Knowledge (XXG)

Quantum annealing

Source đź“ť

199:, one may consider the variables in the problem to be classical degrees of freedom, and the cost functions to be the potential energy function (classical Hamiltonian). Then a suitable term consisting of non-commuting variable(s) (i.e. variables that have non-zero commutator with the variables of the original mathematical problem) has to be introduced artificially in the Hamiltonian to play the role of the tunneling field (kinetic part). Then one may carry out the simulation with the quantum Hamiltonian thus constructed (the original function + non-commuting part) just as described above. Here, there is a choice in selecting the non-commuting term and the efficiency of annealing may depend on that. 171:, whose "temperature" parameter plays a similar role to QA's tunneling field strength. In simulated annealing, the temperature determines the probability of moving to a state of higher "energy" from a single current state. In quantum annealing, the strength of transverse field determines the quantum-mechanical probability to change the amplitudes of all states in parallel. Analytical and numerical evidence suggests that quantum annealing outperforms simulated annealing under certain conditions (see for a careful analysis, and, for a fully solvable model of quantum annealing to arbitrary target Hamiltonian and comparison of different computation approaches). 180: 4550: 3201: 907:) problems, the general structure of quantum annealing-based algorithms and two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems, together with an overview of the quantum annealing systems manufactured by D-Wave Systems. Hybrid quantum-classic algorithms for large-scale discrete-continuous optimization problems were reported to illustrate the quantum advantage. 4540: 857:(1QBit) and cancer research group DNA-SEQ to focus on solving real-world problems with quantum hardware. As the first company dedicated to producing software applications for commercially available quantum computers, 1QBit's research and development arm has focused on D-Wave's quantum annealing processors and has successfully demonstrated that these processors are suitable for solving real-world applications. 869:, found "no quantum speedup" across the entire range of their tests, and only inconclusive results when looking at subsets of the tests. Their work illustrated "the subtle nature of the quantum speedup question". Further work has advanced understanding of these test metrics and their reliance on equilibrated systems, thereby missing any signatures of advantage due to quantum dynamics. 795: 32: 899:
because Shor's algorithm is not a hillclimbing process. Shor's algorithm requires a universal quantum computer. During the Qubits 2021 conference held by D-Wave, it was announced that the company is developing their first universal quantum computers, capable of running Shor's algorithm in addition to
872:
There are many open questions regarding quantum speedup. The ETH reference in the previous section is just for one class of benchmark problems. Potentially there may be other classes of problems where quantum speedup might occur. Researchers at Google, LANL, USC, Texas A&M, and D-Wave are working
864:
in June 2014, described as "likely the most thorough and precise study that has been done on the performance of the D-Wave machine" and "the fairest comparison yet", attempted to define and measure quantum speedup. Several definitions were put forward as some may be unverifiable by empirical tests,
202:
It has been demonstrated experimentally as well as theoretically, that quantum annealing can indeed outperform thermal annealing (simulated annealing) in certain cases, especially where the potential energy (cost) landscape consists of very high but thin barriers surrounding shallow local minima.
323:
of the barriers, for very high barriers, it is extremely difficult for thermal fluctuations to get the system out from such local minima. However, as argued earlier in 1989 by Ray, Chakrabarti & Chakrabarti, the quantum tunneling probability through the same barrier (considered in isolation)
183:
Quantum Annealing (blue line) efficiently traverses energy landscapes by leveraging quantum tunneling to find the global minimum. Quantum annealing offers a significant performance advantage over Simulated Annealing (magenta line), unlocking the potential to solve massive optimization problems
154:
that corresponds to the solution to the original optimization problem. An experimental demonstration of the success of quantum annealing for random magnets was reported immediately after the initial theoretical proposal. Quantum annealing has also been proven to provide a fast
755:, such simulations would be much more efficient and exact than that done in a classical computer, because it can perform the tunneling directly, rather than needing to add it by hand. Moreover, it may be able to do this without the tight error controls needed to harness the 865:
while others, though falsified, would nonetheless allow for the existence of performance advantages. The study found that the D-Wave chip "produced no quantum speedup" and did not rule out the possibility in future tests. The researchers, led by Matthias Troyer at the
2172:
Smelyanskiy, Vadim N.; Rieffel, Eleanor G.; Knysh, Sergey I.; Williams, Colin P.; Johnson, Mark W.; Thom, Murray C.; Macready, William G.; Pudenz, Kristen L. (2012). "A Near-Term Quantum Computing Approach for Hard Computational Problems in Space Exploration".
2840: 2483:
Steiger, Damian; Heim, Bettina; Rønnow, Troels; Troyer, Matthias (October 22, 2015). "Performance of quantum annealing hardware". In Huckridge, David A.; Ebert, Reinhard; Gruneisen, Mark T.; Dusek, Miloslav; Rarity, John G. (eds.).
133:, a natural quantum-mechanical evolution of physical systems. The amplitudes of all candidate states keep changing, realizing a quantum parallelism, according to the time-dependent strength of the transverse field, which causes 2912: 122:. The term "quantum annealing" was first proposed in 1988 by B. Apolloni, N. Cesa Bianchi and D. De Falco as a quantum-inspired classical algorithm. It was formulated in its present form by T. Kadowaki and H. Nishimori ( 766:
1989 Idea was presented that quantum fluctuations could help explore rugged energy landscapes of the classical Ising spin glasses by escaping from local minima (having tall but thin barriers) using tunneling;
849:
purchased an adiabatic quantum computer from D-Wave Systems with 512 qubits. An extensive study of its performance as quantum annealer, compared to some classical annealing algorithms, is already available.
137:
between states or essentially tunneling through peaks. If the rate of change of the transverse field is slow enough, the system stays close to the ground state of the instantaneous Hamiltonian (also see
142:). If the rate of change of the transverse field is accelerated, the system may leave the ground state temporarily but produce a higher likelihood of concluding in the ground state of the final problem 2253: 408: 860:
With demonstrations of entanglement published, the question of whether or not the D-Wave machine can demonstrate quantum speedup over all classical computers remains unanswered. A study published in
188:
The tunneling field is basically a kinetic energy term that does not commute with the classical potential energy part of the original glass. The whole process can be simulated in a computer using
250: 3098: 2750:
Bapst, V.; Foini, L.; Krzakala, F.; Semerjian, G.; Zamponi, F. (2013). "The quantum adiabatic algorithm applied to random optimization problems: The quantum spin glass perspective".
478: 129:
Quantum annealing starts from a quantum-mechanical superposition of all possible states (candidate states) with equal weights. Then the system evolves following the time-dependent
818:
announced the first commercial quantum annealer on the market by the name D-Wave One and published a paper in Nature on its performance. The company claims this system uses a 128
929:
Ray, P.; Chakrabarti, B. K.; Chakrabarti, A. (1989). "Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations".
