Knowledge (XXG)

Quantum annealing

Source đź“ť

210:, one may consider the variables in the problem to be classical degrees of freedom, and the cost functions to be the potential energy function (classical Hamiltonian). Then a suitable term consisting of non-commuting variable(s) (i.e. variables that have non-zero commutator with the variables of the original mathematical problem) has to be introduced artificially in the Hamiltonian to play the role of the tunneling field (kinetic part). Then one may carry out the simulation with the quantum Hamiltonian thus constructed (the original function + non-commuting part) just as described above. Here, there is a choice in selecting the non-commuting term and the efficiency of annealing may depend on that. 182:, whose "temperature" parameter plays a similar role to QA's tunneling field strength. In simulated annealing, the temperature determines the probability of moving to a state of higher "energy" from a single current state. In quantum annealing, the strength of transverse field determines the quantum-mechanical probability to change the amplitudes of all states in parallel. Analytical and numerical evidence suggests that quantum annealing outperforms simulated annealing under certain conditions (see for a careful analysis, and, for a fully solvable model of quantum annealing to arbitrary target Hamiltonian and comparison of different computation approaches). 191: 4561: 3212: 918:) problems, the general structure of quantum annealing-based algorithms and two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems, together with an overview of the quantum annealing systems manufactured by D-Wave Systems. Hybrid quantum-classic algorithms for large-scale discrete-continuous optimization problems were reported to illustrate the quantum advantage. 4551: 868:(1QBit) and cancer research group DNA-SEQ to focus on solving real-world problems with quantum hardware. As the first company dedicated to producing software applications for commercially available quantum computers, 1QBit's research and development arm has focused on D-Wave's quantum annealing processors and has successfully demonstrated that these processors are suitable for solving real-world applications. 880:, found "no quantum speedup" across the entire range of their tests, and only inconclusive results when looking at subsets of the tests. Their work illustrated "the subtle nature of the quantum speedup question". Further work has advanced understanding of these test metrics and their reliance on equilibrated systems, thereby missing any signatures of advantage due to quantum dynamics. 806: 43: 910:
because Shor's algorithm is not a hillclimbing process. Shor's algorithm requires a universal quantum computer. During the Qubits 2021 conference held by D-Wave, it was announced that the company is developing their first universal quantum computers, capable of running Shor's algorithm in addition to
883:
There are many open questions regarding quantum speedup. The ETH reference in the previous section is just for one class of benchmark problems. Potentially there may be other classes of problems where quantum speedup might occur. Researchers at Google, LANL, USC, Texas A&M, and D-Wave are working
875:
in June 2014, described as "likely the most thorough and precise study that has been done on the performance of the D-Wave machine" and "the fairest comparison yet", attempted to define and measure quantum speedup. Several definitions were put forward as some may be unverifiable by empirical tests,
213:
It has been demonstrated experimentally as well as theoretically, that quantum annealing can indeed outperform thermal annealing (simulated annealing) in certain cases, especially where the potential energy (cost) landscape consists of very high but thin barriers surrounding shallow local minima.
334:
of the barriers, for very high barriers, it is extremely difficult for thermal fluctuations to get the system out from such local minima. However, as argued earlier in 1989 by Ray, Chakrabarti & Chakrabarti, the quantum tunneling probability through the same barrier (considered in isolation)
194:
Quantum Annealing (blue line) efficiently traverses energy landscapes by leveraging quantum tunneling to find the global minimum. Quantum annealing offers a significant performance advantage over Simulated Annealing (magenta line), unlocking the potential to solve massive optimization problems
165:
that corresponds to the solution to the original optimization problem. An experimental demonstration of the success of quantum annealing for random magnets was reported immediately after the initial theoretical proposal. Quantum annealing has also been proven to provide a fast
766:, such simulations would be much more efficient and exact than that done in a classical computer, because it can perform the tunneling directly, rather than needing to add it by hand. Moreover, it may be able to do this without the tight error controls needed to harness the 876:
while others, though falsified, would nonetheless allow for the existence of performance advantages. The study found that the D-Wave chip "produced no quantum speedup" and did not rule out the possibility in future tests. The researchers, led by Matthias Troyer at the
2183:
Smelyanskiy, Vadim N.; Rieffel, Eleanor G.; Knysh, Sergey I.; Williams, Colin P.; Johnson, Mark W.; Thom, Murray C.; Macready, William G.; Pudenz, Kristen L. (2012). "A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration".
2851: 2494:
Steiger, Damian; Heim, Bettina; Rønnow, Troels; Troyer, Matthias (October 22, 2015). "Performance of quantum annealing hardware". In Huckridge, David A.; Ebert, Reinhard; Gruneisen, Mark T.; Dusek, Miloslav; Rarity, John G. (eds.).
144:, a natural quantum-mechanical evolution of physical systems. The amplitudes of all candidate states keep changing, realizing a quantum parallelism, according to the time-dependent strength of the transverse field, which causes 2923: 133:. The term "quantum annealing" was first proposed in 1988 by B. Apolloni, N. Cesa Bianchi and D. De Falco as a quantum-inspired classical algorithm. It was formulated in its present form by T. Kadowaki and H. Nishimori ( 777:
1989 Idea was presented that quantum fluctuations could help explore rugged energy landscapes of the classical Ising spin glasses by escaping from local minima (having tall but thin barriers) using tunneling;
860:
purchased an adiabatic quantum computer from D-Wave Systems with 512 qubits. An extensive study of its performance as quantum annealer, compared to some classical annealing algorithms, is already available.
148:
between states or essentially tunneling through peaks. If the rate of change of the transverse field is slow enough, the system stays close to the ground state of the instantaneous Hamiltonian (also see
153:). If the rate of change of the transverse field is accelerated, the system may leave the ground state temporarily but produce a higher likelihood of concluding in the ground state of the final problem 2264: 419: 871:
With demonstrations of entanglement published, the question of whether or not the D-Wave machine can demonstrate quantum speedup over all classical computers remains unanswered. A study published in
199:
The tunneling field is basically a kinetic energy term that does not commute with the classical potential energy part of the original glass. The whole process can be simulated in a computer using
261: 3109: 2761:
Bapst, V.; Foini, L.; Krzakala, F.; Semerjian, G.; Zamponi, F. (2013). "The quantum adiabatic algorithm applied to random optimization problems: The quantum spin glass perspective".
489: 140:
Quantum annealing starts from a quantum-mechanical superposition of all possible states (candidate states) with equal weights. Then the system evolves following the time-dependent
829:
announced the first commercial quantum annealer on the market by the name D-Wave One and published a paper in Nature on its performance. The company claims this system uses a 128
940:
Ray, P.; Chakrabarti, B. K.; Chakrabarti, A. (1989). "Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations".
2584:
Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco (2018). "A cross-disciplinary introduction to quantum annealing-based algorithms".
61: 757: 618: 2980: 1222:
Crosson, Elizabeth; Farhi, Edward; Cedric Yen-Yu Lin; Lin, Han-Hsuan; Shor, Peter (2014). "Different Strategies for Optimization Using the Quantum Adiabatic Algorithm".
3104: 529: 439: 353: 332: 3750: 685: 665: 638: 589: 308: 3712: 725: 705: 569: 549: 509: 459: 373: 281: 4590: 4442: 1006: 2272: 137:) in 1998 though an imaginary-time variant without quantum coherence had been discussed by A. B. Finnila, M. A. Gomez, C. Sebenik and J. D. Doll in 1994. 4343: 4004: 2560: 2089: 1100:
Finnila, A.B.; Gomez, M.A.; Sebenik, C.; Stenson, C.; Doll, J.D. (1994). "Quantum annealing: A new method for minimizing multidimensional functions".
3905: 3118: 3598: 4230: 857: 161:
quantum computation. The transverse field is finally switched off, and the system is expected to have reached the ground state of the classical
2973: 2933: 2912: 2861: 2840: 2821: 2324:
Lanting, T.; Przybysz, A. J.; Smirnov, A. Yu.; Spedalieri, F. M.; et al. (2014-05-29). "Entanglement in a quantum annealing processor".
4554: 3740: 4512: 3679: 3141: 2645: 4088: 3193: 3054: 3161: 4564: 4452: 3705: 838: 79: 4038: 914:"A cross-disciplinary introduction to quantum annealing-based algorithms" presents an introduction to combinatorial optimization ( 4585: 4380: 3272: 2966: 378: 4375: 4103: 4083: 1384: 154: 3882: 4370: 3549: 3211: 1243:
Muthukrishnan, Siddharth; Albash, Tameem; Lidar, Daniel A. (2015). "When Diabatic Trumps Adiabatic in Quantum Optimization".
