938:On shell and off shell 5933:Loop quantum cosmology 5775:N = 4 super Yang–Mills 5734:N = 1 super Yang–Mills 5601:Scalar electrodynamics 5591:Quantum chromodynamics 5493:Conformal field theory 5469:Quantum field theories 5425:Quantum Chromodynamics 5349:Frank Wilczek (2000). 5230:Quantum Chromodynamics 4914: 4727:10.1103/PhysRev.96.191 4145:H.D. Politzer (1973). 4028:Jet (particle physics) 3874: 3741: 3657: 3527: 3488: 3413: 3245: 3169: 2926:effective field theory 2876:numerical sign problem 2859: 2800: 2724: 2657: 2620:singlet representation 2613:adjoint representation 2598:flavor quantum numbers 2512: 2402: 2382: 2354:adjoint representation 2342: 2293: 2111: 2068: 2018: 1969: 1941: 1920: 1774: 1747: 1727: 1707: 1687: 1655: 1614: 1352:to the vector (L+R) SU 1166:Every field theory of 974:diffractive scattering 907:(Italy), in May 1965. 884: 763:With the invention of 699:(red, green and blue) 633:Nobel Prize in Physics 607:spontaneously produced 567:, with symmetry group 531:) is the study of the 525:quantum chromodynamics 139:Quantum chromodynamics 83: 18:Quantum Chromodynamics 6793:Philosophy of physics 6245:Cosmological constant 5987:Quantum hydrodynamics 5982:Quantum hadrodynamics 5606:Scalar chromodynamics 5186:Polymer International 4915: 4325:Nishijima, K (1955). 4073:J. Greensite (2011). 3875: 3742: 3658: 3528: 3489: 3414: 3246: 3170: 2853: 2801: 2750:, with typical radii 2725: 2675:, and the associated 2658: 2570:) and participate in 2510: 2403: 2383: 2343: 2294: 2112: 2069: 2019: 1970: 1942: 1921: 1775: 1748: 1728: 1708: 1688: 1656: 1615: 169:Neutrino oscillations 89:of the Standard Model 82: 6829:Quantum field theory 6752:Mathematical physics 6354:Loop quantum gravity 6293:Theory of everything 6288:Grand Unified Theory 6262:Neutrino oscillation 6109:Quantum field theory 5958:Quantum fluctuations 5928:Loop quantum gravity 5498:Lattice field theory 5390:The millennium prize 4930:Kenneth Alan Johnson 4885: 4467:. World Scientific. 4272:retrieved 6 May 2017 3972:Quantum field theory 3959:Quantum gauge theory 3785: 3705: 3663:along a closed loop 3559: 3504: 3423: 3263: 3183: 3142: 2975:The notion of quark 2776: 2711: 2689:Faddeev–Popov ghosts 2673:quantum field theory 2636: 2392: 2372: 2306: 2140: 2085: 2028: 1979: 1951: 1930: 1802: 1757: 1737: 1717: 1697: 1677: 1628: 1435: 1346:spontaneously broken 561:quantum field theory 109:Quantum field theory 87:Elementary particles 32:QCD (disambiguation) 6727:Atmospheric physics 6566:Classical mechanics 6494:branches of physics 6321:Split supersymmetry 6283:Kaluza–Klein theory 6156:Fermi's interaction 5992:Quantum information 5596:Quartic interaction 5394:proving confinement 5385:Particle data group 5370:2000PhT....53h..22W 5155:1978PhRvB..18.4789F 5113:1977JPhC...10L.537V 5078:1976PhLA...56..421M 5027:2007PrPNP..58..351B 4970:2010PhRvD..81c4504C 4934:Scientific American 4837:2000NuPhS..86..421E 4755:1971JMP....12.2259W 4718:1954PhRv...96..191Y 4660:1973PhLB...47..365F 4625:1965PhRv..139.1006H 4619:(4B): B1006–B1010. 4586:1964PhRvL..13..598G 4473:2010mgsp.book.....F 4442:1964PhL.....8..214G 4384:1956NCim....4S.848G 4345:1955PThPh..13..285N 4302:1953PThPh..10..581N 4191:. Nobel Web. 2004. 4165:1973PhRvL..30.1346P 4122:1973PhRvL..30.1343G 3967:Faddeev–Popov ghost 3855: 3808: 3054:(this includes the 2834:perturbation theory 2732:entropic elasticity 2632:to quarks, denoted 2417:structure constants 2327: 2284: 2265: 2224: 2192: 2160: 2121:, analogous to the 2105: 1940:{\displaystyle g\,} 1914: 1609: 1591: 1046:perturbation theory 701:perceived by humans 683:The three kinds of 559:. QCD is a type of 521:theoretical physics 6783:History of physics 6349:Superstring theory 6119:Strong interaction 5878:Nambu–Jona-Lasinio 5806:Higher dimensional 5713:Wess–Zumino–Witten 5503:Noncommutative QFT 5412:Andreas S Kronfeld 5404:Andreas S Kronfeld 4910: 4879:quark–gluon plasma 4791:2011-05-04 at the 4558:2007-05-23 at the 4392:10.1007/BF02748000 4354:10.1143/PTP.13.285 4311:10.1143/PTP.10.581 4033:Quark–gluon plasma 3944:Quark–gluon plasma 3914:Strong interaction 3870: 3838: 3794: 3737: 3699:asymptotic freedom 3695:entropy-elasticity 3653: 3523: 3497:However, here the 3484: 3409: 3241: 3165: 3104:quark–gluon plasma 3068:Jet cross sections 3003:the history of QCD 2971:Experimental tests 2919:Effective theories 2860: 2796: 2720: 2653: 2603:Gluons are spin-1 2513: 2398: 2378: 2338: 2309: 2289: 2266: 2247: 2206: 2174: 2143: 2133:. It is given by: 2107: 2088: 2076:Gell-Mann matrices 2064: 2014: 1965: 1937: 1916: 1896: 1770: 1743: 1723: 1703: 1683: 1651: 1610: 1592: 1574: 1427:QCD Lagrangian is 1263:asymptotic freedom 1097:quark–gluon plasma 1030:asymptotic freedom 1011:Heinrich Leutwyler 900:Albert Tavkhelidze 892:Nikolay Bogolyubov 888:Nikolay Bogolyubov 809:Kazuhiko Nishijima 716:strong interaction 617:Asymptotic freedom 591:. A large body of 533:strong interaction 84: 6811: 6810: 6798:Physics education 6747:Materials science 6714:Interdisciplinary 6672:Quantum mechanics 6459: 6458: 6382: 6381: 6257:Strong CP problem 6235:Hierarchy problem 6039: 6038: 5901: 5900: 5378:10.1063/1.1310117 5351:"QCD made simple" 5289:978-0-521-31535-7 5270:978-0-471-88741-6 5240:978-3-540-48535-3 5143:Physical Review B 4763:10.1063/1.1665530 4749:(10): 2259–2272. 