2573:
Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco (2018). "A cross-disciplinary introduction to quantum annealing-based algorithms".
50: 746: 607: 2969: 1211:
Crosson, Elizabeth; Farhi, Edward; Cedric Yen-Yu Lin; Lin, Han-Hsuan; Shor, Peter (2014). "Different Strategies for Optimization Using the Quantum Adiabatic Algorithm".
3093: 518: 428: 342: 321: 3739: 674: 654: 627: 578: 297: 3701: 714: 694: 558: 538: 498: 448: 362: 270: 4579: 4431: 995: 2261: 126:) in 1998 though an imaginary-time variant without quantum coherence had been discussed by A. B. Finnila, M. A. Gomez, C. Sebenik and J. D. Doll in 1994. 4332: 3993: 2549: 2078: 1089:
Finnila, A.B.; Gomez, M.A.; Sebenik, C.; Stenson, C.; Doll, J.D. (1994). "Quantum annealing: A new method for minimizing multidimensional functions".
3894: 3107: 3587: 4219: 846: 150:
quantum computation. The transverse field is finally switched off, and the system is expected to have reached the ground state of the classical
2962: 2922: 2901: 2850: 2829: 2810: 2313:
Lanting, T.; Przybysz, A. J.; Smirnov, A. Yu.; Spedalieri, F. M.; et al. (2014-05-29). "Entanglement in a quantum annealing processor".
4543: 3729: 4501: 3668: 3130: 2634: 4077: 3182: 3043: 3150: 4553: 4441: 3694: 827: 68: 4027: 903:"A cross-disciplinary introduction to quantum annealing-based algorithms" presents an introduction to combinatorial optimization ( 4574: 4369: 3261: 2955: 367: 4364: 4092: 4072: 1373: 143: 3871: 4359: 3538: 3200: 1232:
Muthukrishnan, Siddharth; Albash, Tameem; Lidar, Daniel A. (2015). "When Diabatic Trumps Adiabatic in Quantum Optimization".
831: 192:(or other stochastic technique), and thus obtain a heuristic algorithm for finding the ground state of the classical glass. 2108: 1817:
Li, F.; Chernyak, V. Y. & Sinitsyn, N. A. (2018). "Quantum annealing and thermalization: insights from integrability".
4392: 4214: 4117: 3778: 3646: 3266: 139: 3582: 3550: 4397: 4265: 3856: 3687: 854: 4177: 4037: 3811: 1609: 4584: 4421: 3766: 3710: 3631: 3256: 1628: 1027: 3866: 3577: 3533: 3135: 2860:
Li, Fuxiang; Chernyak, V. Y.; Sinitsyn, N. A. (2013). "Quantum Annealing and Computation: A Brief Documentary Note".
2486:
Electro-Optical and Infrared Systems: Technology and Applications XII; and Quantum Information Science and Technology
891:
D-Wave's architecture differs from traditional quantum computers. It is not known to be polynomially equivalent to a
206: 4293: 4165: 4062: 3938: 3773: 3426: 3155: 892: 119: 103: 20: 3316: 2523: 1699:
Mukherjee, S. & Chakrabarti, B. K. (2015). "Multivariable Optimization: Quantum Annealing & Computation".
4102: 4067: 3963: 3906: 2978: 2194:
Boixo, S.; Rønnow, T. F.; Isakov, S. V.; Wang, Z.; Wecker, D.; Lidar, D. A.; Martinis, J. M.; Troyer, M. (2014).
1755: 4187: 3801: 3501: 2283: 4275: 4248: 4224: 3978: 3911: 3846: 3831: 2254:"D-Wave Systems Building Quantum Application Ecosystem, Announces Partnerships with DNA-SEQ Alliance and 1QBit" 1091: 3724: 3363: 2630:"Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems" 2138: 769:
1998 Formulation of quantum annealing and numerical test demonstrating its advantages in Ising glass systems;
4426: 4160: 4052: 4022: 3821: 3545: 3444: 3160: 2086: 1819: 759:
used in more traditional quantum algorithms. Some confirmation of this is found in exactly solvable models.
453: 147: 130: 3038: 4496: 4260: 4253: 4000: 3636: 3621: 3511: 3389: 3015: 2982: 2842:
Quantum Phase Transitions in Transverse Field Spin Models: From Statistical Physics to Quantum Information
1781: 4416: 3968: 3933: 3525: 3491: 3394: 3336: 3217: 3023: 3003: 4042: 2024: 156: 4206: 3955: 3806: 3572: 3399: 3311: 2879: 2769: 2694: 2594: 2575: 2489: 2449: 2394: 2334: 2219: 2036: 1978: 1903: 1838: 1773: 1719: 1652: 1557: 1498: 1441: 1432: 1392: 1337: 1276: 1169: 1110: 1051: 940: 756: 4308: 2947: 1786: 853:
In June 2014, D-Wave announced a new quantum applications ecosystem with computational finance firm
4525: 4478: 4082: 3836: 3816: 3751: 3746: 3641: 3506: 3459: 3449: 3301: 3289: 3102: 3085: 2990: 1318:
Sinitsyn, N.; Yan, B. (2023). "Topologically protected Grover's oracle for the partition problem".
896: 885: 881: 719: 583: 189: 168: 99: 4241: 3889: 3826: 3376: 3345: 3331: 3321: 3112: 2869: 2785: 2759: 2728: 2643: 2610: 2584: 2505: 2465: 2439: 2350: 2324: 2235: 2209: 2195: 2174: 2154: 2060: 2002: 1968: 1937: 1893: 1862: 1828: 1799: 1763: 1735: 1709: 1676: 1642: 1591: 1547: 1488: 1457: 1408: 1382: 1353: 1327: 1300: 1266: 1233: 1212: 1193: 1159: 1126: 1100: 1067: 1041: 861: 300: 134: 123: 95: 4087: 3028: 2839:
Dutta, A.; Aeppli, G.; Chakrabarti, B. K.; Divakaran, U.; Rosenbaum, T.F. & Sen, D. (2015).
450:, in presence of quantum tunneling, can be of major help: If the barriers are thin enough (i.e. 1146:"A Quantum adiabatic evolution algorithm applied to random instances of an NP-Complete problem" 4505: 4150: 4014: 3945: 3861: 3841: 3796: 3756: 3734: 3384: 3062: 2918: 2897: 2846: 2825: 2806: 2798: 2720: 2663: 2412: 2315: 2052: 1994: 1929: 1854: 1668: 1583: 1516: 1371:
Morita, Satoshi; Nishimori, Hidetoshi (2008). "Mathematical foundation of quantum annealing".