842: 203:(or other stochastic technique), and thus obtain a heuristic algorithm for finding the ground state of the classical glass. 2119: 1828:
Li, F.; Chernyak, V. Y. & Sinitsyn, N. A. (2018). "Quantum annealing and thermalization: insights from integrability".
4403: 4225: 4128: 3789: 3657: 3277: 150: 3593: 3561: 4408: 4276: 3867: 3698: 865: 4188: 4048: 3822: 1620: 4595: 4432: 3777: 3721: 3642: 3267: 1639: 1038: 3877: 3588: 3544: 3146: 2871:
Li, Fuxiang; Chernyak, V. Y.; Sinitsyn, N. A. (2013). "Quantum Annealing and Computation: A Brief Documentary Note".
2497:
Electro-Optical and Infrared Systems: Technology and Applications XII; and Quantum Information Science and Technology
902:
D-Wave's architecture differs from traditional quantum computers. It is not known to be polynomially equivalent to a
217: 4304: 4176: 4073: 3949: 3784: 3437: 3166: 903: 130: 114: 31: 3327: 2534: 1710:
Mukherjee, S. & Chakrabarti, B. K. (2015). "Multivariable Optimization: Quantum Annealing & Computation".
4113: 4078: 3974: 3917: 2989: 2205:
Boixo, S.; Rønnow, T. F.; Isakov, S. V.; Wang, Z.; Wecker, D.; Lidar, D. A.; Martinis, J. M.; Troyer, M. (2014).
1766: 4198: 3812: 3512: 2294: 4286: 4259: 4235: 3989: 3922: 3857: 3842: 2265:"D-Wave Systems Building Quantum Application Ecosystem, Announces Partnerships with DNA-SEQ Alliance and 1QBit" 1102: 3735: 3374: 2641:"Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems" 2149: 780:
1998 Formulation of quantum annealing and numerical test demonstrating its advantages in Ising glass systems;
4437: 4171: 4063: 4033: 3832: 3556: 3455: 3171: 2097: 1830: 770:
used in more traditional quantum algorithms. Some confirmation of this is found in exactly solvable models.
464: 158: 141: 3049: 4507: 4271: 4264: 4011: 3647: 3632: 3522: 3400: 3026: 2993: 2853:
Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information
1792: 4427: 3979: 3944: 3536: 3502: 3405: 3347: 3228: 3034: 3014: 4053: 2035: 167: 4217: 3966: 3817: 3583: 3410: 3322: 2890: 2780: 2705: 2605: 2586: 2500: 2460: 2405: 2345: 2230: 2047: 1989: 1914: 1849: 1784: 1730: 1663: 1568: 1509: 1452: 1443: 1403: 1348: 1287: 1180: 1121: 1062: 951: 767: 4319: 2958: 1797: 864:
In June 2014, D-Wave announced a new quantum applications ecosystem with computational finance firm
4536: 4489: 4093: 3847: 3827: 3762: 3757: 3652: 3517: 3470: 3460: 3312: 3300: 3113: 3096: 3001: 1329:
Sinitsyn, N.; Yan, B. (2023). "Topologically protected Grover's oracle for the partition problem".
907: 896: 892: 730: 594: 200: 179: 110: 4252: 3900: 3837: 3387: 3356: 3342: 3332: 3123: 2880: 2796: 2770: 2739: 2654: 2621: 2595: 2516: 2476: 2450: 2361: 2335: 2246: 2220: 2206: 2185: 2165: 2071: 2013: 1979: 1948: 1904: 1873: 1839: 1810: 1774: 1746: 1720: 1687: 1653: 1602: 1558: 1499: 1468: 1419: 1393: 1364: 1338: 1311: 1277: 1244: 1223: 1204: 1170: 1137: 1111: 1078: 1052: 872: 311: 145: 134: 106: 4098: 3039: 2850:
Dutta, A.; Aeppli, G.; Chakrabarti, B. K.; Divakaran, U.; Rosenbaum, T.F. & Sen, D. (2015).
461:, in presence of quantum tunneling, can be of major help: If the barriers are thin enough (i.e. 1157:"A Quantum adiabatic evolution algorithm applied to random instances of an NP-Complete problem" 4516: 4161: 4025: 3956: 3872: 3852: 3807: 3767: 3745: 3395: 3073: 2929: 2908: 2857: 2836: 2817: 2809: 2731: 2674: 2423: 2326: 2063: 2005: 1940: 1865: 1679: 1594: 1527: 1382:
Morita, Satoshi; Nishimori, Hidetoshi (2008). "Mathematical foundation of quantum annealing".
1303: 1196: 1161: 967: 942: 514: 424: 338: 317: 4183: 4133: 3910: 3475: 3465: 3369: 3246: 3151: 3133: 3086: 2997: 2943: 2903:
Suzuki, S.; Inoue, J.-I. & Chakrabarti, B. K. (2013). "Chapter 8 on Quantum Annealing".
2788: 2721: 2713: 2664: 2613: 2508: 2468: 2441:
Amin, Mohammad H. (2015). "Searching for quantum speedup in quasistatic quantum annealers".
2413: 2353: 2238: 2157: 2055: 1997: 1930: 1922: 1893:"Analytical solution for nonadiabatic quantum annealing to arbitrary Ising spin Hamiltonian" 1857: 1802: 1738: 1671: 1584: 1576: 1547:"Analytical solution for nonadiabatic quantum annealing to arbitrary Ising spin Hamiltonian" 1517: 1460: 1411: 1356: 1295: 1188: 1129: 1070: 1014: 959: 786:
2011 Superconducting-circuit quantum annealing machine built and marketed by D-Wave Systems.
763: 491:), quantum fluctuations can surely bring the system out of the shallow local minima. For an 1265: 989:. Stochastic Processes, Physics and Geometry, Proceedings of the Ascona-Locarno Conference. 837:
Corporation entered into an agreement to purchase a D-Wave One system. On October 28, 2011
670: 643: 623: 574: 286: 190: 4309: 4247: 3937: 3932: 3491: 834: 818: 783:
1999 First experimental demonstration of quantum annealing in LiHoYF Ising glass magnets;
2894: 2784: 2709: 2609: 2504: 2464: 2409: 2349: 2234: 2127: 2120:"D-Wave Systems sells its first Quantum Computing System to Lockheed Martin Corporation" 2051: 1993: 1918: 1853: 1788: 1764:
Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation".
1734: 1667: 1572: 1513: 1456: 1407: 1352: 1291: 1184: 1125: 1066: 955: 4418: 4395: 4362: 4166: 4043: 3479: 3364: 3251: 3185: 3156: 2726: 2693: 2211: 1935: 1892: 1589: 1546: 826: 810: 796: 710: 690: 554: 534: 494: 444: 358: 266: 102: 2669: 2640: 1464: 1156: 4579: 4240: 4058: 3984: 3637: 3621: 2743: 2625: 2075: 1952: 1750: 1712: 1606: 1472: 1439:"Optimization using quantum mechanics: quantum annealing through adiabatic evolution" 1368: 1133: 1019: 1001: 986: 118: 2800: 2520: 2480: 2365: 2169: 2017: 1877: 1814: 1691: 1423: 1315: 1208: 1141: 1082: 821:
logic elements that exhibit controllable and tunable coupling to perform operations.
113:. Quantum annealing is used mainly for problems where the search space is discrete ( 4460: 4385: 3575: 3081: 2561:"D-Wave's Next-Generation Roadmap: Bringing Clarity to Practical Quantum Computing" 2250: 1861: 1644: 1043: 122: 2792: 2617: 2418: 2393: 1742: 2001: 1695: 1299: 1155:
Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Ludgren, A.; Preda, D. (2001).
1086: 4470: 4324: 3862: 3662: 3044: 1438: 1360: 915: 162: 17: 2717: 2472: 1926: 1806: 1675: 1580: 109:
over a given set of candidate solutions (candidate states), by a process using
4531: 4465: 4329: 3690: 2357: 2161: 963: 877: 814: 800: 126: 2678: 1967: 1074: 4314: 1522: 1487: 1192: 888: 853: 2735: 2427: 2067: 2009: 1944: 1869: 1683: 1598: 1531: 1307: 1200: 805: 1966:
Brooke, J.; Bitko, D.; Rosenbaum, T. F. & Aeppli, G. (30 April 1999).
971: 4499: 4475: 4334: 4299: 3064: 1984: 1658: 1282: 1175: 1057: 899:
by up to a factor of 100,000,000 on a set of hard optimization problems.
170:
oracle for the square-root speedup in solving many NP-complete problems.