4529:Preprint D-1968, 4257:"The Color Force" 4245:wikt:colour force 4231:978-0-8050-7253-2 4214:Gell-Mann, Murray 4159:(26): 1346–1349. 4116:(26): 1343–1346. 4088:978-3-642-14381-6 4050:Yang–Mills theory 4019:For experiments: 3963:BRST quantization 3934:Color confinement 3819: 3056:Drell–Yan process 3039:Scaling violation 2650: 2572:weak interactions 2493:Kenneth G. Wilson 2401:{\displaystyle 8} 2381:{\displaystyle 1} 1746:{\displaystyle 3} 1726:{\displaystyle 1} 1706:{\displaystyle j} 1686:{\displaystyle i} 1572: 1473: 1365:chiral condensate 1201:Yang–Mills theory 1193:global symmetries 1083:announced by the 1028:The discovery of 1023:Yang–Mills theory 938:degree of freedom 797:Werner Heisenberg 603:Color confinement 575:. Gluons are the 517: 516: 165:Hierarchy problem 161:Strong CP problem 16:(Redirected from 6836: 6737:Chemical physics 6677:Particle physics 6603:Classical optics 6486: 6479: 6472: 6463: 6447: 6446: 6435: 6434: 6225: 6180: 6179: 6161:Weak hypercharge 6146:Weak interaction 6087:Particle physics 6066: 6059: 6052: 6043: 6031: 6030: 5948:Quantum dynamics 5621:Yang–Mills–Higgs 5576:Non-linear sigma 5566:Euler–Heisenberg 5551: 5462: 5455: 5448: 5439: 5381: 5355: 5337: 5319: 5293: 5274: 5262: 5244: 5215: 5208: 5202: 5201: 5181: 5175: 5174: 5149:(9): 4789–4814. 5140: 5131: 5125: 5124: 5096: 5090: 5089: 5061: 5055: 5054: 5020: 4996: 4990: 4989: 4963: 4943: 4937: 4927: 4921: 4919: 4917: 4916: 4911: 4909: 4908: 4872: 4866: 4863: 4857: 4856: 4830: 4810: 4804: 4801: 4795: 4784: 4766: 4738: 4732: 4731: 4729: 4688: 4682: 4681: 4671: 4643: 4637: 4636: 4604: 4598: 4597: 4569: 4563: 4549: 4543: 4540: 4534: 4520: 4514: 4507: 4498: 4497: 4495: 4483: 4477: 4476: 4460: 4454: 4453: 4423: 4417: 4410: 4404: 4403: 4371:Il Nuovo Cimento 4365: 4359: 4358: 4356: 4322: 4316: 4315: 4313: 4279: 4273: 4271: 4269: 4268: 4253: 4247: 4242: 4236: 4235: 4210: 4204: 4203: 4201: 4200: 4185: 4179: 4178: 4176: 4142: 4136: 4135: 4133: 4099: 4093: 4092: 4070: 3993:Perturbative QCD 3979:For techniques: 3900: 3895: 3894: 3879: 3877: 3876: 3871: 3865: 3864: 3854: 3849: 3837: 3836: 3827: 3826: 3821: 3820: 3812: 3807: 3802: 3746: 3744: 3743: 3738: 3736: 3735: 3723: 3722: 3662: 3660: 3659: 3654: 3652: 3651: 3636: 3635: 3611: 3610: 3595: 3594: 3571: 3570: 3532: 3530: 3529: 3524: 3522: 3521: 3493: 3491: 3490: 3485: 3479: 3478: 3468: 3467: 3451: 3450: 3432: 3431: 3418: 3416: 3415: 3410: 3400: 3399: 3387: 3386: 3374: 3373: 3362: 3361: 3352: 3351: 3336: 3335: 3323: 3322: 3305: 3304: 3292: 3291: 3279: 3278: 3250: 3248: 3247: 3242: 3236: 3235: 3225: 3224: 3214: 3213: 3201: 3200: 3174: 3172: 3171: 3166: 3154: 3153: 3132:gauge invariance 3018:three-jet events 3000: 2999: 2998: 2991: 2990: 2908: 2907: 2901: 2828:Perturbative QCD 2822:Perturbative QCD 2805: 2803: 2802: 2797: 2792: 2791: 2729: 2727: 2726: 2721: 2677:Feynman diagrams 2662: 2660: 2659: 2654: 2652: 2651: 2646: 2641: 2607:that also carry 2592:for each quark, 2591: 2590: 2586: 2569: 2568: 2564: 2559: 2558: 2554: 2524: 2523: 2519: 2469:metric signature 2455:whereas for the 2407: 2405: 2404: 2399: 2387: 2385: 2384: 2379: 2347: 2345: 2344: 2339: 2326: 2321: 2316: 2315: 2298: 2296: 2295: 2290: 2283: 2278: 2273: 2272: 2264: 2259: 2254: 2253: 2246: 2245: 2223: 2218: 2213: 2212: 2205: 2204: 2191: 2186: 2181: 2180: 2173: 2172: 2159: 2154: 2116: 2114: 2113: 2108: 2104: 2099: 2073: 2071: 2070: 2065: 2040: 2039: 2023: 2021: 2020: 2015: 2009: 2004: 2003: 1991: 1990: 1974: 1972: 1971: 1966: 1963: 1962: 1946: 1944: 1943: 1938: 1925: 1923: 1922: 1917: 1913: 1908: 1903: 1902: 1895: 1894: 1886: 1882: 1881: 1858: 1857: 1845: 1844: 1832: 1831: 1823: 1819: 1818: 1779: 1777: 1776: 1771: 1769: 1768: 1752: 1750: 1749: 1744: 1732: 1730: 1729: 1724: 1712: 1710: 1709: 1704: 1692: 1690: 1689: 1684: 1660: 1658: 1657: 1652: 1640: 1639: 1619: 1617: 1616: 1611: 1608: 1600: 1590: 1585: 1573: 1565: 1560: 1559: 1550: 1546: 1545: 1544: 1525: 1524: 1512: 1511: 1499: 1498: 1481: 1480: 1475: 1474: 1466: 1459: 1458: 1457: 1445: 1444: 1175:local symmetries 1168:particle physics 1115: 1108:Some definitions 1095:, including the 1089:non-perturbative 1058:perturbative QCD 1050:three-jet events 896:Boris Struminsky 882: 850:Boris Struminsky 825:. Gell-Mann and 805:Murray Gell-Mann 773:particle physics 744: 738: 737: 662:coined the word 660:Murray Gell-Mann 589:particle physics 509: 502: 495: 101:Particle physics 54: 45:particle physics 37: 21: 6844: 6843: 6839: 6838: 6837: 6835: 6834: 6833: 6814: 6813: 6812: 6807: 6771: 6757:Medical physics 6708: 6667:Nuclear physics 6636: 6630:Non-equilibrium 6552: 6524: 6496: 6490: 6460: 6455: 6423: 6378: 6336:Quantum gravity 6330: 6297: 6266: 6219: 6212: 6203:Higgs mechanism 6181: 6177: 6172: 6075: 6070: 6040: 6035: 6018: 5970:Quantum gravity 5897: 5856:Particle theory 5851: 5830: 5779: 5753: 5717: 5681: 5635:Low dimensional 5630: 5571:Ginzburg–Landau 5542: 5533:Topological QFT 5471: 5466: 5353: 5348: 5345: 5296: 5290: 5277: 5271: 5249:Halzen, Francis 5247: 5241: 5226: 5223: 5221:Further reading 5218: 5209: 5205: 5198:10.1002/pi.1445 5183: 5182: 5178: 5138: 5133: 5132: 5128: 5098: 5097: 5093: 5063: 5062: 5058: 4998: 4997: 4993: 4945: 4944: 4940: 4928: 4924: 4900: 4883: 4882: 4877:gives way to a 4873: 4869: 4864: 4860: 4812: 4811: 4807: 4802: 4798: 4793:Wayback Machine 4781: 4768: 4740: 4739: 4735: 4705:Physical Review 4690: 4689: 4685: 4669:10.1.1.453.4712 4648:Physics Letters 4645: 4644: 4640: 4606: 4605: 4601: 4580:(20): 598–602. 