1292: 1185: 1150: 956: 931: 503: 413: 327: 306: 4172: 4122: 3899: 3464: 3454: 3358: 3235: 3140: 3122: 3075: 2986: 2932: 2892:
Suzuki, S.; Inoue, J.-I. & Chakrabarti, B. K. (2013). "Chapter 8 on Quantum Annealing".
2777: 2710: 2702: 2653: 2602: 2497: 2457: 2430:
Amin, Mohammad H. (2015). "Searching for quantum speedup in quasistatic quantum annealers".
2402: 2342: 2227: 2146: 2044: 1986: 1919: 1911: 1882:"Analytical solution for nonadiabatic quantum annealing to arbitrary Ising spin Hamiltonian" 1846: 1791: 1727: 1660: 1573: 1565: 1536:"Analytical solution for nonadiabatic quantum annealing to arbitrary Ising spin Hamiltonian" 1506: 1449: 1400: 1345: 1284: 1177: 1118: 1059: 1003: 948: 775:
2011 Superconducting-circuit quantum annealing machine built and marketed by D-Wave Systems.
752: 480:), quantum fluctuations can surely bring the system out of the shallow local minima. For an 1254: 978:. Stochastic Processes, Physics and Geometry, Proceedings of the Ascona-Locarno Conference. 826:
Corporation entered into an agreement to purchase a D-Wave One system. On October 28, 2011
659: 632: 612: 563: 275: 179: 4298: 4236: 3926: 3921: 3480: 823: 807: 772:
1999 First experimental demonstration of quantum annealing in LiHoYF Ising glass magnets;
2883: 2773: 2698: 2598: 2493: 2453: 2398: 2338: 2223: 2116: 2109:"D-Wave Systems sells its first Quantum Computing System to Lockheed Martin Corporation" 2040: 1982: 1907: 1842: 1777: 1753:
Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation".
1723: 1656: 1561: 1502: 1445: 1396: 1341: 1280: 1173: 1114: 1055: 944: 4407: 4384: 4351: 4155: 4032: 3468: 3353: 3240: 3174: 3145: 2715: 2682: 2200: 1924: 1881: 1578: 1535: 815: 799: 785: 699: 679: 543: 523: 483: 433: 347: 255: 91: 2658: 2629: 1453: 1145: 4568: 4229: 4047: 3973: 3626: 3610: 2732: 2614: 2064: 1941: 1739: 1701: 1595: 1461: 1428:"Optimization using quantum mechanics: quantum annealing through adiabatic evolution" 1357: 1122: 1008: 990: 975: 107: 2789: 2509: 2469: 2354: 2158: 2006: 1866: 1803: 1680: 1412: 1304: 1197: 1130: 1071: 810:
logic elements that exhibit controllable and tunable coupling to perform operations.
102:. Quantum annealing is used mainly for problems where the search space is discrete ( 4449: 4374: 3564: 3070: 2550:"D-Wave's Next-Generation Roadmap: Bringing Clarity to Practical Quantum Computing" 2239: 1850: 1633: 1032: 111: 2781: 2606: 2407: 2382: 1731: 1990: 1684: 1288: 1144:
Farhi, E.; Goldstone, J.; Gutmann, S.; Lapan, J.; Ludgren, A.; Preda, D. (2001).
1075: 4459: 4313: 3851: 3651: 3033: 1427: 1349: 904: 151: 2706: 2461: 1915: 1795: 1664: 1569: 98:
over a given set of candidate solutions (candidate states), by a process using
4520: 4454: 4318: 3679: 2346: 2150: 952: 866: 803: 789: 115: 2667: 1956: 1063: 4303: 1511: 1476: 1181: 877: 842: 2724: 2416: 2056: 1998: 1933: 1858: 1672: 1587: 1520: 1296: 1189: 794: 1955:
Brooke, J.; Bitko, D.; Rosenbaum, T. F. & Aeppli, G. (30 April 1999).
960: 4488: 4464: 4323: 4288: 3053: 1973: 1647: 1271: 1164: 1046: 888:
by up to a factor of 100,000,000 on a set of hard optimization problems.
159:
oracle for the square-root speedup in solving many NP-complete problems.
2683:"Community detection in brain connectomes with hybrid quantum computing" 2048: 1105: 4515: 4132: 3373: 2501: 2231: 1404: 762:
Timeline of ideas related to quantum annealing in Ising spin glasses:
4492: 3988: 838: 2933:"Quantum Annealing & Computation: Challenges & Perspectives" 974:
Apolloni, Bruno; Cesa-Bianchi, Nicolo; De Falco, Diego (July 1988).
2648: 2589: 2444: 1898: 1833: 1552: 1332: 1238: 3761: 2874: 2764: 2329: 2214: 2196:"Evidence for quantum annealing with more than one hundred qubits" 2179: 1768: 1714: 1493: 1387: 1217: 819: 793: 178: 2894:
Quantum Ising Phases & Transitions in Transverse Ising Models
2291: 2023:
Johnson, M. W.; Amin, M. H. S.; Gildert, S.; et al. (2011).
430:
is the tunneling field. This additional handle through the width
4510: 3983: 3916: 2824:. Lecture Note in Physics. Vol. 679. Heidelberg: Springer. 2805:. Lecture Note in Physics. Vol. 802. Heidelberg: Springer. 3683: 3608: 3424: 3287: 3215: 3001: 2951: 4127: 4112: 25: 1627:
Das, A.; Chakrabarti, B. K. & Stinchcombe, R. B. (2005).
989:
Apolloni, Bruno; Carvalho, Maria C.; De Falco, Diego (1989).
16:
Quantum physics-based metaheuristic for optimization problems
3199: 2628:
Ajagekar, Akshay; Humble, Travis; You, Fengqi (2020-01-04).
1253:
Brooke, J.; Bitko, D.; Rosenbaum, T. F.; Aeppli, G. (1999).
1475:
Heim, B.; Rønnow, T. F.; Isakov, S. V.; Troyer, M. (2015).
1426:
Santoro, Giuseppe E. & Tosatti, Erio (18 August 2006).
2383:"Quantum or not, controversial computer yields no speedup" 1610:"Local Maxima and Minima, and, Absolute Maxima and Minima" 1477:"Quantum versus classical annealing of Ising spin glasses" 822:
processor chipset. On May 25, 2011, D-Wave announced that
403:{\displaystyle e^{-{\frac {{\sqrt {\Delta }}w}{\Gamma }}}} 2911:
Tanaka, S.; Tamura, R. & Chakrabarti, B. K. (2017).