2694:"Community detection in brain connectomes with hybrid quantum computing" 2059: 1116: 4526: 4143: 3384: 2512: 2242: 1415: 773:
Timeline of ideas related to quantum annealing in Ising spin glasses:
4503: 3999: 849: 2944:"Quantum Annealing & Computation: Challenges & Perspectives" 985:
Apolloni, Bruno; Cesa-Bianchi, Nicolo; De Falco, Diego (July 1988).
2659: 2600: 2455: 1909: 1844: 1563: 1343: 1249: 3772: 2885: 2775: 2340: 2225: 2207:"Evidence for quantum annealing with more than one hundred qubits" 2190: 1779: 1725: 1504: 1398: 1228: 830: 804: 189: 2905:
Quantum Ising Phases & Transitions in Transverse Ising Models
2302: 2034:
Johnson, M. W.; Amin, M. H. S.; Gildert, S.; et al. (2011).
441:
is the tunneling field. This additional handle through the width
4521: 3994: 3927: 2835:. Lecture Note in Physics. Vol. 679. Heidelberg: Springer. 2816:. Lecture Note in Physics. Vol. 802. Heidelberg: Springer. 3694: 3619: 3435: 3298: 3226: 3012: 2962: 4138: 4123: 36: 1638:
Das, A.; Chakrabarti, B. K. & Stinchcombe, R. B. (2005).
1000:
Apolloni, Bruno; Carvalho, Maria C.; De Falco, Diego (1989).
27:
Quantum physics-based metaheuristic for optimization problems
3210: 2639:
Ajagekar, Akshay; Humble, Travis; You, Fengqi (2020-01-04).
1264:
Brooke, J.; Bitko, D.; Rosenbaum, T. F.; Aeppli, G. (1999).
1486:
Heim, B.; Rønnow, T. F.; Isakov, S. V.; Troyer, M. (2015).
1437:
Santoro, Giuseppe E. & Tosatti, Erio (18 August 2006).
2394:"Quantum or not, controversial computer yields no speedup" 1621:"Local Maxima and Minima, and, Absolute Maxima and Minima" 1488:"Quantum versus classical annealing of Ising spin glasses" 833:
processor chipset. On May 25, 2011, D-Wave announced that
414:{\displaystyle e^{-{\frac {{\sqrt {\Delta }}w}{\Gamma }}}} 2922:
Tanaka, S.; Tamura, R. & Chakrabarti, B. K. (2017).
214:
Since thermal transition probabilities (proportional to
1640:"Quantum annealing in a kinetically constrained system" 57: 2928:. Cambridge & Delhi: Cambridge University Press. 2856:. Cambridge & Delhi: Cambridge University Press. 2831:
Das, Arnab & Chakrabarti, Bikas K., eds. (2005).
733: 713: 693: 673: 646: 626: 597: 577: 557: 537: 517: 497: 467: 447: 427: 381: 361: 341: 320: 289: 269: 220: 4488: 4451: 4417: 4394: 4361: 4352: 4285: 4214: 4152: 4112: 4024: 3965: 3891: 3800: 3728: 3574: 3535: 3501: 3490: 3448: 3383: 3355: 3341: 3311: 3260: 3239: 3184: 3132: 3095: 3072: 3063: 3025: 2692:Wierzbiński, M.; Falo-Roget, J.; Crimi, A. (2023). 52:
may be too technical for most readers to understand
2833:Quantum Annealing and Related Optimization Methods 911:other gate-model algorithms such as QAOA and VQE. 848:In May 2013 it was announced that a consortium of 813:, mounted and wire-bonded in a sample holder. The 751: 719: 699: 679: 659: 632: 612: 583: 563: 543: 523: 503: 483: 453: 433: 413: 367: 347: 326: 302: 275: 255: 2925:Quantum Spin Glasses, Annealing & Computation 1039:"Quantum annealing in the transverse Ising model" 987:"A numerical implementation of quantum annealing" 935: 933: 931: 206:In the case of annealing a purely mathematical 256:{\displaystyle e^{-{\frac {\Delta }{k_{B}T}}}} 3706: 2974: 101:) is an optimization process for finding the 8: 2814:Quantum Quenching, Annealing and Computation 2029: 2027: 1032: 1030: 887:In December 2015, Google announced that the 2036:"Quantum annealing with manufactured spins" 4358: 3962: 3713: 3699: 3691: 3616: 3532: 3498: 3445: 3432: 3352: 3308: 3295: 3236: 3223: 3069: 3022: 3009: 2981: 2967: 2959: 2150:"Google and NASA snap up quantum computer" 1968:"Quantum Annealing of a Disordered Magnet" 1266:"Quantum annealing of a disordered magnet" 2884: 2774: 2725: 2668: 2658: 2599: 2454: 2417: 2339: 2224: 2189: 1983: 1934: 1908: 1843: 1796: 1778: 1724: 1657: 1588: 1562: 1521: 1503: 1397: 1342: 1281: 1248: 1227: 1174: 1115: 1056: 1018: 742: 737: 732: 712: 692: 672: 651: 645: 625: 602: 596: 576: 556: 536: 516: 496: 474: 466: 446: 426: 393: 390: 386: 380: 360: 340: 319: 294: 288: 268: 239: 229: 225: 219: 80:Learn how and when to remove this message 64:, without removing the technical details. 3215:Optimization computes maxima and minima. 845:took delivery of Lockheed's D-Wave One. 186:Quantum mechanics: analogy and advantage 4231:Continuous-variable quantum information 927: 858:Universities Space Research Association 2954:. Royal Society, London. January 2023. 2907:(2nd ed.). Heidelberg: Springer. 797:D-Wave Systems § Computer systems 484:{\displaystyle w\ll {\sqrt {\Delta }}} 355:of the barrier, but also on its width 3411:Principal pivoting algorithm of Lemke 878:Swiss Federal Institute of Technology 178:Quantum annealing can be compared to 62:make it understandable to non-experts 7: 2808:Chandra, Anjan K.; Das, Arnab & 2646:Computers & Chemical Engineering 2090:"Learning to program the D-Wave One" 1037:Kadowaki, T.; Nishimori, H. (1998). 817:'s processor is designed to use 128 809:Photograph of a chip constructed by 195:previously thought to be impossible. 4591:Optimization algorithms and methods 2379: 906:and, in particular, cannot execute 620:for the annealing time (instead of 3055:Successive parabolic interpolation 2499:. Vol. 9648. p. 964816. 518: 476: 428: 404: 395: 342: 321: 231: 25: 3375:Projective algorithm of Karmarkar 2670:10.1016/j.compchemeng.2019.106630 2535:"When can Quantum Annealing win?" 1891:Yan, B.; Sinitsyn, N. A. (2022). 1545:Yan, B.; Sinitsyn, N. A. (2022). 1002:"Quantum stochastic optimization" 174:Comparison to Simulated Annealing 4560: 4559: 4550: 4549: 3370:Ellipsoid algorithm of Khachiyan 3273:Sequential quadratic programming 3110:Broyden–Fletcher–Goldfarb–Shanno 511:-spin glass, the barrier height 41: 1385:Journal of Mathematical Physics 335:depends not only on the height 3328:Reduced gradient (Frank–Wolfe) 2378:Helmut Katzgraber, quoted in ( 1862:10.1103/PhysRevLett.121.190601 884:to find such problem classes. 843:Information Sciences Institute 667:for thermal annealing), while 375:and is approximately given by 1: 4226:Adiabatic quantum computation 3658:Spiral optimization algorithm 3278:Successive linear programming 2793:10.1016/j.physrep.2012.10.002 2618:10.1080/00107514.2018.1450720 2559:D-Wave Systems (2021-10-05). 