4574:Phys. Rev. Lett 4571: 4570: 4566: 4560:Wayback Machine 4550: 4546: 4541: 4537: 4521: 4517: 4508: 4501: 4485: 4484: 4480: 4462: 4461: 4457: 4429:Physics Letters 4425: 4424: 4420: 4411: 4407: 4378:(S2): 848–866. 4367: 4366: 4362: 4324: 4323: 4319: 4281: 4280: 4276: 4266: 4264: 4255: 4254: 4250: 4243: 4239: 4232: 4212: 4211: 4207: 4198: 4196: 4187: 4186: 4182: 4144: 4143: 4139: 4101: 4100: 4096: 4089: 4072: 4071: 4067: 4063: 3905:For overviews: 3896: 3889: 3886: 3856: 3828: 3809: 3783: 3782: 3779: 3757: 3752: 3727: 3714: 3703: 3702: 3691:polymer physics 3672: 3637: 3621: 3596: 3580: 3562: 3557: 3556: 3550: 3507: 3502: 3501: 3494:are invariant. 3470: 3453: 3442: 3421: 3420: 3391: 3378: 3365: 3353: 3337: 3327: 3308: 3296: 3283: 3270: 3261: 3260: 3258: 3254: 3227: 3216: 3205: 3186: 3181: 3180: 3145: 3140: 3139: 3124: 3093: 3012:experiments at 2997: 2995: 2994: 2993: 2989: 2987: 2986: 2985: 2984: 2973: 2961: 2955: 2921: 2903: 2899: 2898: 2894: 2888: 2848: 2842: 2830: 2824: 2816: 2783: 2774: 2773: 2767: 2756: 2709: 2708: 2701: 2693:unitarity gauge 2669: 2634: 2633: 2596:and one of the 2588: 2584: 2583: 2566: 2562: 2561: 2556: 2552: 2551: 2521: 2517: 2516: 2505: 2454: 2444: 2413: 2390: 2389: 2370: 2369: 2304: 2303: 2231: 2196: 2164: 2138: 2137: 2083: 2082: 2031: 2026: 2025: 1995: 1982: 1977: 1976: 1954: 1949: 1948: 1928: 1927: 1873: 1869: 1868: 1846: 1836: 1810: 1806: 1805: 1800: 1799: 1760: 1755: 1754: 1735: 1734: 1715: 1714: 1695: 1694: 1675: 1674: 1631: 1626: 1625: 1622: 1551: 1533: 1513: 1503: 1490: 1486: 1482: 1463: 1438: 1433: 1432: 1425:gauge invariant 1417: 1374: 1370: 1361: 1355: 1343: 1339: 1334: 1328: 1323: 1317: 1308: 1293: 1291:Symmetry groups 1267:short distances 1259: 1216:flavor symmetry 1164: 1163: 1158: 1153:phase of matter 1119:QCD in the non- 1117: 1113: 1110: 1105: 1007:Harald Fritzsch 978:S-matrix theory 960:Richard Feynman 883: 876: 765:bubble chambers 761: 753:Main articles: 751: 727:electrodynamics 656: 513: 484: 483: 184: 176: 175: 171: 167: 163: 158: 150: 149: 145: 141: 137: 132: 124: 123: 121:Higgs mechanism 119: 115: 111: 107: 103: 98: 90: 81: 52: 35: 28: 23: 22: 15: 12: 11: 5: 6842: 6840: 6832: 6831: 6826: 6816: 6815: 6809: 6808: 6806: 6805: 6800: 6795: 6790: 6785: 6779: 6777: 6773: 6772: 6770: 6769: 6764: 6759: 6754: 6749: 6744: 6739: 6734: 6729: 6724: 6718: 6716: 6710: 6709: 6707: 6706: 6701: 6700: 6699: 6694: 6689: 6679: 6674: 6669: 6664: 6663: 6662: 6657: 6646: 6644: 6638: 6637: 6635: 6634: 6633: 6632: 6627: 6620:Thermodynamics 6617: 6616: 6615: 6610: 6600: 6595: 6590: 6589: 6588: 6583: 6578: 6573: 6562: 6560: 6554: 6553: 6551: 6550: 6549: 6548: 6538: 6532: 6530: 6526: 6525: 6523: 6522: 6521: 6520: 6510: 6504: 6502: 6498: 6497: 6491: 6489: 6488: 6481: 6474: 6466: 6457: 6456: 6454: 6453: 6441: 6428: 6425: 6424: 6422: 6421: 6416: 6411: 6406: 6401: 6396: 6390: 6388: 6384: 6383: 6380: 6379: 6377: 6376: 6374:Twistor theory 6371: 6366: 6361: 6356: 6351: 6346: 6340: 6338: 6332: 6331: 6329: 6328: 6323: 6318: 6313: 6307: 6305: 6299: 6298: 6296: 6295: 6290: 6285: 6280: 6274: 6272: 6268: 6267: 6265: 6264: 6259: 6254: 6253: 6252: 6242: 6237: 6231: 6229: 6222: 6220:Standard Model 6214: 6213: 6211: 6210: 6205: 6200: 6195: 6189: 6187: 6183: 6182: 6175: 6173: 6171: 6170: 6169: 6168: 6163: 6158: 6153: 6148: 6138: 6137: 6136: 6131: 6126: 6116: 6111: 6106: 6105: 6104: 6099: 6094: 6083: 6081: 6077: 6076: 6073:Standard Model 6071: 6069: 6068: 6061: 6054: 6046: 6037: 6036: 6023: 6020: 6019: 6017: 6016: 6011: 6006: 6005: 6004: 5994: 5989: 5984: 5979: 5978: 5977: 5967: 5966: 5965: 5955: 5950: 5945: 5940: 5935: 5930: 5925: 5920: 5915: 5913:Casimir effect 5909: 5907: 5903: 5902: 5899: 5898: 5896: 5895: 5890: 5888:Standard Model 5885: 5880: 5875: 5870: 5865: 5859: 5857: 5853: 5852: 5850: 5849: 5844: 5838: 5836: 5832: 5831: 5829: 5828: 5823: 5818: 5813: 5808: 5803: 5798: 5793: 5787: 5785: 5781: 5780: 5778: 5777: 5772: 5767: 5761: 5759: 5758:Superconformal 5755: 5754: 5752: 5751: 5746: 5741: 5739:Seiberg–Witten 5736: 5731: 5725: 5723: 5722:Supersymmetric 5719: 5718: 5716: 5715: 5710: 5705: 5700: 5695: 5689: 5687: 5683: 5682: 5680: 5679: 5674: 5669: 5664: 5659: 5654: 5649: 5644: 5638: 5636: 5632: 5631: 5629: 5628: 5623: 5618: 5613: 5608: 5603: 5598: 5593: 5588: 5583: 5578: 5573: 5568: 5563: 5557: 5555: 5548: 5544: 5543: 5541: 5540: 5535: 5530: 5525: 5520: 5515: 5510: 5505: 5500: 5495: 5490: 5485: 5479: 5477: 5473: 5472: 5467: 5465: 5464: 5457: 5450: 5442: 5436: 5435: 5427: 5422: 5417: 5409: 5401: 5396: 5387: 5382: 5344: 5343:External links 5341: 5340: 5339: 5294: 5288: 5275: 5269: 5245: 5239: 5222: 5219: 5217: 5216: 5203: 5192:(7): 863–868. 5176: 5126: 5091: 5072:(5): 421–422. 5056: 5018:hep-ex/0606035 5011:(2): 351–386. 4991: 4938: 4922: 4907: 4903: 4899: 4896: 4893: 4890: 4867: 4858: 4828:hep-ph/9908318 4805: 4796: 4779: 4733: 4712:(1): 191–195. 4683: 4654:(4): 365–368. 