203:
Since thermal transition probabilities (proportional to
1629:"Quantum annealing in a kinetically constrained system" 46: 2917:. Cambridge & Delhi: Cambridge University Press. 2845:. Cambridge & Delhi: Cambridge University Press. 2820:
Das, Arnab & Chakrabarti, Bikas K., eds. (2005).
722: 702: 682: 662: 635: 615: 586: 566: 546: 526: 506: 486: 456: 436: 416: 370: 350: 330: 309: 278: 258: 209: 4477: 4440: 4406: 4383: 4350: 4341: 4274: 4203: 4141: 4101: 4013: 3954: 3880: 3789: 3717: 3563: 3524: 3490: 3479: 3437: 3372: 3344: 3330: 3300: 3249: 3228: 3173: 3121: 3084: 3061: 3052: 3014: 2681:Wierzbiński, M.; Falo-Roget, J.; Crimi, A. (2023). 41:
may be too technical for most readers to understand
2822:Quantum Annealing and Related Optimization Methods 900:other gate-model algorithms such as QAOA and VQE. 837:In May 2013 it was announced that a consortium of 802:, mounted and wire-bonded in a sample holder. The 740: 708: 688: 668: 648: 621: 601: 572: 552: 532: 512: 492: 472: 442: 422: 402: 356: 336: 315: 291: 264: 244: 2914:Quantum Spin Glasses, Annealing & Computation 1028:"Quantum annealing in the transverse Ising model" 976:"A numerical implementation of quantum annealing" 924: 922: 920: 195:In the case of annealing a purely mathematical 245:{\displaystyle e^{-{\frac {\Delta }{k_{B}T}}}} 3695: 2963: 90:) is an optimization process for finding the 8: 2803:Quantum Quenching, Annealing and Computation 2018: 2016: 1021: 1019: 876:In December 2015, Google announced that the 2025:"Quantum annealing with manufactured spins" 4347: 3951: 3702: 3688: 3680: 3605: 3521: 3487: 3434: 3421: 3341: 3297: 3284: 3225: 3212: 3058: 3011: 2998: 2970: 2956: 2948: 2139:"Google and NASA snap up quantum computer" 1957:"Quantum Annealing of a Disordered Magnet" 1255:"Quantum annealing of a disordered magnet" 2873: 2763: 2714: 2657: 2647: 2588: 2443: 2406: 2328: 2213: 2178: 1972: 1923: 1897: 1832: 1785: 1767: 1713: 1646: 1577: 1551: 1510: 1492: 1386: 1331: 1270: 1237: 1216: 1163: 1104: 1045: 1007: 731: 726: 721: 701: 681: 661: 640: 634: 614: 591: 585: 565: 545: 525: 505: 485: 463: 455: 435: 415: 382: 379: 375: 369: 349: 329: 308: 283: 277: 257: 228: 218: 214: 208: 69:Learn how and when to remove this message 53:, without removing the technical details. 3204:Optimization computes maxima and minima. 834:took delivery of Lockheed's D-Wave One. 175:Quantum mechanics: analogy and advantage 4220:Continuous-variable quantum information 916: 847:Universities Space Research Association 2943:. Royal Society, London. January 2023. 2896:(2nd ed.). Heidelberg: Springer. 786:D-Wave Systems § Computer systems 473:{\displaystyle w\ll {\sqrt {\Delta }}} 344:of the barrier, but also on its width 3400:Principal pivoting algorithm of Lemke 867:Swiss Federal Institute of Technology 167:Quantum annealing can be compared to 51:make it understandable to non-experts 7: 2797:Chandra, Anjan K.; Das, Arnab & 2635:Computers & Chemical Engineering 2079:"Learning to program the D-Wave One" 1026:Kadowaki, T.; Nishimori, H. (1998). 806:'s processor is designed to use 128 798:Photograph of a chip constructed by 184:previously thought to be impossible. 4580:Optimization algorithms and methods 2368: 895:and, in particular, cannot execute 609:for the annealing time (instead of 3044:Successive parabolic interpolation 2488:. Vol. 9648. p. 964816. 507: 465: 417: 393: 384: 331: 310: 220: 14: 3364:Projective algorithm of Karmarkar 2659:10.1016/j.compchemeng.2019.106630 2524:"When can Quantum Annealing win?" 1880:Yan, B.; Sinitsyn, N. A. (2022). 1534:Yan, B.; Sinitsyn, N. A. (2022). 991:"Quantum stochastic optimization" 163:Comparison to Simulated Annealing 4549: 4548: 4539: 4538: 3359:Ellipsoid algorithm of Khachiyan 3262:Sequential quadratic programming 3099:Broyden–Fletcher–Goldfarb–Shanno 500:-spin glass, the barrier height 30: 1374:Journal of Mathematical Physics 324:depends not only on the height 3317:Reduced gradient (Frank–Wolfe) 2367:Helmut Katzgraber, quoted in ( 1851:10.1103/PhysRevLett.121.190601 873:to find such problem classes. 832:Information Sciences Institute 656:for thermal annealing), while 364:and is approximately given by 1: 4215:Adiabatic quantum computation 3647:Spiral optimization algorithm 3267:Successive linear programming 2782:10.1016/j.physrep.2012.10.002 2607:10.1080/00107514.2018.1450720 2548:D-Wave Systems (2021-10-05). 2408:10.1126/science.344.6190.1330 741:{\displaystyle 1/{\sqrt {N}}} 696:-independent for cases where 602:{\displaystyle e^{\sqrt {N}}} 140:adiabatic quantum computation 4266:Topological quantum computer 3385:Simplex algorithm of Dantzig 3257:Augmented Lagrangian methods 2937:Philosophical Transactions A 2381:Cho, Adrian (20 June 2014). 