2419:10.1126/science.344.6190.1330 752:{\displaystyle 1/{\sqrt {N}}} 707:-independent for cases where 613:{\displaystyle e^{\sqrt {N}}} 151:adiabatic quantum computation 4277:Topological quantum computer 3396:Simplex algorithm of Dantzig 3268:Augmented Lagrangian methods 2948:Philosophical Transactions A 2392:Cho, Adrian (20 June 2014). 2126:. 2011-05-25. Archived from 2002:10.1126/science.284.5415.779 1300:10.1126/science.284.5415.779 1134:10.1016/0009-2614(94)00117-0 1020:10.1016/0304-4149(89)90040-9 866:1QB Information Technologies 314:) depend only on the height 4555:Quantum information science 3722:Quantum information science 1743:10.1140/epjst/e2015-02339-y 1465:10.1088/0305-4470/39/36/R01 1361:10.1103/PhysRevA.108.022412 762:It is speculated that in a 4612: 3950:quantum gate teleportation 2718:10.1038/s41598-023-30579-y 2473:10.1103/PhysRevA.92.052323 1927:10.1038/s41467-022-29887-0 1807:10.1103/RevModPhys.80.1061 1676:10.1103/PhysRevE.72.026701 1581:10.1038/s41467-022-29887-0 904:universal quantum computer 794: 131:traveling salesman problem 115:combinatorial optimization 32:Annealing (disambiguation) 29: 4545: 4079:Quantum Fourier transform 3975:Post-quantum cryptography 3918:Entanglement distillation 3675: 3628: 3615: 3599:Push–relabel maximum flow 3444: 3431: 3401:Revised simplex algorithm 3307: 3294: 3235: 3222: 3208: 3021: 3008: 2358:10.1103/PhysRevX.4.021041 2162:10.1038/nature.2013.12999 964:10.1103/PhysRevB.39.11828 4565:Quantum mechanics topics 4260:Quantum machine learning 4236:One-way quantum computer 4089:Quantum phase estimation 3990:Quantum key distribution 3923:Monogamy of entanglement 3124:Symmetric rank-one (SR1) 3105:Berndt–Hall–Hall–Hausman 1103:Chemical Physics Letters 1075:10.1103/PhysRevE.58.5355 551:. For constant value of 4586:Stochastic optimization 4172:Randomized benchmarking 4034:Amplitude amplification 3648:Parallel metaheuristics 3456:Approximation algorithm 3167:Powell's dog leg method 3119:Davidon–Fletcher–Powell 3015:Unconstrained nonlinear 1831:Physical Review Letters 1523:10.1126/science.aaa4170 1193:10.1126/science.1057726 524:{\displaystyle \Delta } 434:{\displaystyle \Gamma } 348:{\displaystyle \Delta } 327:{\displaystyle \Delta } 4272:Quantum Turing machine 4265:quantum neural network 4012:Quantum secret sharing 3633:Evolutionary algorithm 3216: 822: 791:D-Wave implementations 753: 721: 701: 681: 661: 634: 614: 585: 565: 545: 525: 505: 485: 455: 435: 415: 369: 349: 328: 304: 277: 257: 196: 121:; such as finding the 4344:Entanglement-assisted 4305:quantum convolutional 3980:Quantum coin flipping 3945:Quantum teleportation 3906:entanglement-assisted 3736:DiVincenzo's criteria 3406:Criss-cross algorithm 3229:Constrained nonlinear 3214: 3035:Golden-section search 2810:Chakrabarti, Bikas K. 1897:Nature Communications 1551:Nature Communications 808: 795:Further information: 754: 722: 702: 682: 680:{\displaystyle \tau } 662: 660:{\displaystyle e^{N}} 635: 633:{\displaystyle \tau } 615: 586: 584:{\displaystyle \tau } 566: 546: 526: 506: 486: 456: 436: 416: 370: 350: 329: 305: 303:{\displaystyle k_{B}} 278: 258: 193: 4155:processor benchmarks 4084:Quantum optimization 3967:Quantum cryptography 3778:physical vs. logical 3323:Cutting-plane method 2587:Contemporary Physics 1444:Journal of Physics A 768:quantum entanglement 731: 711: 691: 671: 644: 624: 595: 575: 555: 535: 515: 495: 465: 445: 425: 379: 359: 339: 318: 287: 283:the temperature and 267: 218: 142:Schrödinger equation 117:problems) with many 111:quantum fluctuations 30:For other uses, see 3868:Quantum speed limit 3763:Quantum programming 3758:Quantum information 3653:Simulated annealing 3471:Integer programming 3461:Dynamic programming 3301:Convex optimization 3162:Levenberg–Marquardt 2895:2013arXiv1310.1339G 2873:Science and Culture 2785:2013PhR...523..127B 2710:2023NatSR..13.3446W 2610:2018ConPh..59..174V 2505:2015SPIE.9648E..16S 2465:2015PhRvA..92e2323A 2410:2014Sci...344.1330C 2404:(6190): 1330–1331. 2350:2014PhRvX...4b1041L 2275:on 31 December 2019 2235:2014NatPh..10..218B 2094:D-Wave Systems blog 2060:10.1038/nature10012 2052:2011Natur.473..194J 1994:1999Sci...284..779B 1919:2022NatCo..13.2212Y 1854:2018arXiv180400371L 1789:2008RvMP...80.1061D 1735:2015EPJST.224...17M 1668:2005PhRvE..72b6701D 1573:2022NatCo..13.2212Y 1514:2015Sci...348..215H 1457:2006JPhA...39R.393S 1408:2008JMP....49l5210M 1353:2023PhRvA.108b2412S 1292:1999Sci...284..779B 1185:2001Sci...292..472F 1126:1994CPL...219..343F 1067:1998PhRvE..58.5355K 956:1989PhRvB..3911828R 950:(16): 11828–11832. 897:Quantum Monte Carlo 893:simulated annealing 856:and the non-profit 201:quantum Monte Carlo 180:simulated annealing 4596:Quantum algorithms 4517:Forest/Rigetti QCS 4253:quantum logic gate 4039:Bernstein–Vazirani 4026:Quantum algorithms 3901:Classical capacity 3785:Quantum processors 3768:Quantum simulation 3333:Subgradient method 3217: 3142:Conjugate gradient 3050:Nelder–Mead method 2698:Scientific Reports 2513:10.1117/12.2202661 2148:Jones, N. (2013). 823: 749: 717: 697: 677: 657: 630: 610: 581: 561: 541: 521: 501: 481: 451: 431: 411: 365: 345: 324: 312:Boltzmann constant 300: 273: 253: 208:objective function 197: 107:objective function 4573: 4572: 4484: 4483: 4381:Linear optical QC 4162:Quantum supremacy 4116:complexity theory 4069:Quantum annealing 4020: 4019: 3957:Superdense coding 3746:Quantum computing 3688: 3687: 3671: 3670: 3611: 3610: 3607: 3606: 3570: 3569: 3531: 3530: 3427: 3426: 3423: 3422: 3419: 3418: 3290: 3289: 3286: 3285: 3206: 3205: 3202: 3201: 3180: 3179: 2935:978-1-10711-319-0 2914:978-3-64233-038-4 2863:978-1-10706-879-7 2842:978-3-54027-987-7 2823:978-3-64211-469-4 2541:. 8 December 2015 2443:Physical Review A 2327:Physical Review X 2243:10.1038/nphys2900 1978:(5415): 779–781. 1498:(6231): 215–217. 1451:(36): R393–R431. 