4638: 4599: 4564: 4544: 4535: 4515: 4499: 4478: 4455: 4436:(3): 214–215. 4418: 4405: 4360: 4339:(3): 285–304. 4317: 4274: 4248: 4237: 4230: 4205: 4180: 4137: 4094: 4087: 4064: 4062: 4059: 4058: 4057: 4052: 4047: 4042: 4037: 4036: 4035: 4030: 4025: 4017: 4016: 4015: 4010: 4005: 4000: 3995: 3990: 3985: 3977: 3976: 3975: 3969: 3956: 3948: 3947: 3946: 3941: 3936: 3931: 3926: 3921: 3916: 3911: 3909:Standard Model 3902: 3901: 3898:Physics portal 3885: 3882: 3869: 3863: 3859: 3853: 3848: 3845: 3841: 3835: 3831: 3825: 3818: 3815: 3806: 3801: 3797: 3793: 3790: 3777: 3755: 3750: 3734: 3730: 3726: 3721: 3717: 3713: 3710: 3670: 3650: 3647: 3644: 3640: 3634: 3631: 3628: 3624: 3620: 3617: 3614: 3609: 3606: 3603: 3599: 3593: 3590: 3587: 3583: 3578: 3574: 3569: 3565: 3548: 3520: 3517: 3514: 3510: 3483: 3477: 3473: 3466: 3463: 3460: 3456: 3449: 3445: 3441: 3438: 3435: 3430: 3408: 3404: 3398: 3394: 3390: 3385: 3381: 3377: 3372: 3368: 3360: 3356: 3350: 3347: 3344: 3340: 3334: 3330: 3326: 3321: 3318: 3315: 3311: 3303: 3299: 3295: 3290: 3286: 3282: 3277: 3273: 3268: 3256: 3252: 3240: 3234: 3230: 3223: 3219: 3212: 3208: 3204: 3199: 3196: 3193: 3189: 3163: 3160: 3157: 3152: 3148: 3123: 3120: 3091: 3084: 3083: 3080: 3071: 3065: 3062:Direct photons 3059: 3050:production at 3045: 3036: 2996: 2988: 2972: 2969: 2957:Main article: 2954: 2951: 2920: 2917: 2890:Main article: 2887: 2880: 2868:supercomputers 2844:Main article: 2841: 2838: 2826:Main article: 2823: 2820: 2815: 2812: 2795: 2790: 2786: 2782: 2765: 2754: 2719: 2716: 2700: 2697: 2668: 2665: 2649: 2645: 2504: 2501: 2474:The variables 2450: 2442: 2411: 2397: 2377: 2336: 2333: 2330: 2325: 2320: 2314: 2300: 2299: 2288: 2282: 2277: 2271: 2263: 2258: 2252: 2244: 2241: 2238: 2234: 2230: 2227: 2222: 2217: 2211: 2203: 2199: 2195: 2190: 2185: 2179: 2171: 2167: 2163: 2158: 2153: 2150: 2146: 2103: 2098: 2095: 2091: 2062: 2059: 2056: 2053: 2050: 2047: 2044: 2038: 2034: 2024:, wherein the 2012: 2008: 2002: 1998: 1994: 1989: 1985: 1961: 1957: 1935: 1912: 1907: 1901: 1893: 1890: 1885: 1880: 1876: 1872: 1867: 1864: 1861: 1856: 1853: 1849: 1843: 1839: 1835: 1830: 1827: 1822: 1817: 1813: 1809: 1786:Gamma matrices 1767: 1763: 1742: 1722: 1702: 1682: 1649: 1646: 1643: 1638: 1634: 1621: 1620: 1607: 1604: 1599: 1595: 1589: 1584: 1581: 1577: 1571: 1568: 1563: 1558: 1554: 1549: 1543: 1540: 1536: 1531: 1528: 1523: 1520: 1516: 1510: 1506: 1502: 1497: 1493: 1489: 1485: 1479: 1472: 1469: 1462: 1456: 1453: 1450: 1443: 1429: 1416: 1413: 1372: 1368: 1359: 1353: 1341: 1337: 1332: 1326: 1321: 1315: 1306: 1292: 1289: 1281:original model 1261:As mentioned, 1258: 1255: 1254: 1253: 1247: 1241: 1197: 1196: 1190: 1159: 1157: 1156: 1140: 1118: 1112: 1109: 1106: 1104: 1101: 1038:David Politzer 1015:Chen Ning Yang 874: 858:strange quarks 846:quantum number 831:Shoichi Sakata 769:spark chambers 750: 747: 669:Finnegans Wake 655: 652: 651: 650: 647:Yoichiro Nambu 636: 629:David Politzer 614: 585:Standard Model 577:force carriers 515: 514: 512: 511: 504: 497: 489: 486: 485: 482: 481: 476: 471: 466: 461: 456: 451: 446: 441: 436: 431: 426: 421: 416: 411: 406: 401: 396: 391: 386: 381: 376: 371: 366: 361: 356: 351: 346: 341: 336: 331: 326: 321: 316: 311: 306: 301: 296: 291: 286: 281: 276: 271: 266: 261: 256: 251: 246: 241: 236: 231: 226: 221: 216: 211: 206: 201: 196: 191: 185: 182: 181: 178: 177: 159: 156: 155: 152: 151: 133: 130: 129: 126: 125: 105:Standard Model 99: 96: 95: 92: 91: 85: 48: 47: 41:Standard Model 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6841: 6830: 6827: 6825: 6822: 6821: 6819: 6804: 6801: 6799: 6796: 6794: 6791: 6789: 6786: 6784: 6781: 6780: 6778: 6774: 6768: 6765: 6763: 6762:Ocean physics 6760: 6758: 6755: 6753: 6750: 6748: 6745: 6743: 6740: 6738: 6735: 6733: 6730: 6728: 6725: 6723: 6720: 6719: 6717: 6715: 6711: 6705: 6702: 6698: 6697:Modern optics 6695: 6693: 6690: 6688: 6685: 6684: 6683: 6680: 6678: 6675: 6673: 6670: 6668: 6665: 6661: 6658: 6656: 6653: 6652: 6651: 6648: 6647: 6645: 6643: 6639: 6631: 6628: 6626: 6623: 6622: 6621: 6618: 6614: 6611: 6609: 6606: 6605: 6604: 6601: 6599: 6596: 6594: 6591: 6587: 6584: 6582: 6579: 6577: 6574: 6572: 6569: 6568: 6567: 6564: 6563: 6561: 6559: 6555: 6547: 6546:Computational 6544: 6543: 6542: 6539: 6537: 6534: 6533: 6531: 6527: 6519: 6516: 6515: 6514: 6511: 6509: 6506: 6505: 6503: 6499: 6495: 6487: 6482: 6480: 6475: 6473: 6468: 6467: 6464: 6452: 6451: 6442: 6440: 6439: 6430: 6429: 6426: 6420: 6417: 6415: 6412: 6410: 6407: 6405: 6402: 6400: 6397: 6395: 6392: 6391: 6389: 6385: 6375: 6372: 6370: 6367: 6365: 6362: 6360: 6357: 6355: 6352: 6350: 6347: 6345: 6344:String theory 6342: 6341: 6339: 6337: 6333: 6327: 6324: 6322: 6319: 6317: 6314: 6312: 6309: 6308: 6306: 6304: 6303:Supersymmetry 6300: 6294: 6291: 6289: 6286: 6284: 6281: 6279: 6276: 6275: 6273: 6269: 6263: 6260: 6258: 6255: 6251: 6248: 6247: 6246: 6243: 6241: 6238: 6236: 6233: 6232: 6230: 6226: 6223: 6221: 6215: 6209: 6206: 6204: 6201: 6199: 6196: 6194: 6191: 6190: 6188: 6184: 6167: 6164: 6162: 6159: 6157: 6154: 6152: 6149: 6147: 6144: 6143: 6142: 6139: 6135: 6132: 6130: 6127: 6125: 6122: 6121: 6120: 6117: 6115: 6112: 6110: 6107: 6103: 6100: 6098: 6095: 6093: 6090: 6089: 6088: 6085: 6084: 6082: 6078: 6074: 6067: 6062: 6060: 6055: 