2115:. 2011-05-25. Archived from 1991:10.1126/science.284.5415.779 1289:10.1126/science.284.5415.779 1123:10.1016/0009-2614(94)00117-0 1009:10.1016/0304-4149(89)90040-9 855:1QB Information Technologies 303:) depend only on the height 4544:Quantum information science 3711:Quantum information science 1732:10.1140/epjst/e2015-02339-y 1454:10.1088/0305-4470/39/36/R01 1350:10.1103/PhysRevA.108.022412 751:It is speculated that in a 4601: 3939:quantum gate teleportation 2707:10.1038/s41598-023-30579-y 2462:10.1103/PhysRevA.92.052323 1916:10.1038/s41467-022-29887-0 1796:10.1103/RevModPhys.80.1061 1665:10.1103/PhysRevE.72.026701 1570:10.1038/s41467-022-29887-0 893:universal quantum computer 783: 120:traveling salesman problem 104:combinatorial optimization 21:Annealing (disambiguation) 18: 4534: 4068:Quantum Fourier transform 3964:Post-quantum cryptography 3907:Entanglement distillation 3664: 3617: 3604: 3588:Push–relabel maximum flow 3433: 3420: 3390:Revised simplex algorithm 3296: 3283: 3224: 3211: 3197: 3010: 2997: 2347:10.1103/PhysRevX.4.021041 2151:10.1038/nature.2013.12999 953:10.1103/PhysRevB.39.11828 4554:Quantum mechanics topics 4249:Quantum machine learning 4225:One-way quantum computer 4078:Quantum phase estimation 3979:Quantum key distribution 3912:Monogamy of entanglement 3113:Symmetric rank-one (SR1) 3094:Berndt–Hall–Hall–Hausman 1092:Chemical Physics Letters 1064:10.1103/PhysRevE.58.5355 540:. For constant value of 4575:Stochastic optimization 4161:Randomized benchmarking 4023:Amplitude amplification 3637:Parallel metaheuristics 3445:Approximation algorithm 3156:Powell's dog leg method 3108:Davidon–Fletcher–Powell 3004:Unconstrained nonlinear 1820:Physical Review Letters 1512:10.1126/science.aaa4170 1182:10.1126/science.1057726 513:{\displaystyle \Delta } 423:{\displaystyle \Gamma } 337:{\displaystyle \Delta } 316:{\displaystyle \Delta } 4261:Quantum Turing machine 4254:quantum neural network 4001:Quantum secret sharing 3622:Evolutionary algorithm 3205: 811: 780:D-Wave implementations 742: 710: 690: 670: 650: 623: 603: 574: 554: 534: 514: 494: 474: 444: 424: 404: 358: 338: 317: 293: 266: 246: 185: 110:; such as finding the 4333:Entanglement-assisted 4294:quantum convolutional 3969:Quantum coin flipping 3934:Quantum teleportation 3895:entanglement-assisted 3725:DiVincenzo's criteria 3395:Criss-cross algorithm 3218:Constrained nonlinear 3203: 3024:Golden-section search 2799:Chakrabarti, Bikas K. 1886:Nature Communications 1540:Nature Communications 797: 784:Further information: 743: 711: 691: 671: 669:{\displaystyle \tau } 651: 649:{\displaystyle e^{N}} 624: 622:{\displaystyle \tau } 604: 575: 573:{\displaystyle \tau } 555: 535: 515: 495: 475: 445: 425: 405: 359: 339: 318: 294: 292:{\displaystyle k_{B}} 267: 247: 182: 4144:processor benchmarks 4073:Quantum optimization 3956:Quantum cryptography 3767:physical vs. logical 3312:Cutting-plane method 2576:Contemporary Physics 1433:Journal of Physics A 757:quantum entanglement 720: 700: 680: 660: 633: 613: 584: 564: 544: 524: 504: 484: 454: 434: 414: 368: 348: 328: 307: 276: 272:the temperature and 256: 207: 131:Schrödinger equation 106:problems) with many 100:quantum fluctuations 19:For other uses, see 3857:Quantum speed limit 3752:Quantum programming 3747:Quantum information 3642:Simulated annealing 3460:Integer programming 3450:Dynamic programming 3290:Convex optimization 3151:Levenberg–Marquardt 2884:2013arXiv1310.1339G 2862:Science and Culture 2774:2013PhR...523..127B 2699:2023NatSR..13.3446W 2599:2018ConPh..59..174V 2494:2015SPIE.9648E..16S 2454:2015PhRvA..92e2323A 2399:2014Sci...344.1330C 2393:(6190): 1330–1331. 2339:2014PhRvX...4b1041L 2264:on 31 December 2019 2224:2014NatPh..10..218B 2083:D-Wave Systems blog 2049:10.1038/nature10012 2041:2011Natur.473..194J 1983:1999Sci...284..779B 1908:2022NatCo..13.2212Y 1843:2018arXiv180400371L 1778:2008RvMP...80.1061D 1724:2015EPJST.224...17M 1657:2005PhRvE..72b6701D 1562:2022NatCo..13.2212Y 1503:2015Sci...348..215H 1446:2006JPhA...39R.393S 1397:2008JMP....49l5210M 1342:2023PhRvA.108b2412S 1281:1999Sci...284..779B 1174:2001Sci...292..472F 1115:1994CPL...219..343F 1056:1998PhRvE..58.5355K 945:1989PhRvB..3911828R 939:(16): 11828–11832. 886:Quantum Monte Carlo 882:simulated annealing 845:and the non-profit 190:quantum Monte Carlo 169:simulated annealing 4585:Quantum algorithms 4506:Forest/Rigetti QCS 4242:quantum logic gate 4028:Bernstein–Vazirani 4015:Quantum algorithms 3890:Classical capacity 3774:Quantum processors 3757:Quantum simulation 3322:Subgradient method 3206: 3131:Conjugate gradient 3039:Nelder–Mead method 2687:Scientific Reports 2502:10.1117/12.2202661 2137:Jones, N. (2013). 