1416:10.1063/1.2995837 1331:Physical Review A 1007:Stoc. Proc. Appl. 943:Physical Review B 891:outperforms both 747: 720:{\displaystyle w} 700:{\displaystyle N} 607: 564:{\displaystyle w} 544:{\displaystyle N} 531:becomes of order 504:{\displaystyle N} 479: 454:{\displaystyle w} 407: 398: 368:{\displaystyle w} 276:{\displaystyle T} 249: 146:quantum tunneling 95:Quantum annealing 90: 89: 82: 16:(Redirected from 4603: 4563: 4562: 4553: 4552: 4359: 4289:error correction 4218:computing models 4184:Relaxation times 4074:Quantum counting 3963: 3911:quantum capacity 3858:No-teleportation 3843:No-communication 3715: 3708: 3701: 3692: 3617: 3533: 3499: 3476:Branch and bound 3466:Greedy algorithm 3446: 3433: 3353: 3309: 3296: 3237: 3224: 3172:Truncated Newton 3087:Wolfe conditions 3070: 3023: 3010: 2983: 2976: 2969: 2960: 2955: 2939: 2918: 2898: 2888: 2867: 2846: 2827: 2804: 2778: 2748: 2747: 2729: 2689: 2683: 2682: 2672: 2662: 2636: 2630: 2629: 2603: 2581: 2575: 2574: 2572: 2571: 2556: 2550: 2549: 2547: 2546: 2531: 2525: 2524: 2491: 2485: 2484: 2458: 2438: 2432: 2431: 2421: 2389: 2383: 2376: 2370: 2369: 2343: 2321: 2315: 2314: 2312: 2310: 2301:. Archived from 2295:"1QBit Research" 2291: 2285: 2284: 2282: 2280: 2271:. Archived from 2261: 2255: 2254: 2228: 2202: 2196: 2195: 2193: 2180: 2174: 2173: 2145: 2139: 2138: 2136: 2135: 2130:on July 23, 2011 2116: 2110: 2109: 2107: 2105: 2100:on July 23, 2011 2096:. Archived from 2086: 2080: 2079: 2031: 2022: 2021: 1987: 1985:cond-mat/0105238 1963: 1957: 1956: 1938: 1912: 1888: 1882: 1881: 1847: 1825: 1819: 1818: 1800: 1782: 1773:(3): 1061–1081. 1761: 1755: 1754: 1728: 1706: 1700: 1699: 1694:. Archived from 1661: 1659:cond-mat/0502167 1635: 1629: 1628: 1617: 1611: 1610: 1592: 1566: 1542: 1536: 1535: 1525: 1507: 1483: 1477: 1476: 1434: 1428: 1427: 1401: 1379: 1373: 1372: 1346: 1326: 1320: 1319: 1285: 1283:cond-mat/0105238 1276:(5415): 779–81. 1261: 1255: 1254: 1252: 1240: 1234: 1233: 1231: 1219: 1213: 1212: 1178: 1176:quant-ph/0104129 1152: 1146: 1145: 1119: 1110:(5–6): 343–348. 1097: 1091: 1090: 1085:. Archived from 1060: 1058:cond-mat/9804280 1034: 1025: 1024: 1022: 997: 991: 990: 982: 976: 975: 937: 908:Shor's algorithm 764:quantum computer 758: 756: 755: 750: 748: 743: 741: 726: 724: 723: 718: 706: 704: 703: 698: 687:can even become 686: 684: 683: 678: 666: 664: 663: 658: 656: 655: 640:proportional to 639: 637: 636: 631: 619: 617: 616: 611: 609: 608: 603: 591:proportional to 590: 588: 587: 582: 570: 568: 567: 562: 550: 548: 547: 542: 530: 528: 527: 522: 510: 508: 507: 502: 490: 488: 487: 482: 480: 475: 460: 458: 457: 452: 440: 438: 437: 432: 420: 418: 417: 412: 410: 409: 408: 403: 399: 394: 391: 374: 372: 371: 366: 354: 352: 351: 346: 333: 331: 330: 325: 309: 307: 306: 301: 299: 298: 282: 280: 279: 274: 262: 260: 259: 254: 252: 251: 250: 248: 244: 243: 230: 85: 78: 74: 71: 65: 45: 44: 37: 21: 18:Quantum annealer 4611: 4610: 4606: 4605: 4604: 4602: 4601: 4600: 4576: 4575: 4574: 4569: 4541: 4491: 4480: 4453:Superconducting 4447: 4413: 4404:Neutral atom QC 4396:Ultracold atoms 4390: 4355:implementations 4354: 4348: 4288: 4281: 4248:Quantum circuit 4216: 4210: 4204: 4194: 4154: 4148: 4115: 4108: 4064:Hidden subgroup 4016: 4005:other protocols 3961: 3938:quantum network 3933:Quantum channel 3893: 3887: 3833:No-broadcasting 3823:Gottesman–Knill 3796: 3724: 3719: 3689: 3684: 3667: 3624: 3603: 3566: 3527: 3504: 3493: 3486: 3440: 3415: 3379: 3346: 3337: 3314: 3303: 3282: 3256: 3252:Penalty methods 3247:Barrier methods 3231: 3218: 3198: 3194:Newton's method 3176: 3128: 3091: 3059: 3040:Powell's method 3017: 3004: 2987: 2942: 2936: 2921: 2915: 2902: 2870: 2864: 2849: 2843: 2830: 2824: 2812:, eds. (2010). 2807: 2763:Physics Reports 2760: 2757: 2755:Further reading 2752: 2751: 2691: 2690: 2686: 2638: 2637: 2633: 2583: 2582: 2578: 2569: 2567: 2558: 2557: 2553: 2544: 2542: 2533: 2532: 2528: 2493: 2492: 2488: 2440: 2439: 2435: 2391: 2390: 2386: 2377: 2373: 2323: 2322: 2318: 2308: 2306: 2305:on 19 June 2014 2293: 2292: 2288: 2278: 2276: 2263: 2262: 2258: 2204: 2203: 2199: 2182: 2181: 2177: 2147: 2146: 2142: 2133: 2131: 2118: 2117: 2113: 2103: 2101: 2088: 2087: 2083: 2046:(7346): 194–8. 2033: 2032: 2025: 1965: 1964: 1960: 1890: 1889: 1885: 1827: 1826: 1822: 1798:10.1.1.563.9990 1767:Rev. Mod. Phys. 1763: 1762: 1758: 1709: 1707: 1703: 1637: 1636: 1632: 1619: 1618: 1614: 1544: 1543: 1539: 1485: 1484: 1480: 1436: 1435: 1431: 1381: 1380: 1376: 1328: 1327: 1323: 1263: 1262: 1258: 1242: 1241: 1237: 1221: 1220: 1216: 1169:(5516): 472–5. 1154: 1153: 1149: 1117:chem-ph/9404003 1099: 1098: 1094: 1036: 1035: 1028: 999: 998: 994: 984: 983: 979: 939: 938: 929: 924: 835:Lockheed Martin 819:superconducting 803: 793: 729: 728: 709: 708: 689: 688: 669: 668: 647: 642: 641: 622: 621: 598: 593: 592: 573: 572: 553: 552: 533: 532: 513: 512: 493: 492: 463: 462: 443: 442: 423: 422: 392: 382: 377: 376: 357: 356: 337: 336: 316: 315: 290: 285: 284: 265: 264: 235: 234: 221: 216: 215: 188: 176: 86: 75: 69: 66: 58:help improve it 55: 46: 42: 35: 28: 23: 22: 15: 12: 11: 5: 4609: 4607: 4599: 4598: 4593: 4588: 4578: 4577: 4571: 4570: 4568: 4567: 4557: 4546: 4543: 4542: 4540: 4539: 4537:many others... 4534: 4529: 4524: 4519: 4510: 4496: 4494: 4486: 4485: 4482: 4481: 4479: 4478: 4473: 4468: 4463: 4457: 4455: 4449: 4448: 4446: 4445: 4440: 4435: 4430: 4424: 4422: 4415: 4414: 4412: 4411: 4409:Trapped-ion QC 4406: 4400: 4398: 4392: 4391: 4389: 4388: 4383: 4378: 4373: 4367: 4365: 4363:Quantum optics 4356: 4350: 4349: 4347: 4346: 4341: 4340: 4339: 4332: 4327: 4322: 4317: 4312: 4307: 4302: 4293: 4291: 4283: 4282: 4280: 4279: 4274: 4269: 4268: 4267: 4257: 4256: 4255: 4245: 4244: 4243: 4233: 4228: 4222: 4220: 4212: 4211: 4209: 4208: 4207: 4206: 4202: 4196: 4192: 4181: 4180: 4179: 4169: 4167:Quantum volume 4164: 4158: 4156: 4150: 4149: 4147: 4146: 4141: 4136: 4131: 4126: 4120: 4118: 4110: 4109: 4107: 4106: 4101: 4096: 4091: 4086: 4081: 4076: 4071: 4066: 4061: 4056: 4051: 4046: 4044:Boson sampling 4041: 4036: 4030: 4028: 4022: 4021: 4018: 4017: 4015: 4014: 4009: 4008: 4007: 4002: 3997: 3987: 3982: 3977: 3971: 3969: 3960: 3959: 3954: 3953: 3952: 3942: 3941: 3940: 3930: 3925: 3920: 3915: 3914: 3913: 3908: 3897: 3895: 3889: 3888: 3886: 3885: 3880: 3878:Solovay–Kitaev 3875: 