6053: 6048: 6047: 6044: 6034: 6026: 6021: 6015: 6012: 6010: 6009:Quantum logic 6007: 6003: 6000: 5999: 5998: 5995: 5993: 5990: 5988: 5985: 5983: 5980: 5976: 5973: 5972: 5971: 5968: 5964: 5961: 5960: 5959: 5956: 5954: 5951: 5949: 5946: 5944: 5943:Quantum chaos 5941: 5939: 5936: 5934: 5931: 5929: 5926: 5924: 5921: 5919: 5918:Cosmic string 5916: 5914: 5911: 5910: 5908: 5904: 5894: 5891: 5889: 5886: 5884: 5881: 5879: 5876: 5874: 5871: 5869: 5866: 5864: 5861: 5860: 5858: 5854: 5848: 5845: 5843: 5840: 5839: 5837: 5833: 5827: 5824: 5822: 5819: 5817: 5814: 5812: 5809: 5807: 5804: 5802: 5799: 5797: 5794: 5792: 5791:Pure 4D N = 1 5789: 5788: 5786: 5782: 5776: 5773: 5771: 5768: 5766: 5763: 5762: 5760: 5756: 5750: 5747: 5745: 5742: 5740: 5737: 5735: 5732: 5730: 5727: 5726: 5724: 5720: 5714: 5711: 5709: 5706: 5704: 5701: 5699: 5696: 5694: 5691: 5690: 5688: 5684: 5678: 5675: 5673: 5672:Thirring–Wess 5670: 5668: 5665: 5663: 5660: 5658: 5655: 5653: 5650: 5648: 5647:Bullough–Dodd 5645: 5643: 5642:2D Yang–Mills 5640: 5639: 5637: 5633: 5627: 5624: 5622: 5619: 5617: 5614: 5612: 5609: 5607: 5604: 5602: 5599: 5597: 5594: 5592: 5589: 5587: 5584: 5582: 5579: 5577: 5574: 5572: 5569: 5567: 5564: 5562: 5559: 5558: 5556: 5552: 5549: 5545: 5539: 5536: 5534: 5531: 5529: 5526: 5524: 5521: 5519: 5518:String theory 5516: 5514: 5511: 5509: 5506: 5504: 5501: 5499: 5496: 5494: 5491: 5489: 5488:Axiomatic QFT 5486: 5484: 5483:Algebraic QFT 5481: 5480: 5478: 5474: 5470: 5463: 5458: 5456: 5451: 5449: 5444: 5443: 5440: 5434: 5431: 5428: 5426: 5423: 5421: 5418: 5416: 5413: 5410: 5408: 5405: 5402: 5400: 5397: 5395: 5391: 5388: 5386: 5383: 5379: 5375: 5371: 5367: 5363: 5359: 5358:Physics Today 5352: 5347: 5346: 5342: 5335: 5331: 5327: 5323: 5318: 5313: 5309: 5305: 5301: 5295: 5291: 5285: 5281: 5276: 5272: 5266: 5261: 5260: 5254: 5250: 5246: 5242: 5236: 5232: 5231: 5225: 5224: 5220: 5213: 5207: 5204: 5199: 5195: 5191: 5187: 5180: 5177: 5172: 5168: 5164: 5160: 5156: 5152: 5148: 5144: 5137: 5130: 5127: 5122: 5118: 5114: 5110: 5106: 5102: 5095: 5092: 5087: 5083: 5079: 5075: 5071: 5067: 5066:Phys. Lett. A 5060: 5057: 5052: 5048: 5044: 5040: 5036: 5032: 5028: 5024: 5019: 5014: 5010: 5006: 5002: 4995: 4992: 4987: 4983: 4979: 4975: 4971: 4967: 4962: 4957: 4954:(3): 034504. 4953: 4949: 4942: 4939: 4935: 4931: 4926: 4923: 4905: 4901: 4897: 4894: 4891: 4888: 4880: 4876: 4871: 4868: 4862: 4859: 4854: 4850: 4846: 4842: 4838: 4834: 4829: 4824: 4820: 4816: 4809: 4806: 4800: 4797: 4794: 4790: 4787: 4782: 4776: 4772: 4767:Reprinted in 4764: 4760: 4756: 4752: 4748: 4744: 4743:J. Math. Phys 4737: 4734: 4728: 4723: 4719: 4715: 4711: 4707: 4706: 4701: 4697: 4693: 4687: 4684: 4679: 4675: 4670: 4665: 4661: 4657: 4653: 4649: 4642: 4639: 4634: 4630: 4626: 4622: 4618: 4614: 4610: 4603: 4600: 4595: 4591: 4587: 4583: 4579: 4575: 4568: 4565: 4561: 4557: 4554: 4548: 4545: 4539: 4536: 4532: 4528: 4524: 4519: 4516: 4512: 4506: 4504: 4500: 4494: 4489: 4482: 4479: 4474: 4470: 4466: 4459: 4456: 4451: 4447: 4443: 4439: 4435: 4431: 4430: 4422: 4419: 4415: 4409: 4406: 4401: 4397: 4393: 4389: 4385: 4381: 4377: 4373: 4372: 4364: 4361: 4355: 4350: 4346: 4342: 4338: 4334: 4333: 4328: 4321: 4318: 4312: 4307: 4303: 4299: 4295: 4291: 4290: 4285: 4278: 4275: 4262: 4258: 4252: 4249: 4246: 4241: 4238: 4233: 4227: 4223: 4219: 4215: 4209: 4206: 4194: 4190: 4184: 4181: 4175: 4170: 4166: 4162: 4158: 4154: 4153: 4148: 4141: 4138: 4132: 4127: 4123: 4119: 4115: 4111: 4110: 4105: 4098: 4095: 4090: 4084: 4080: 4076: 4069: 4066: 4060: 4056: 4053: 4051: 4048: 4046: 4043: 4041: 4038: 4034: 4031: 4029: 4026: 4024: 4021: 4020: 4018: 4014: 4011: 4009: 4006: 4004: 4001: 3999: 3996: 3994: 3991: 3989: 3988:1/N expansion 3986: 3984: 3981: 3980: 3978: 3973: 3970: 3968: 3964: 3960: 3957: 3955: 3952: 3951: 3950:For details: 3949: 3945: 3942: 3940: 3937: 3935: 3932: 3930: 3927: 3925: 3922: 3920: 3917: 3915: 3912: 3910: 3907: 3906: 3904: 3903: 3899: 3893: 3888: 3883: 3881: 3867: 3861: 3857: 3851: 3846: 3843: 3839: 3833: 3829: 3823: 3813: 3804: 3799: 3795: 3791: 3788: 3780: 3773: 3769: 3765: 3759: 3753: 3732: 3728: 3724: 3719: 3715: 3708: 3700: 3696: 3692: 3687: 3685: 3679: 3675: 3673: 3666: 3648: 3645: 3642: 3638: 3632: 3629: 3626: 3622: 3618: 3615: 3612: 3607: 3604: 3601: 3597: 3591: 3588: 3585: 3581: 3576: 3572: 3567: 3563: 3554: 3547: 3544:For positive 3542: 3540: 3536: 3518: 3515: 3512: 3508: 3500: 3495: 3481: 3475: 3471: 3464: 3461: 3458: 3454: 3447: 3443: 3439: 3436: 3433: 3406: 3396: 3392: 3388: 3383: 3379: 3370: 3366: 3358: 3354: 3348: 3345: 3342: 3338: 3332: 3328: 3319: 3316: 3313: 3309: 3301: 3297: 3293: 3288: 3284: 3275: 3271: 3238: 3232: 3228: 3221: 3217: 3210: 3206: 3202: 3197: 3194: 3191: 3187: 3178: 3161: 3158: 3155: 3150: 3146: 3137: 3133: 3129: 3121: 3119: 3116: 3112: 3107: 3105: 3101: 3097: 3089: 3081: 3079: 3075: 3072: 3069: 3066: 3063: 3060: 3057: 3053: 3049: 3046: 3044: 3040: 3037: 3034: 3030: 3029: 3028: 3025: 3023: 3019: 3015: 3011: 3006: 3004: 2982: 2978: 2970: 2968: 2966: 2960: 2959:QCD sum rules 2953:QCD sum rules 2952: 2950: 2948: 2944: 2940: 2936: 2931: 2927: 2918: 2916: 2914: 2910: 2906: 2893: 2892:1/N expansion 2885: 2881: 2879: 2877: 2873: 2869: 2865: 2857: 2852: 2847: 2839: 2837: 2835: 