812: 738: 706: 686: 666: 646: 619: 599: 570: 550: 530: 510: 490: 470: 440: 420: 400: 354: 334: 313: 301:Boltzmann constant 289: 262: 242: 197:objective function 186: 96:objective function 4562: 4561: 4473: 4472: 4370:Linear optical QC 4151:Quantum supremacy 4105:complexity theory 4058:Quantum annealing 4009: 4008: 3946:Superdense coding 3735:Quantum computing 3677: 3676: 3660: 3659: 3600: 3599: 3596: 3595: 3559: 3558: 3520: 3519: 3416: 3415: 3412: 3411: 3408: 3407: 3279: 3278: 3275: 3274: 3195: 3194: 3191: 3190: 3169: 3168: 2924:978-1-10711-319-0 2903:978-3-64233-038-4 2852:978-1-10706-879-7 2831:978-3-54027-987-7 2812:978-3-64211-469-4 2530:. 8 December 2015 2432:Physical Review A 2316:Physical Review X 2232:10.1038/nphys2900 1967:(5415): 779–781. 1487:(6231): 215–217. 1440:(36): R393–R431. 1405:10.1063/1.2995837 1320:Physical Review A 996:Stoc. Proc. Appl. 932:Physical Review B 880:outperforms both 736: 709:{\displaystyle w} 689:{\displaystyle N} 596: 553:{\displaystyle w} 533:{\displaystyle N} 520:becomes of order 493:{\displaystyle N} 468: 443:{\displaystyle w} 396: 387: 357:{\displaystyle w} 265:{\displaystyle T} 238: 135:quantum tunneling 84:Quantum annealing 79: 78: 71: 4592: 4552: 4551: 4542: 4541: 4348: 4278:error correction 4207:computing models 4173:Relaxation times 4063:Quantum counting 3952: 3900:quantum capacity 3847:No-teleportation 3832:No-communication 3704: 3697: 3690: 3681: 3606: 3522: 3488: 3465:Branch and bound 3455:Greedy algorithm 3435: 3422: 3342: 3298: 3285: 3226: 3213: 3161:Truncated Newton 3076:Wolfe conditions 3059: 3012: 2999: 2972: 2965: 2958: 2949: 2944: 2928: 2907: 2887: 2877: 2856: 2835: 2816: 2793: 2767: 2737: 2736: 2718: 2678: 2672: 2671: 2661: 2651: 2625: 2619: 2618: 2592: 2570: 2564: 2563: 2561: 2560: 2545: 2539: 2538: 2536: 2535: 2520: 2514: 2513: 2480: 2474: 2473: 2447: 2427: 2421: 2420: 2410: 2378: 2372: 2365: 2359: 2358: 2332: 2310: 2304: 2303: 2301: 2299: 2290:. Archived from 2284:"1QBit Research" 2280: 2274: 2273: 2271: 2269: 2260:. Archived from 2250: 2244: 2243: 2217: 2191: 2185: 2184: 2182: 2169: 2163: 2162: 2134: 2128: 2127: 2125: 2124: 2119:on July 23, 2011 2105: 2099: 2098: 2096: 2094: 2089:on July 23, 2011 2085:. Archived from 2075: 2069: 2068: 2020: 2011: 2010: 1976: 1974:cond-mat/0105238 1952: 1946: 1945: 1927: 1901: 1877: 1871: 1870: 1836: 1814: 1808: 1807: 1789: 1771: 1762:(3): 1061–1081. 1750: 1744: 1743: 1717: 1695: 1689: 1688: 1683:. Archived from 1650: 1648:cond-mat/0502167 1624: 1618: 1617: 1606: 1600: 1599: 1581: 1555: 1531: 1525: 1524: 1514: 1496: 1472: 1466: 1465: 1423: 1417: 1416: 1390: 1368: 1362: 1361: 1335: 1315: 1309: 1308: 1274: 1272:cond-mat/0105238 1265:(5415): 779–81. 1250: 1244: 1243: 1241: 1229: 1223: 1222: 1220: 1208: 1202: 1201: 1167: 1165:quant-ph/0104129 1141: 1135: 1134: 1108: 1099:(5–6): 343–348. 1086: 1080: 1079: 1074:. Archived from 1049: 1047:cond-mat/9804280 1023: 1014: 1013: 1011: 986: 980: 979: 971: 965: 964: 926: 897:Shor's algorithm 753:quantum computer 747: 745: 744: 739: 737: 732: 730: 715: 713: 712: 707: 695: 693: 692: 687: 676:can even become 675: 673: 672: 667: 655: 653: 652: 647: 645: 644: 629:proportional to 628: 626: 625: 620: 608: 606: 605: 600: 598: 597: 592: 580:proportional to 579: 577: 576: 571: 559: 557: 556: 551: 539: 537: 536: 531: 519: 517: 516: 511: 499: 497: 496: 491: 479: 477: 476: 471: 469: 464: 449: 447: 446: 441: 429: 427: 426: 421: 409: 407: 406: 401: 399: 398: 397: 392: 388: 383: 380: 363: 361: 360: 355: 343: 341: 340: 335: 322: 320: 319: 314: 298: 296: 295: 290: 288: 287: 271: 269: 268: 263: 251: 249: 248: 243: 241: 240: 239: 237: 233: 232: 219: 74: 67: 63: 60: 54: 34: 33: 26: 4600: 4599: 4595: 4594: 4593: 4591: 4590: 4589: 4565: 4564: 4563: 4558: 4530: 4480: 4469: 4442:Superconducting 4436: 4402: 4393:Neutral atom QC 4385:Ultracold atoms 4379: 4344:implementations 4343: 4337: 4277: 4270: 4237:Quantum circuit 4205: 4199: 4193: 4183: 4143: 4137: 4104: 4097: 4053:Hidden subgroup 4005: 3994:other protocols 3950: 3927:quantum network 3922:Quantum channel 3882: 3876: 3822:No-broadcasting 3812:Gottesman–Knill 3785: 3713: 3708: 3678: 3673: 3656: 3613: 3592: 3555: 3516: 3493: 3482: 3475: 3429: 3404: 3368: 3335: 3326: 3303: 3292: 3271: 3245: 3241:Penalty methods 3236:Barrier methods 3220: 3207: 3187: 3183:Newton's method 3165: 3117: 3080: 3048: 3029:Powell's method 3006: 2993: 2976: 2931: 2925: 2910: 2904: 2891: 2859: 2853: 2838: 2832: 2819: 2813: 2801:, eds. (2010). 