3870: 3865: 3860: 3855: 3850: 3845: 3840: 3835: 3830: 3825: 3820: 3815: 3810: 3804: 3802: 3798: 3797: 3795: 3794: 3793: 3792: 3782: 3781: 3780: 3770: 3765: 3760: 3755: 3754: 3753: 3743: 3738: 3732: 3730: 3726: 3725: 3720: 3718: 3717: 3710: 3703: 3695: 3686: 3685: 3683: 3682: 3676: 3673: 3672: 3669: 3668: 3666: 3665: 3660: 3655: 3650: 3645: 3640: 3635: 3629: 3626: 3625: 3622:Metaheuristics 3620: 3613: 3612: 3609: 3608: 3605: 3604: 3602: 3601: 3596: 3594:Ford–Fulkerson 3591: 3586: 3580: 3578: 3572: 3571: 3568: 3567: 3565: 3564: 3562:Floyd–Warshall 3559: 3554: 3553: 3552: 3541: 3539: 3529: 3528: 3526: 3525: 3520: 3515: 3509: 3507: 3496: 3488: 3487: 3485: 3484: 3483: 3482: 3468: 3463: 3458: 3452: 3450: 3442: 3441: 3436: 3429: 3428: 3425: 3424: 3421: 3420: 3417: 3416: 3414: 3413: 3408: 3403: 3398: 3392: 3390: 3381: 3380: 3378: 3377: 3372: 3367: 3365:Affine scaling 3361: 3359: 3357:Interior point 3350: 3339: 3338: 3336: 3335: 3330: 3325: 3319: 3317: 3305: 3304: 3299: 3292: 3291: 3288: 3287: 3284: 3283: 3281: 3280: 3275: 3270: 3264: 3262: 3261:Differentiable 3258: 3257: 3255: 3254: 3249: 3243: 3241: 3233: 3232: 3227: 3220: 3219: 3209: 3207: 3204: 3203: 3200: 3199: 3197: 3196: 3190: 3188: 3182: 3181: 3178: 3177: 3175: 3174: 3169: 3164: 3159: 3154: 3149: 3144: 3138: 3136: 3130: 3129: 3127: 3126: 3121: 3116: 3107: 3101: 3099: 3093: 3092: 3090: 3089: 3084: 3078: 3076: 3067: 3061: 3060: 3058: 3057: 3052: 3047: 3042: 3037: 3031: 3029: 3019: 3018: 3013: 3006: 3005: 2988: 2986: 2985: 2978: 2971: 2963: 2957: 2956: 2940: 2934: 2919: 2913: 2900: 2868: 2862: 2847: 2841: 2828: 2822: 2805: 2769:(3): 127–205. 2756: 2753: 2750: 2749: 2684: 2631: 2594:(2): 174–196. 2576: 2551: 2526: 2486: 2433: 2384: 2371: 2316: 2286: 2269:D-Wave Systems 2256: 2219:(3): 218–224. 2212:Nature Physics 2197: 2175: 2140: 2111: 2081: 2023: 1958: 1883: 1838:(19): 190601. 1820: 1756: 1701: 1698:on 2014-01-13. 1630: 1612: 1537: 1478: 1429: 1392:(12): 125210. 1374: 1321: 1256: 1235: 1214: 1147: 1092: 1089:on 2013-08-11. 1026: 1013:(2): 233–244. 992: 977: 926: 925: 923: 920: 827:D-Wave Systems 811:D-Wave Systems 792: 789: 788: 787: 784: 781: 778: 746: 740: 736: 716: 696: 676: 654: 650: 629: 606: 601: 580: 560: 540: 520: 500: 478: 473: 470: 450: 430: 406: 402: 397: 389: 385: 364: 344: 323: 297: 293: 272: 247: 242: 238: 233: 228: 224: 187: 184: 175: 172: 103:global minimum 88: 87: 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4608: 4597: 4594: 4592: 4589: 4587: 4584: 4583: 4581: 4566: 4558: 4556: 4548: 4547: 4544: 4538: 4535: 4533: 4530: 4528: 4525: 4523: 4520: 4518: 4514: 4511: 4509: 4505: 4501: 4498: 4497: 4495: 4493: 4487: 4477: 4474: 4472: 4469: 4467: 4464: 4462: 4459: 4458: 4456: 4454: 4450: 4444: 4441: 4439: 4436: 4434: 4433:Spin qubit QC 4431: 4429: 4426: 4425: 4423: 4420: 4416: 4410: 4407: 4405: 4402: 4401: 4399: 4397: 4393: 4387: 4384: 4382: 4379: 4377: 4374: 4372: 4369: 4368: 4366: 4364: 4360: 4357: 4351: 4345: 4342: 4338: 4337: 4333: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4301: 4298: 4297: 4295: 4294: 4292: 4290: 4284: 4278: 4275: 4273: 4270: 4266: 4263: 4262: 4261: 4258: 4254: 4251: 4250: 4249: 4246: 4242: 4241:cluster state 4239: 4238: 4237: 4234: 4232: 4229: 4227: 4224: 4223: 4221: 4219: 4213: 4205: 4201: 4197: 4195: 4191: 4187: 4186: 4185: 4182: 4178: 4175: 4174: 4173: 4170: 4168: 4165: 4163: 4160: 4159: 4157: 4151: 4145: 4142: 4140: 4137: 4135: 4132: 4130: 4127: 4125: 4122: 4121: 4119: 4117: 4111: 4105: 4102: 4100: 4097: 4095: 4092: 4090: 4087: 4085: 4082: 4080: 4077: 4075: 4072: 4070: 4067: 4065: 4062: 4060: 4057: 4055: 4052: 4050: 4049:Deutsch–Jozsa 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4031: 4029: 4027: 4023: 4013: 4010: 4006: 4003: 4001: 3998: 3996: 3993: 3992: 3991: 3988: 3986: 3985:Quantum money 3983: 3981: 3978: 3976: 3973: 3972: 3970: 3968: 3964: 3958: 3955: 3951: 3948: 3947: 3946: 3943: 3939: 3936: 3935: 3934: 3931: 3929: 3926: 3924: 3921: 3919: 3916: 3912: 3909: 3907: 3904: 3903: 3902: 3899: 3898: 3896: 3894:communication 3890: 3884: 3881: 3879: 3876: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3856: 3854: 3851: 3849: 3846: 3844: 3841: 3839: 3836: 3834: 3831: 3829: 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3805: 3803: 3799: 3791: 3788: 3787: 3786: 3783: 3779: 3776: 3775: 3774: 3771: 3769: 3766: 3764: 3761: 3759: 3756: 3752: 3749: 3748: 3747: 3744: 3742: 3739: 3737: 3734: 3733: 3731: 3727: 3723: 3716: 3711: 3709: 3704: 3702: 3697: 3696: 3693: 3681: 3678: 3677: 3674: 3664: 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3641: 3639: 3638:Hill climbing 3636: 3634: 3631: 3630: 3627: 3623: 3618: 3614: 3600: 3597: 3595: 3592: 3590: 3587: 3585: 3582: 3581: 3579: 3577: 3576:Network flows 3573: 3563: 3560: 3558: 3555: 3551: 3548: 3547: 3546: 3543: 3542: 3540: 3538: 3537:Shortest path 3534: 3524: 3521: 3519: 3516: 3514: 3511: 3510: 3508: 3506: 3505:spanning tree 3500: 3497: 3495: 3489: 3481: 3477: 3474: 3473: 3472: 3469: 3467: 3464: 3462: 3459: 3457: 3454: 3453: 3451: 3447: 3443: 3439: 3438:Combinatorial 3434: 3430: 3412: 3409: 3407: 3404: 3402: 3399: 3397: 3394: 3393: 3391: 3389: 3386: 3382: 3376: 3373: 3371: 3368: 3366: 3363: 3362: 3360: 3358: 3354: 3351: 3349: 3344: 3340: 3334: 3331: 3329: 3326: 3324: 3321: 3320: 3318: 3316: 3310: 3306: 3302: 3297: 3293: 3279: 3276: 3274: 3271: 3269: 3266: 3265: 3263: 3259: 3253: 3250: 3248: 3245: 3244: 3242: 3238: 3234: 3230: 3225: 3221: 3213: 3195: 3192: 3191: 3189: 3187: 3183: 3173: 3170: 3168: 3165: 3163: 3160: 3158: 3155: 3153: 3150: 3148: 3145: 3143: 3140: 3139: 3137: 3135: 3134:Other methods 3131: 3125: 3122: 3120: 3117: 3115: 3111: 3108: 3106: 3103: 3102: 3100: 3098: 3094: 3088: 3085: 3083: 3080: 3079: 3077: 3075: 3071: 3068: 3066: 3062: 3056: 3053: 3051: 3048: 3046: 3043: 3041: 3038: 3036: 3033: 3032: 3030: 3028: 3024: 3020: 3016: 3011: 3007: 3003: 2999: 2995: 2991: 2984: 2979: 2977: 2972: 2970: 2965: 2964: 2961: 2953: 2949: 2945: 2941: 2937: 2931: 2927: 2926: 2920: 2916: 2910: 2906: 2901: 2896: 2892: 2887: 2882: 2878: 2874: 2869: 2865: 2859: 2855: 2854: 2848: 2844: 2838: 2834: 2829: 2825: 2819: 2815: 2811: 2806: 2802: 2798: 2794: 2790: 2786: 2782: 2777: 2772: 2768: 2764: 2759: 2758: 2754: 2745: 2741: 2737: 2733: 2728: 2723: 2719: 2715: 2711: 2707: 2703: 2699: 2695: 2688: 2685: 2680: 2676: 2671: 2666: 2661: 2656: 2652: 2648: 2647: 2642: 2635: 2632: 2627: 2623: 2619: 2615: 2611: 2607: 2602: 2597: 2593: 2589: 2588: 2580: 2577: 2566: 2562: 2555: 2552: 2540: 2539:Research Blog 2536: 2530: 2527: 2522: 2518: 2514: 2510: 2506: 2502: 2498: 2490: 2487: 2482: 2478: 2474: 2470: 2466: 2462: 2457: 2452: 2449:(5): 052323. 