2829: 2821: 2819: 2813: 2811: 2809: 2788: 2784: 2771: 2764: 2760: 2753: 2749: 2745: 2741: 2737: 2733: 2717: 2714: 2706: 2698: 2696: 2694: 2690: 2686: 2682: 2678: 2674: 2666: 2664: 2631: 2626: 2624: 2621: 2617: 2614: 2610: 2609:color charges 2606: 2601: 2599: 2595: 2581: 2580:baryon number 2577: 2573: 2549: 2546: 2542: 2539: 2535: 2531: 2528:that carry a 2527: 2509: 2502: 2500: 2498: 2494: 2491:(named after 2490: 2489: 2483: 2481: 2477: 2472: 2470: 2466: 2462: 2458: 2453: 2449: 2445: 2438: 2434: 2430: 2426: 2422: 2418: 2414: 2395: 2375: 2368:running from 2367: 2363: 2359: 2355: 2351: 2331: 2323: 2318: 2286: 2280: 2275: 2261: 2256: 2242: 2239: 2236: 2232: 2228: 2225: 2220: 2215: 2201: 2193: 2188: 2183: 2169: 2161: 2156: 2151: 2148: 2144: 2136: 2135: 2134: 2132: 2128: 2124: 2120: 2101: 2096: 2093: 2089: 2079: 2077: 2057: 2054: 2051: 2048: 2045: 2036: 2032: 2010: 2006: 2000: 1996: 1992: 1987: 1983: 1959: 1955: 1933: 1910: 1905: 1891: 1888: 1883: 1878: 1874: 1870: 1865: 1862: 1859: 1854: 1851: 1847: 1841: 1833: 1828: 1825: 1820: 1815: 1811: 1807: 1798: 1793: 1791: 1790:Lorentz group 1787: 1783: 1765: 1761: 1740: 1720: 1713:running from 1700: 1680: 1673:, indexed by 1672: 1668: 1664: 1644: 1636: 1632: 1605: 1602: 1597: 1593: 1587: 1582: 1579: 1575: 1569: 1566: 1561: 1556: 1552: 1547: 1541: 1538: 1534: 1529: 1526: 1521: 1518: 1508: 1504: 1495: 1491: 1487: 1483: 1477: 1467: 1460: 1431: 1430: 1428: 1426: 1422: 1414: 1412: 1410: 1404: 1402: 1397: 1392: 1390: 1384: 1382: 1378: 1366: 1362: 1351: 1347: 1335: 1324: 1313: 1309: 1302: 1301:abelian group 1299:: this is an 1298: 1290: 1288: 1286: 1282: 1278: 1274: 1273: 1268: 1264: 1256: 1251: 1248: 1245: 1242: 1239: 1236: 1235: 1234: 1232: 1228: 1224: 1219: 1217: 1212: 1210: 1206: 1202: 1194: 1191: 1188: 1184: 1180: 1176: 1173: 1172: 1171: 1169: 1162: 1154: 1150: 1146: 1145: 1141: 1138: 1137:atomic nuclei 1134: 1133:energy scales 1130: 1129: 1125: 1124: 1122: 1107: 1102: 1100: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1069: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1042:Frank Wilczek 1039: 1035: 1031: 1026: 1024: 1020: 1016: 1012: 1008: 1004: 999: 997: 993: 989: 985: 984:James Bjorken 981: 979: 975: 969: 967: 966: 961: 957: 954: 949: 947: 943: 939: 936: 933: 929: 925: 921: 917: 913: 908: 906: 901: 897: 893: 889: 880: 873: 869: 867: 863: 859: 855: 851: 847: 842: 840: 836: 832: 828: 824: 823:Yuval Ne'eman 820: 819: 818:eightfold way 814: 810: 806: 802: 798: 794: 793:Eugene Wigner 790: 786: 782: 778: 774: 770: 766: 760: 756: 748: 746: 743: 732: 728: 723: 721: 720:nuclear force 717: 713: 709: 704: 702: 698: 694: 690: 686: 681: 679: 675: 671: 670: 665: 661: 653: 648: 644: 640: 637: 634: 630: 626: 625:Frank Wilczek 622: 618: 615: 612: 608: 604: 601: 600: 599: 596: 594: 590: 586: 582: 578: 574: 570: 566: 562: 558: 554: 550: 546: 542: 538: 534: 530: 526: 522: 510: 505: 503: 498: 496: 491: 490: 488: 487: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 370: 367: 365: 362: 360: 357: 355: 352: 350: 347: 345: 342: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 285: 282: 280: 277: 275: 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 215: 212: 210: 207: 205: 202: 200: 197: 195: 192: 190: 187: 186: 180: 179: 174: 170: 166: 162: 154: 153: 148: 144: 140: 136: 128: 127: 122: 118: 114: 110: 106: 102: 94: 93: 88: 50: 49: 46: 42: 38: 33: 19: 6722:Astrophysics 6536:Experimental 6448: 6436: 6326:Supergravity 6186:Constituents 6166:Weak isospin 6128: 6124:Color charge 6114:Gauge theory 6024: 5953:Quantum foam 5893:Stueckelberg 5847:Chern–Simons 5784:Supergravity 5590: 5523:Supergravity 5508:Gauge theory 5414: 5406: 5364:(8): 22–28. 5361: 5357: 5307: 5303: 5279: 5258: 5253:Martin, Alan 5229: 5206: 5189: 5185: 5179: 5146: 5142: 5129: 5104: 5100: 5094: 5069: 5065: 5059: 5008: 5004: 4994: 4951: 4948:Phys. Rev. D 4947: 4941: 4933: 4925: 4874: 4870: 4861: 4818: 4814: 4808: 4799: 4770: 4746: 4742: 4736: 4709: 4703: 4686: 4651: 4647: 4641: 4616: 4612: 4602: 4577: 4573: 4567: 4547: 4538: 4523:N. Bogolubov 4518: 4481: 4464: 4458: 4433: 4427: 4421: 4408: 4375: 4369: 4363: 4336: 4330: 4320: 4293: 4287: 4277: 4265:. Retrieved 4251: 4240: 4217: 4208: 4197:. Retrieved 4183: 4156: 4150: 4140: 4113: 4107: 4097: 4074: 4068: 4008:Chiral model 3954:Gauge theory 3775: 3771: 3760: 3748: 3688: 3680: 3676: 3668: 3664: 3545: 3543: 3534: 3498: 3496: 3176: 3136:spin glasses 3125: 3108: 3100:quark matter 3096:form factors 3085: 3070:in colliders 3048:Vector boson 3026: 3007: 2974: 2963:Based on an 2962: 2947:chiral model 2922: 2904: 2895: 2883: 2861: 2855: 2831: 2817: 2807: 2769: 2762: 2751: 2739: 2702: 2670: 2627: 2622: 2615: 2602: 2576:weak isospin 2540: 2534:Dirac fields 2530:color charge 2514: 2486: 2484: 2479: 2475: 2473: 2465:relativistic 2464: 2460: 2456: 2451: 2447: 2440: 2436: 2432: 2431:indices are 2428: 2424: 2420: 2409: 2365: 2361: 2357: 2350:gluon fields 2301: 2126: 2080: 1795:Herein, the 1794: 1784:; the Îł are 1623: 1418: 1405: 1393: 1389:flavor SU(3) 1388: 1385: 1357: 1340:(1) × U 1330: 1319: 1304: 1294: 1284: 1280: 1276: 1270: 1266: 1262: 1260: 1249: 1243: 1237: 1220: 1215: 1213: 1209:color charge 1198: 1187:gauge bosons 1183:gauge theory 1165: 1144:Quark matter 1142: 1126: 1121:perturbative 1093:quark matter 1070: 1027: 1019:Robert Mills 1000: 982: 970: 963: 958: 952: 950: 942:gauge bosons 909: 885: 871: 843: 827:George Zweig 816: 762: 724: 711: 708:colour force 707: 705: 693:color charge 682: 677: 667: 663: 657: 597: 572: 547:such as the 539:mediated by 528: 524: 518: 138: 131:Constituents 113:Gauge theory 6625:Statistical 6541:Theoretical 6518:Engineering 6387:Experiments 6278:Technicolor 6240:Dark matter 6134:Quark model 6102:Higgs boson 6097:Gauge boson 5835:Topological 5749:Wess–Zumino 5662:Sine-Gordon 5652:Gross–Neveu 5561:Born–Infeld 5528:Thermal QFT 5107:(18): 537. 