2796: 2752:Physics Reports 2749: 2746: 2744:Further reading 2741: 2740: 2680: 2679: 2675: 2627: 2626: 2622: 2572: 2571: 2567: 2558: 2556: 2547: 2546: 2542: 2533: 2531: 2522: 2521: 2517: 2482: 2481: 2477: 2429: 2428: 2424: 2380: 2379: 2375: 2366: 2362: 2312: 2311: 2307: 2297: 2295: 2294:on 19 June 2014 2282: 2281: 2277: 2267: 2265: 2252: 2251: 2247: 2193: 2192: 2188: 2171: 2170: 2166: 2136: 2135: 2131: 2122: 2120: 2107: 2106: 2102: 2092: 2090: 2077: 2076: 2072: 2035:(7346): 194–8. 2022: 2021: 2014: 1954: 1953: 1949: 1879: 1878: 1874: 1816: 1815: 1811: 1787:10.1.1.563.9990 1756:Rev. Mod. Phys. 1752: 1751: 1747: 1698: 1696: 1692: 1626: 1625: 1621: 1608: 1607: 1603: 1533: 1532: 1528: 1474: 1473: 1469: 1425: 1424: 1420: 1370: 1369: 1365: 1317: 1316: 1312: 1252: 1251: 1247: 1231: 1230: 1226: 1210: 1209: 1205: 1158:(5516): 472–5. 1143: 1142: 1138: 1106:chem-ph/9404003 1088: 1087: 1083: 1025: 1024: 1017: 988: 987: 983: 973: 972: 968: 928: 927: 918: 913: 824:Lockheed Martin 808:superconducting 792: 782: 718: 717: 698: 697: 678: 677: 658: 657: 636: 631: 630: 611: 610: 587: 582: 581: 562: 561: 542: 541: 522: 521: 502: 501: 482: 481: 452: 451: 432: 431: 412: 411: 381: 371: 366: 365: 346: 345: 326: 325: 305: 304: 279: 274: 273: 254: 253: 224: 223: 210: 205: 204: 177: 165: 75: 64: 58: 55: 47:help improve it 44: 35: 31: 24: 17: 12: 11: 5: 4598: 4596: 4588: 4587: 4582: 4577: 4567: 4566: 4560: 4559: 4557: 4556: 4546: 4535: 4532: 4531: 4529: 4528: 4526:many others... 4523: 4518: 4513: 4508: 4499: 4485: 4483: 4475: 4474: 4471: 4470: 4468: 4467: 4462: 4457: 4452: 4446: 4444: 4438: 4437: 4435: 4434: 4429: 4424: 4419: 4413: 4411: 4404: 4403: 4401: 4400: 4398:Trapped-ion QC 4395: 4389: 4387: 4381: 4380: 4378: 4377: 4372: 4367: 4362: 4356: 4354: 4352:Quantum optics 4345: 4339: 4338: 4336: 4335: 4330: 4329: 4328: 4321: 4316: 4311: 4306: 4301: 4296: 4291: 4282: 4280: 4272: 4271: 4269: 4268: 4263: 4258: 4257: 4256: 4246: 4245: 4244: 4234: 4233: 4232: 4222: 4217: 4211: 4209: 4201: 4200: 4198: 4197: 4196: 4195: 4191: 4185: 4181: 4170: 4169: 4168: 4158: 4156:Quantum volume 4153: 4147: 4145: 4139: 4138: 4136: 4135: 4130: 4125: 4120: 4115: 4109: 4107: 4099: 4098: 4096: 4095: 4090: 4085: 4080: 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4040: 4035: 4033:Boson sampling 4030: 4025: 4019: 4017: 4011: 4010: 4007: 4006: 4004: 4003: 3998: 3997: 3996: 3991: 3986: 3976: 3971: 3966: 3960: 3958: 3949: 3948: 3943: 3942: 3941: 3931: 3930: 3929: 3919: 3914: 3909: 3904: 3903: 3902: 3897: 3886: 3884: 3878: 3877: 3875: 3874: 3869: 3867:Solovay–Kitaev 3864: 3859: 3854: 3849: 3844: 3839: 3834: 3829: 3824: 3819: 3814: 3809: 3804: 3799: 3793: 3791: 3787: 3786: 3784: 3783: 3782: 3781: 3771: 3770: 3769: 3759: 3754: 3749: 3744: 3743: 3742: 3732: 3727: 3721: 3719: 3715: 3714: 3709: 3707: 3706: 3699: 3692: 3684: 3675: 3674: 3672: 3671: 3665: 3662: 3661: 3658: 3657: 3655: 3654: 3649: 3644: 3639: 3634: 3629: 3624: 3618: 3615: 3614: 3611:Metaheuristics 3609: 3602: 3601: 3598: 3597: 3594: 3593: 3591: 3590: 3585: 3583:Ford–Fulkerson 3580: 3575: 3569: 3567: 3561: 3560: 3557: 3556: 3554: 3553: 3551:Floyd–Warshall 3548: 3543: 3542: 3541: 3530: 3528: 3518: 3517: 3515: 3514: 3509: 3504: 3498: 3496: 3485: 3477: 3476: 3474: 3473: 3472: 3471: 3457: 3452: 3447: 3441: 3439: 3431: 3430: 3425: 3418: 3417: 3414: 3413: 3410: 3409: 3406: 3405: 3403: 3402: 3397: 3392: 3387: 3381: 3379: 3370: 3369: 3367: 3366: 3361: 3356: 3354:Affine scaling 3350: 3348: 3346:Interior point 3339: 3328: 3327: 3325: 3324: 3319: 3314: 3308: 3306: 3294: 3293: 3288: 3281: 3280: 3277: 3276: 3273: 3272: 3270: 3269: 3264: 3259: 3253: 3251: 3250:Differentiable 3247: 3246: 3244: 3243: 3238: 3232: 3230: 3222: 3221: 3216: 3209: 3208: 3198: 3196: 3193: 3192: 3189: 3188: 3186: 3185: 3179: 3177: 3171: 3170: 3167: 3166: 3164: 3163: 3158: 3153: 3148: 3143: 3138: 3133: 3127: 3125: 3119: 3118: 3116: 3115: 3110: 3105: 3096: 3090: 3088: 3082: 3081: 3079: 3078: 3073: 3067: 3065: 3056: 3050: 3049: 3047: 3046: 3041: 3036: 3031: 3026: 3020: 3018: 3008: 3007: 3002: 2995: 2994: 2977: 2975: 2974: 2967: 2960: 2952: 2946: 2945: 2929: 2923: 2908: 2902: 2889: 2857: 2851: 2836: 2830: 2817: 2811: 2794: 2758:(3): 127–205. 2745: 2742: 2739: 2738: 2673: 2620: 2583:(2): 174–196. 2565: 2540: 2515: 2475: 2422: 2373: 2360: 2305: 2275: 2258:D-Wave Systems 2245: 2208:(3): 218–224. 2201:Nature Physics 2186: 2164: 2129: 2100: 2070: 2012: 1947: 1872: 1827:(19): 190601. 1809: 1745: 1690: 1687:on 2014-01-13. 1619: 1601: 1526: 1467: 1418: 1381:(12): 125210. 1363: 1310: 1245: 1224: 1203: 1136: 1081: 1078:on 2013-08-11. 1015: 1002:(2): 233–244. 