2448: 2444: 2437: 2434: 2429: 2425: 2420: 2415: 2411: 2407: 2403: 2399: 2395: 2388: 2385: 2381: 2375: 2372: 2367: 2363: 2359: 2355: 2351: 2347: 2342: 2337: 2334:(2): 021041. 2333: 2329: 2328: 2320: 2317: 2304: 2300: 2296: 2290: 2287: 2274: 2270: 2266: 2260: 2257: 2252: 2248: 2244: 2240: 2236: 2232: 2227: 2222: 2218: 2214: 2213: 2208: 2201: 2198: 2192: 2187: 2179: 2176: 2171: 2167: 2163: 2159: 2155: 2151: 2144: 2141: 2129: 2125: 2121: 2115: 2112: 2099: 2095: 2091: 2085: 2082: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2049: 2045: 2041: 2037: 2030: 2028: 2024: 2019: 2015: 2011: 2007: 2003: 1999: 1995: 1991: 1986: 1981: 1977: 1973: 1969: 1962: 1959: 1954: 1950: 1946: 1942: 1937: 1932: 1928: 1924: 1920: 1916: 1911: 1906: 1902: 1898: 1894: 1887: 1884: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1846: 1841: 1837: 1833: 1832: 1824: 1821: 1816: 1812: 1808: 1804: 1799: 1794: 1790: 1786: 1781: 1776: 1772: 1769: 1768: 1760: 1757: 1752: 1748: 1744: 1740: 1736: 1732: 1727: 1722: 1718: 1715: 1714: 1713:Eur. Phys. J. 1705: 1702: 1697: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1665: 1660: 1655: 1652:(2): 026701. 1651: 1647: 1646: 1641: 1634: 1631: 1626: 1622: 1616: 1613: 1608: 1604: 1600: 1596: 1591: 1586: 1582: 1578: 1574: 1570: 1565: 1560: 1556: 1552: 1548: 1541: 1538: 1533: 1529: 1524: 1519: 1515: 1511: 1506: 1501: 1497: 1493: 1489: 1482: 1479: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1446: 1445: 1440: 1433: 1430: 1425: 1421: 1417: 1413: 1409: 1405: 1400: 1395: 1391: 1387: 1386: 1378: 1375: 1370: 1366: 1362: 1358: 1354: 1350: 1345: 1340: 1337:(2): 022412. 1336: 1332: 1325: 1322: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1284: 1279: 1275: 1271: 1267: 1260: 1257: 1251: 1246: 1239: 1236: 1230: 1225: 1218: 1215: 1210: 1206: 1202: 1198: 1194: 1190: 1186: 1182: 1177: 1172: 1168: 1164: 1163: 1158: 1151: 1148: 1143: 1139: 1135: 1131: 1127: 1123: 1118: 1113: 1109: 1105: 1104: 1096: 1093: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1059: 1054: 1050: 1046: 1045: 1040: 1033: 1031: 1027: 1021: 1016: 1012: 1009: 1008: 1003: 996: 993: 988: 981: 978: 973: 969: 965: 961: 957: 953: 949: 945: 944: 936: 934: 932: 928: 921: 919: 917: 912: 909: 905: 900: 898: 894: 890: 885: 881: 879: 874: 869: 867: 862: 859: 855: 851: 846: 844: 840: 836: 832: 828: 820: 816: 812: 807: 802: 798: 790: 785: 782: 779: 776: 775: 774: 771: 769: 765: 760: 744: 738: 734: 727:decreases as 714: 694: 674: 652: 648: 627: 604: 599: 578: 558: 538: 498: 471: 468: 448: 400: 387: 383: 362: 313: 295: 291: 270: 245: 240: 236: 226: 222: 211: 209: 204: 202: 192: 185: 183: 181: 173: 171: 169: 164: 160: 156: 152: 147: 143: 138: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 84: 81: 73: 63: 59: 53: 50:This article 48: 39: 38: 33: 19: 4461:Charge qubit 4386:KLM protocol 4335: 4199: 4189: 4068: 3883:Purification 3813:Eastin–Knill 3643:Local search 3589:Edmonds–Karp 3545:Bellman–Ford 3315:minimization 3147:Gauss–Newton 3097:Quasi–Newton 3082:Trust region 2990:Optimization 2951: 2947: 2924: 2904: 2876: 2872: 2852: 2832: 2813: 2766: 2762: 2701: 2697: 2687: 2650: 2644: 2634: 2591: 2585: 2579: 2568:. Retrieved 2564: 2554: 2543:. Retrieved 2538: 2529: 2496: 2489: 2446: 2442: 2436: 2401: 2397: 2387: 2374: 2331: 2325: 2319: 2307:. Retrieved 2303:the original 2298: 2289: 2277:. Retrieved 2273:the original 2268: 2259: 2216: 2210: 2200: 2178: 2153: 2143: 2132:. Retrieved 2128:the original 2123: 2114: 2102:. Retrieved 2098:the original 2093: 2084: 2043: 2039: 1975: 1971: 1961: 1900: 1896: 1886: 1835: 1829: 1823: 1770: 1765: 1759: 1719:(1): 17–24. 1716: 1711: 1704: 1696:the original 1649: 1645:Phys. Rev. E 1643: 1633: 1624: 1615: 1554: 1550: 1540: 1495: 1491: 1481: 1448: 1442: 1432: 1389: 1383: 1377: 1334: 1330: 1324: 1273: 1269: 1259: 1238: 1217: 1166: 1160: 1150: 1107: 1101: 1095: 1087:the original 1048: 1044:Phys. Rev. E 1042: 1010: 1005: 995: 980: 947: 941: 913: 901: 886: 882: 870: 863: 847: 824: 772: 761: 212: 207: 205: 198: 177: 139: 123:ground state 119:local minima 98: 94: 93: 91: 76: 70:January 2022 67: 51: 4492:programming 4471:Phase qubit 4376:Circuit QED 3848:No-deleting 3790:cloud-based 3663:Tabu search 3074:Convergence 3045:Line search 2879:: 485–500. 2704:(1): 3446. 2154:Nature News 1903:(1): 2212. 1557:(1): 2212. 1051:(5): 5355. 163:Ising model 155:Hamiltonian 105:of a given 4580:Categories 4532:libquantum 4466:Flux qubit 4371:Cavity QED 4320:Bacon–Shor 4310:stabilizer 3838:No-cloning 3494:algorithms 3002:heuristics 2994:Algorithms 2660:1910.13045 2653:: 106630. 2601:1803.03372 2570:2021-11-12 2545:2016-01-21 2456:1503.04216 2134:2011-05-30 1910:2110.12354 1845:1804.00371 1708:See e.g., 1625:Mathonline 1564:2110.12354 1344:2304.10488 1250:1505.01249 922:References 815:D-Wave One 801:D-Wave Two 127:spin glass 4438:NV center 3873:Threshold 3853:No-hiding 3818:Gleason's 3449:Paradigms 3348:quadratic 3065:Gradients 3027:Functions 2886:1310.1339 2776:1210.0811 2744:257236235 2679:0098-1354 2626:118974781 2341:1401.3500 2226:1304.4595 2191:1204.2821 2076:205224761 1953:248389790 1793:CiteSeerX 1780:0801.2193 1751:118525494 1726:1408.3262 1607:248389790 1505:1411.5693 1473:116931586 1399:0806.1859 1369:258236417 1229:1401.7320 889:D-Wave 2X 854:NASA Ames 825:In 2011, 675:τ 628:τ 579:τ 571:one gets 519:Δ 477:Δ 472:≪ 429:Γ 405:Γ 396:Δ 388:− 343:Δ 322:Δ 232:Δ 227:− 4500:OpenQASM 4476:Transmon 4353:Physical 4153:Quantum 4054:Grover's 3828:Holevo's 3801:Theorems 3751:timeline 3741:NISQ era 3680:Software 3557:Dijkstra 3388:exchange 3186:Hessians 3152:Gradient 2801:19019744 2736:36859591 