4875:Confinement 4692:Yang, C. N. 3983:Lattice QCD 3553:frustration 2981:quark model 2864:lattice QCD 2846:Lattice QCD 2840:Lattice QCD 2740:confinement 2594:hypercharge 2582:, which is 2574:as part of 2545:gauge group 2488:Wilson loop 2471:(+ − − −). 2081:The symbol 1325:) × SU 1128:Confinement 1077:lattice QCD 1073:confinement 1034:David Gross 801:strangeness 781:fundamental 712:color force 674:James Joyce 654:Terminology 621:David Gross 611:lattice QCD 309:Chamberlain 157:Limitations 6818:Categories 6742:Geophysics 6732:Biophysics 6576:Analytical 6529:Approaches 6394:Gran Sasso 6218:Beyond the 6193:CKM matrix 6080:Background 5616:Yang–Mills 5317:2212.11107 5212:Emil Artin 4785:Abstract: 4780:9971950707 4296:(5): 581. 4267:2007-08-29 4199:2010-10-24 4061:References 3939:QCD matter 3251:Here the Δ 2915:approach. 2759:Bag models 1421:Lagrangian 1415:Lagrangian 1396:QCD vacuum 1381:instantons 1350:QCD vacuum 1336:) × U 1285:dual model 1231:projection 658:Physicist 279:Iliopoulos 189:Rutherford 183:Scientists 143:CKM matrix 97:Background 6692:Molecular 6593:Acoustics 6586:Continuum 6581:Celestial 6571:Newtonian 6558:Classical 6501:Divisions 6025:See also: 5744:Super QCD 5698:Liouville 5686:Conformal 5657:Schwinger 5334:1434-6052 5043:0146-6410 4986:119216789 4961:0912.3181 4898:⋅ 4892:≈ 4696:Mills, R. 4664:CiteSeerX 4613:Phys. Rev 4493:0904.0343 4400:121017243 4222:Owl Books 3858:ψ 3834:μ 3830:γ 3817:¯ 3814:ψ 3800:μ 3789:∝ 3725:≪ 3716:λ 3712:← 3440:∑ 3437:− 3393:ϵ 3389:⋅ 3376:→ 3355:ϵ 3329:ϵ 3325:→ 3298:ϵ 3294:⋅ 3281:→ 3229:ϵ 3207:ϵ 3159:± 3115:glueballs 3052:colliders 2909:expansion 2886:expansion 2870:like the 2794:⟩ 2781:⟨ 2715:∝ 2648:¯ 2319:μ 2276:ν 2257:μ 2216:μ 2202:ν 2198:∂ 2194:− 2184:ν 2170:μ 2166:∂ 2152:ν 2149:μ 2097:ν 2094:μ 2055:… 2033:λ 1997:λ 1906:μ 1860:− 1848:δ 1842:μ 1838:∂ 1816:μ 1766:μ 1633:ψ 1606:ν 1603:μ 1583:ν 1580:μ 1562:− 1553:ψ 1535:δ 1527:− 1509:μ 1496:μ 1492:γ 1471:¯ 1468:ψ 1223:chirality 1203:) of the 1179:spacetime 992:electrons 920:Greenberg 916:up quarks 563:called a 469:de Mayolo 414:Schwinger 354:Kobayashi 244:Gell-Mann 209:Sudarshan 6438:Category 6419:Tevatron 6271:Theories 6228:Evidence 6092:Fermions 5821:Type IIB 5816:Type IIA 5801:4D N = 8 5796:4D N = 1 5765:6D (2,0) 5729:4D N = 1 5708:Polyakov 5667:Thirring 5476:Theories 5255:(1984). 5051:14915298 4853:18237543 4789:Archived 4698:(1954). 4556:Archived 4261:Archived 4216:(1995). 4193:Archived 4079:Springer 3884:See also 3102:and the 2945:and the 2854:⟨ 2748:nucleons 2667:Dynamics 2526:fermions 2497:confined 2415:are the 2348:are the 2074:are the 1123:regime: 912:Δ baryon 875:—  862:fermions 535:between 459:Guralnik 404:Politzer 379:'t Hooft 334:Weinberg 329:Majorana 319:Schwartz 284:Lederman 269:Anderson 259:Friedman 219:Anderson 214:Davis Jr 199:Chadwick 6776:Related 6660:General 6655:Special 6513:Applied 6450:Commons 6414:Super-K 6250:problem 5923:History 5906:Related 5703:Minimal 5554:Regular 5366:Bibcode 5171:1446867 5151:Bibcode 5109:Bibcode 5074:Bibcode 5023:Bibcode 4966:Bibcode 4833:Bibcode 4751:Bibcode 4714:Bibcode 4656:Bibcode 4621:Bibcode 4582:Bibcode 4469:Bibcode 4438:Bibcode 4380:Bibcode 4341:Bibcode 4298:Bibcode 4161:Bibcode 4118:Bibcode 3747:(where 3684:duality 3539:entropy 3113:called 3088:lattice 3076:at the 2977:flavors 2913:AdS/CFT 2902:⁄ 2814:Methods 2772:; i.e. 2685:photons 2587:⁄ 2565:⁄ 2555:⁄ 2543:of the 2536:in the 2520:⁄ 2433:trivial 1780:is the 1665:of the 1423:. The 1401:isospin 1394:In the 1377:anomaly 1348:by the 965:partons 953:defined 905:Trieste 854:hyperon 835:flavors 789:isospin 777:hadrons 749:History 729:", the 553:neutron 545:hadrons 444:Englert 419:Wilczek 384:Veltman 359:Maskawa 314:Cabibbo 274:Glashow 249:Kendall 234:Feynman 194:Thomson 6687:Atomic 6642:Modern 6492:Major 5863:Chiral 5811:Type I 5626:Yukawa 5547:Models 5332:  5310:(12). 5286:  5267:  5237:  5169:  5049:  5041:  4984:  4851:  4777:  4666:  4414:online 4398:  4228:  4085:  3929:Hadron 3535:gluons 3111:gluons 2992:Δ 2744:mesons 2736:rubber 2605:bosons 2503:Fields 2408:; and 2302:where 1669:gauge 1624:where 1312:chiral 1244:Vector 1238:Chiral 1103:Theory 1064:, at 946:gluons 944:: the 839:quarks 785:charge 742:chrƍma 685:charge 641:, the 549:proton 541:gluons 537:quarks 474:Lattes 464:Kibble 424:Cronin 409:Reines 374:Yukawa 289:Maiani 264:Powell 254:Taylor 239:Rubbia 6316:NMSSM 6002:links 5975:links 5963:links 5883:NMSSM 5868:Fermi 5611:Soler 5581:Proca 5354:(PDF) 5312:arXiv 5139:(PDF) 5047:S2CID 5013:arXiv 4982:S2CID 4956:arXiv 4849:S2CID 4823:arXiv 4533:1965. 