2521:57916974 2481:66770023 2428:24948715 2380:Cho 2014 2366:19235104 2170:57405432 2068:21562559 2018:37564720 2010:10221904 1945:35468917 1878:53594139 1870:30468584 1815:14255125 1692:16466621 1684:16196745 1599:35468917 1532:25765071 1424:13992889 1316:37564720 1308:10221904 1209:10132718 1201:11313487 1142:97302385 1083:36114913 421:, where 159:Diabatic 157:, i.e., 4490:Quantum 4428:Kane QC 4287:Quantum 4215:Quantum 4144:PostBQP 4114:Quantum 4099:Simon's 3892:Quantum 3729:General 3523:Kruskal 3513:BorĹŻvka 3503:Minimum 3240:General 2998:methods 2891:Bibcode 2781:Bibcode 2727:9977923 2706:Bibcode 2606:Bibcode 2501:Bibcode 2461:Bibcode 2406:Bibcode 2398:Science 2346:Bibcode 2309:22 June 2279:22 June 2251:8031023 2231:Bibcode 2048:Bibcode 1990:Bibcode 1972:Science 1936:9038765 1915:Bibcode 1850:Bibcode 1785:Bibcode 1731:Bibcode 1664:Bibcode 1590:9038765 1569:Bibcode 1510:Bibcode 1492:Science 1453:Bibcode 1404:Bibcode 1349:Bibcode 1288:Bibcode 1270:Science 1181:Bibcode 1162:Science 1122:Bibcode 1063:Bibcode 972:9948016 952:Bibcode 916:NP-hard 873:Science 263:, with 129:or the 56:Please 4508:IBM QX 4504:Qiskit 4443:NMR QC 4421:-based 4325:Steane 4296:Codes 4094:Shor's 4000:SARG04 3808:Bell's 3385:Basis- 3343:Linear 3313:Convex 3157:Mirror 3114:L-BFGS 3000:, and 2932:  2911:  2860:  2839:  2820:  2799:  2742:  2734:  2724:  2677:  2624:  2565:Medium 2519:  2479:  2426:  2364:  2249:  2168:  2124:D-Wave 2104:11 May 2074:  2066:  2040:Nature 2016:  2008:  1951:  1943:  1933:  1876:  1868:  1813:  1795:  1749:  1690:  1682:  1605:  1597:  1587:  1530:  1471:  1422:  1367:  1314:  1306:  1207:  1199:  1140:  1081:  970:  850:Google 799:, and 168:Grover 4330:Toric 3773:Qubit 3584:Dinic 3492:Graph 2881:arXiv 2797:S2CID 2771:arXiv 2740:S2CID 2655:arXiv 2622:S2CID 2596:arXiv 2517:S2CID 2477:S2CID 2451:arXiv 2362:S2CID 2336:arXiv 2299:1QBit 2247:S2CID 2221:arXiv 2186:arXiv 2166:S2CID 2072:S2CID 2014:S2CID 1980:arXiv 1949:S2CID 1905:arXiv 1874:S2CID 1840:arXiv 1811:S2CID 1775:arXiv 1747:S2CID 1721:arXiv 1688:S2CID 1654:arXiv 1603:S2CID 1559:arXiv 1500:arXiv 1469:S2CID 1420:S2CID 1394:arXiv 1365:S2CID 1339:arXiv 1312:S2CID 1278:arXiv 1245:arXiv 1224:arXiv 1205:S2CID 1171:arXiv 1138:S2CID 1112:arXiv 1079:S2CID 1053:arXiv 831:qubit 125:of a 4522:Cirq 4513:Quil 4419:Spin 4315:Shor 3995:BB84 3928:LOCC 3550:SPFA 3518:Prim 3112:and 2930:ISBN 2909:ISBN 2858:ISBN 2837:ISBN 2818:ISBN 2732:PMID 2675:ISSN 2424:PMID 2311:2014 2281:2014 2106:2011 2064:PMID 2006:PMID 1941:PMID 1866:PMID 1680:PMID 1595:PMID 1528:PMID 1304:PMID 1197:PMID 968:PMID 895:and 310:the 4336:gnu 4300:CSS 4177:XEB 4139:QMA 4134:QIP 4129:EQP 4124:BQP 4104:VQE 4059:HHL 3863:PBR 3480:cut 3345:and 2952:381 2789:doi 2767:523 2722:PMC 2714:doi 2665:doi 2651:132 2614:doi 2509:doi 2469:doi 2414:doi 2402:344 2354:doi 2239:doi 2158:doi 2056:doi 2044:473 1998:doi 1976:284 1931:PMC 1923:doi 1858:doi 1836:121 1803:doi 1739:doi 1717:224 1672:doi 1585:PMC 1577:doi 1518:doi 1496:348 1461:doi 1412:doi 1357:doi 1335:108 1296:doi 1274:284 1189:doi 1167:292 1130:doi 1108:219 1071:doi 1015:doi 960:doi 841:'s 839:USC 60:to 4582:: 4527:Q# 2996:, 2992:: 2950:. 2946:. 2889:. 2877:79 2875:. 2795:. 2787:. 2779:. 2765:. 2738:. 2730:. 2720:. 2712:. 2702:13 2700:. 2696:. 2673:. 2663:. 2649:. 2643:. 2620:. 2612:. 2604:. 2592:59 2590:. 2563:. 2537:. 2515:. 2507:. 2475:. 2467:. 2459:. 2447:92 2445:. 2422:. 2412:. 2400:. 2396:. 2382:). 2360:. 2352:. 2344:. 2330:. 2297:. 2267:. 2245:. 2237:. 2229:. 2217:10 2215:. 2209:. 2164:. 2156:. 2152:. 2122:. 2092:. 2070:. 2062:. 2054:. 2042:. 2038:. 2026:^ 2012:. 2004:. 1996:. 1988:. 1974:. 1970:. 1947:. 1939:. 1929:. 1921:. 1913:. 1901:13 1899:. 1895:. 1872:. 1864:. 1856:. 1848:. 1834:. 1809:. 1801:. 1791:. 1783:. 1771:80 1745:. 1737:. 1729:. 1686:. 1678:. 1670:. 1662:. 1650:72 1648:. 1642:. 1623:. 1601:. 1593:. 1583:. 1575:. 1567:. 1555:13 1553:. 1549:. 1526:. 1516:. 1508:. 1494:. 1490:. 1467:. 1459:. 1449:39 1447:. 1441:. 1418:. 1410:. 1402:. 1390:49 1388:. 1363:. 1355:. 1347:. 1333:. 1310:. 1302:. 1294:. 1286:. 1272:. 1268:. 1203:. 1195:. 1187:. 1179:. 1165:. 1159:. 1136:. 1128:. 1120:. 1106:. 1077:. 1069:. 1061:. 1049:58 1047:. 1041:. 1029:^ 1011:33 1004:. 966:. 958:. 948:39 946:. 930:^ 852:, 759:. 135:ja 99:QA 4515:– 4506:– 4502:– 4203:2 4200:T 4193:1 4190:T 3714:e 3707:t 3700:v 3478:/ 2982:e 2975:t 2968:v 2938:. 2917:. 2899:. 2897:. 2893:: 2883:: 2866:. 2845:. 2826:. 2803:. 2791:: 2783:: 2773:: 2746:. 2716:: 2708:: 2681:. 2667:: 2657:: 2628:. 2616:: 2608:: 2598:: 2573:. 2548:. 2523:. 2511:: 2503:: 2483:. 2471:: 2463:: 2453:: 2430:. 2416:: 2408:: 2368:. 2356:: 2348:: 2338:: 2332:4 2313:. 2283:. 2253:. 2241:: 2233:: 2223:: 2194:. 2188:: 2172:. 2160:: 2137:. 2108:. 2078:. 2058:: 2050:: 2020:. 2000:: 1992:: 1982:: 1955:. 1925:: 1917:: 1907:: 1880:. 1860:: 1852:: 1842:: 1817:. 1805:: 1787:: 1777:: 1753:. 1741:: 1733:: 1723:: 1674:: 1666:: 1656:: 1627:. 1609:. 1579:: 1571:: 1561:: 1534:. 1520:: 1512:: 1502:: 1475:. 1463:: 1455:: 1426:. 1414:: 1406:: 1396:: 1371:. 1359:: 1351:: 1341:: 1318:. 1298:: 1290:: 1280:: 1253:. 1247:: 1232:. 1226:: 1211:. 1191:: 1183:: 1173:: 1144:. 1132:: 1124:: 1114:: 1073:: 1065:: 1055:: 1023:. 1017:: 974:. 962:: 954:: 745:N 739:/ 735:1 715:w 695:N 653:N 649:e 605:N 600:e 559:w 539:N 499:N 469:w 449:w 401:w 384:e 363:w 296:B 292:k 271:T 246:T 241:B 237:k 223:e 97:( 83:) 77:( 72:) 68:( 54:. 34:. 20:)

Index

Quantum annealer
Annealing (disambiguation)
help improve it
make it understandable to non-experts
Learn how and when to remove this message
global minimum
objective function
quantum fluctuations
combinatorial optimization
local minima
ground state
spin glass
traveling salesman problem
ja
Schrödinger equation
quantum tunneling
adiabatic quantum computation
Hamiltonian
Diabatic
Ising model
Grover
simulated annealing
Simple analogy describing the difference between Simulated Annealing and Quantum Annealing.
quantum Monte Carlo
Boltzmann constant
quantum computer
quantum entanglement
D-Wave Systems § Computer systems
D-Wave Two

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