4531:Dubna 4488:arXiv 4396:S2CID 3924:Gluon 3919:Quark 3255:and Δ 3022:PETRA 2872:QCDOC 2734:of a 2705:meson 2548:SU(3) 2427:, or 2129:, in 1671:group 1667:SU(3) 1277:large 1250:Axial 1205:SU(3) 1054:PETRA 1021:(see 1003:color 935:gauge 932:SU(3) 928:Nambu 811:(see 736:Ï‡Ïáż¶ÎŒÎ± 733:word 731:Greek 714:) or 697:color 664:quark 573:color 569:SU(3) 479:Zweig 454:Hagen 449:Brout 439:Higgs 434:Vleck 429:Fitch 399:Pauli 389:Gross 364:Mills 349:Salam 304:Nambu 299:Cowan 229:Dirac 224:Fermi 6613:Wave 6508:Pure 6311:MSSM 5873:MSSM 5770:ABJM 5677:Toda 5392:for 5330:ISSN 5284:ISBN 5265:ISBN 5235:ISBN 5167:OSTI 5039:ISSN 4775:ISBN 4527:JINR 4511:JINR 4226:ISBN 4083:ISBN 3965:and 3175:for 3031:The 3014:SLAC 2808:area 2746:and 2560:or + 2478:and 2364:and 1693:and 1272:dual 1227:spin 1066:CERN 1040:and 1017:and 1009:and 996:SLAC 922:and 898:and 879:JINR 807:and 795:and 787:and 767:and 757:and 710:(or 623:and 557:pion 555:and 394:Pais 369:Yang 344:Ward 324:Perl 294:Meer 204:Bose 6608:Ray 6409:SNO 6404:LHC 6399:INO 5826:11D 5374:doi 5322:doi 5194:doi 5159:doi 5117:doi 5082:doi 5031:doi 4974:doi 4841:doi 4759:doi 4722:doi 4674:doi 4652:47B 4629:doi 4617:139 4590:doi 4446:doi 4388:doi 4349:doi 4306:doi 4169:doi 4126:doi 3078:LEP 3020:at 2928:is 2695:). 2681:QED 2459:or 2443:abc 2412:abc 2388:to 1733:to 1297:QED 1062:LEP 1052:at 990:of 924:Han 868:): 803:by 791:by 672:by 587:of 529:QCD 519:In 339:Lee 43:of 6820:: 5842:BF 5372:. 5362:53 5360:. 5356:. 5328:. 5320:. 5308:83 5306:. 5302:. 5251:; 5190:53 5188:. 5165:. 5157:. 5147:18 5145:. 5141:. 5115:. 5105:10 5103:. 5080:. 5070:56 5068:. 5045:. 5037:. 5029:. 5021:. 5009:58 5007:. 5003:. 4980:. 4972:. 4964:. 4952:81 4950:. 4906:12 4902:10 4847:. 4839:. 4831:. 4819:86 4817:. 4757:. 4747:12 4745:. 4720:. 4710:96 4708:. 4702:. 4694:; 4672:. 4662:. 4650:. 4627:. 4615:. 4611:. 4588:. 4578:13 4576:. 4502:^ 4444:. 4432:. 4416:). 4394:. 4386:. 4374:. 4347:. 4337:13 4335:. 4329:. 4304:. 4294:10 4292:. 4286:. 4259:. 4224:. 4220:. 4167:. 4157:30 4155:. 4149:. 4124:. 4114:30 4112:. 4106:. 4081:. 4077:. 3961:, 3686:. 3434::= 3024:. 3005:. 2882:1/ 2663:. 2600:. 2452:bc 2446:= 2439:= 2423:, 2360:, 2125:, 2078:. 1792:. 1753:; 1411:. 1099:. 1068:. 1036:, 980:. 948:. 894:, 722:. 551:, 523:, 6485:e 6478:t 6471:v 6065:e 6058:t 6051:v 5461:e 5454:t 5447:v 5380:. 5376:: 5368:: 5336:. 5324:: 5314:: 5292:. 5273:. 5243:. 5200:. 5196:: 5173:. 5161:: 5153:: 5123:. 5119:: 5111:: 5088:. 5084:: 5076:: 5053:. 5033:: 5025:: 5015:: 4988:. 4976:: 4968:: 4958:: 4936:. 4895:5 4889:T 4855:. 4843:: 4835:: 4825:: 4783:. 4765:. 4761:: 4753:: 4730:. 4724:: 4716:: 4680:. 4676:: 4658:: 4635:. 4631:: 4623:: 4596:. 4592:: 4584:: 4496:. 4490:: 4475:. 4471:: 4452:. 4448:: 4440:: 4434:8 4402:. 4390:: 4382:: 4376:4 4357:. 4351:: 4343:: 4314:. 4308:: 4300:: 4270:. 4234:. 4202:. 4177:. 4171:: 4163:: 4134:. 4128:: 4120:: 4091:. 3868:, 3862:j 3852:a 3847:j 3844:i 3840:T 3824:i 3805:a 3796:G 3792:g 3778:c 3776:R 3772:λ 3756:w 3751:c 3749:R 3733:c 3729:R 3720:w 3709:0 3671:W 3669:P 3665:W 3649:i 3646:, 3643:m 3639:J 3633:m 3630:, 3627:n 3623:J 3619:. 3616:. 3613:. 3608:l 3605:, 3602:k 3598:J 3592:k 3589:, 3586:i 3582:J 3577:= 3573:: 3568:W 3564:P 3549:0 3546:J 3519:k 3516:, 3513:i 3509:J 3482:, 3476:k 3472:s 3465:k 3462:, 3459:i 3455:J 3448:i 3444:s 3429:H 3407:. 3403:) 3397:k 3384:k 3380:s 3371:k 3367:s 3359:k 3349:k 3346:, 3343:i 3339:J 3333:i 3320:k 3317:, 3314:i 3310:J 3302:i 3289:i 3285:s 3276:i 3272:s 3267:( 3257:k 3253:i 3239:. 3233:k 3222:0 3218:J 3211:i 3203:= 3198:k 3195:, 3192:i 3188:J 3177:i 3162:1 3156:= 3151:i 3147:s 3092:c 3058:) 2905:N 2900:1 2884:N 2856:E 2789:W 2785:P 2770:W 2766:W 2763:P 2755:c 2752:R 2718:r 2644:3 2623:1 2616:8 2589:3 2585:1 2567:3 2563:2 2557:3 2553:1 2541:3 2522:2 2518:1 2480:g 2476:m 2461:Îœ 2457:ÎŒ 2448:f 2441:f 2437:f 2429:c 2425:b 2421:a 2410:f 2396:8 2376:1 2366:c 2362:b 2358:a 2335:) 2332:x 2329:( 2324:a 2313:A 2287:, 2281:c 2270:A 2262:b 2251:A 2243:c 2240:b 2237:a 2233:f 2229:g 2226:+ 2221:a 2210:A 2189:a 2178:A 2162:= 2157:a 2145:G 2127:F 2102:a 2090:G 2061:) 2058:8 2052:1 2049:= 2046:a 2043:( 2037:a 2011:2 2007:/ 2001:a 1993:= 1988:a 1984:T 1960:a 1956:T 1934:g 1911:a 1900:A 1892:j 1889:i 1884:) 1879:a 1875:T 1871:( 1866:g 1863:i 1855:j 1852:i 1834:= 1829:j 1826:i 1821:) 1812:D 1808:( 1762:D 1741:3 1721:1 1701:j 1681:i 1648:) 1645:x 1642:( 1637:i 1598:a 1594:G 1588:a 1576:G 1570:4 1567:1 1557:j 1548:) 1542:j 1539:i 1530:m 1522:j 1519:i 1515:) 1505:D 1501:( 1488:i 1484:( 1478:i 1461:= 1455:D 1452:C 1449:Q 1442:L 1373:A 1369:B 1360:f 1358:N 1356:( 1354:V 1342:A 1338:B 1333:f 1331:N 1329:( 1327:R 1322:f 1320:N 1318:( 1316:L 1307:f 1305:N 1189:. 1155:? 1116:: 926:– 739:( 635:. 527:( 508:e 501:t 494:v 34:. 20:)

Index

Quantum Chromodynamics
QCD (disambiguation)
Standard Model
particle physics
Elementary particles
Particle physics
Standard Model
Quantum field theory
Gauge theory
Spontaneous symmetry breaking
Higgs mechanism
Electroweak interaction
Quantum chromodynamics
CKM matrix
Standard Model mathematics
Strong CP problem
Hierarchy problem
Neutrino oscillations
Physics beyond the Standard Model
Rutherford
Thomson
Chadwick
Bose
Sudarshan
Davis Jr
Anderson
Fermi
Dirac
Feynman
Rubbia

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