981: 966: 915: 914: 912: 909: 816:D-Wave Systems 800:D-Wave Systems 781: 778: 777: 776: 773: 770: 767: 735: 729: 725: 705: 685: 665: 643: 639: 618: 595: 590: 569: 549: 529: 509: 489: 467: 462: 459: 439: 419: 395: 391: 386: 378: 374: 353: 333: 312: 286: 282: 261: 236: 231: 227: 222: 217: 213: 176: 173: 164: 161: 92:global minimum 77: 76: 38: 36: 29: 15: 13: 10: 9: 6: 4: 3: 2: 4597: 4586: 4583: 4581: 4578: 4576: 4573: 4572: 4570: 4555: 4547: 4545: 4537: 4536: 4533: 4527: 4524: 4522: 4519: 4517: 4514: 4512: 4509: 4507: 4503: 4500: 4498: 4494: 4490: 4487: 4486: 4484: 4482: 4476: 4466: 4463: 4461: 4458: 4456: 4453: 4451: 4448: 4447: 4445: 4443: 4439: 4433: 4430: 4428: 4425: 4423: 4422:Spin qubit QC 4420: 4418: 4415: 4414: 4412: 4409: 4405: 4399: 4396: 4394: 4391: 4390: 4388: 4386: 4382: 4376: 4373: 4371: 4368: 4366: 4363: 4361: 4358: 4357: 4355: 4353: 4349: 4346: 4340: 4334: 4331: 4327: 4326: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4286: 4284: 4283: 4281: 4279: 4273: 4267: 4264: 4262: 4259: 4255: 4252: 4251: 4250: 4247: 4243: 4240: 4239: 4238: 4235: 4231: 4230:cluster state 4228: 4227: 4226: 4223: 4221: 4218: 4216: 4213: 4212: 4210: 4208: 4202: 4194: 4190: 4186: 4184: 4180: 4176: 4175: 4174: 4171: 4167: 4164: 4163: 4162: 4159: 4157: 4154: 4152: 4149: 4148: 4146: 4140: 4134: 4131: 4129: 4126: 4124: 4121: 4119: 4116: 4114: 4111: 4110: 4108: 4106: 4100: 4094: 4091: 4089: 4086: 4084: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4038:Deutsch–Jozsa 4036: 4034: 4031: 4029: 4026: 4024: 4021: 4020: 4018: 4016: 4012: 4002: 3999: 3995: 3992: 3990: 3987: 3985: 3982: 3981: 3980: 3977: 3975: 3974:Quantum money 3972: 3970: 3967: 3965: 3962: 3961: 3959: 3957: 3953: 3947: 3944: 3940: 3937: 3936: 3935: 3932: 3928: 3925: 3924: 3923: 3920: 3918: 3915: 3913: 3910: 3908: 3905: 3901: 3898: 3896: 3893: 3892: 3891: 3888: 3887: 3885: 3883:communication 3879: 3873: 3870: 3868: 3865: 3863: 3860: 3858: 3855: 3853: 3850: 3848: 3845: 3843: 3840: 3838: 3835: 3833: 3830: 3828: 3825: 3823: 3820: 3818: 3815: 3813: 3810: 3808: 3805: 3803: 3800: 3798: 3795: 3794: 3792: 3788: 3780: 3777: 3776: 3775: 3772: 3768: 3765: 3764: 3763: 3760: 3758: 3755: 3753: 3750: 3748: 3745: 3741: 3738: 3737: 3736: 3733: 3731: 3728: 3726: 3723: 3722: 3720: 3716: 3712: 3705: 3700: 3698: 3693: 3691: 3686: 3685: 3682: 3670: 3667: 3666: 3663: 3653: 3650: 3648: 3645: 3643: 3640: 3638: 3635: 3633: 3630: 3628: 3627:Hill climbing 3625: 3623: 3620: 3619: 3616: 3612: 3607: 3603: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3570: 3568: 3566: 3565:Network flows 3562: 3552: 3549: 3547: 3544: 3540: 3537: 3536: 3535: 3532: 3531: 3529: 3527: 3526:Shortest path 3523: 3513: 3510: 3508: 3505: 3503: 3500: 3499: 3497: 3495: 3494:spanning tree 3489: 3486: 3484: 3478: 3470: 3466: 3463: 3462: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3442: 3440: 3436: 3432: 3428: 3427:Combinatorial 3423: 3419: 3401: 3398: 3396: 3393: 3391: 3388: 3386: 3383: 3382: 3380: 3378: 3375: 3371: 3365: 3362: 3360: 3357: 3355: 3352: 3351: 3349: 3347: 3343: 3340: 3338: 3333: 3329: 3323: 3320: 3318: 3315: 3313: 3310: 3309: 3307: 3305: 3299: 3295: 3291: 3286: 3282: 3268: 3265: 3263: 3260: 3258: 3255: 3254: 3252: 3248: 3242: 3239: 3237: 3234: 3233: 3231: 3227: 3223: 3219: 3214: 3210: 3202: 3184: 3181: 3180: 3178: 3176: 3172: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3142: 3139: 3137: 3134: 3132: 3129: 3128: 3126: 3124: 3123:Other methods 3120: 3114: 3111: 3109: 3106: 3104: 3100: 3097: 3095: 3092: 3091: 3089: 3087: 3083: 3077: 3074: 3072: 3069: 3068: 3066: 3064: 3060: 3057: 3055: 3051: 3045: 3042: 3040: 3037: 3035: 3032: 3030: 3027: 3025: 3022: 3021: 3019: 3017: 3013: 3009: 3005: 3000: 2996: 2992: 2988: 2984: 2980: 2973: 2968: 2966: 2961: 2959: 2954: 2953: 2950: 2942: 2938: 2934: 2930: 2926: 2920: 2916: 2915: 2909: 2905: 2899: 2895: 2890: 2885: 2881: 2876: 2871: 2867: 2863: 2858: 2854: 2848: 2844: 2843: 2837: 2833: 2827: 2823: 2818: 2814: 2808: 2804: 2800: 2795: 2791: 2787: 2783: 2779: 2775: 2771: 2766: 2761: 2757: 2753: 2748: 2747: 2743: 2734: 2730: 2726: 2722: 2717: 2712: 2708: 2704: 2700: 2696: 2692: 2688: 2684: 2677: 2674: 2669: 2665: 2660: 2655: 2650: 2645: 2641: 2637: 2636: 2631: 2624: 2621: 2616: 2612: 2608: 2604: 2600: 2596: 2591: 2586: 2582: 2578: 2577: 2569: 2566: 2555: 2551: 2544: 2541: 2529: 2528:Research Blog 2525: 2519: 2516: 2511: 2507: 2503: 2499: 2495: 2491: 2487: 2479: 2476: 2471: 2467: 2463: 2459: 2455: 2451: 2446: 2441: 2438:(5): 052323. 2437: 2433: 2426: 2423: 2418: 2414: 2409: 2404: 2400: 2396: 2392: 2388: 2384: 2377: 2374: 2370: 2364: 2361: 2356: 2352: 2348: 2344: 2340: 2336: 2331: 2326: 2323:(2): 021041. 2322: 2318: 2317: 2309: 2306: 2293: 2289: 2285: 2279: 2276: 2263: 2259: 2255: 2249: 2246: 2241: 2237: 2233: 2229: 2225: 2221: 2216: 2211: 2207: 2203: 2202: 2197: 2190: 2187: 2181: 2176: 2168: 2165: 2160: 2156: 2152: 2148: 2144: 2140: 2133: 2130: 2118: 2114: 2110: 2104: 2101: 2088: 2084: 2080: 2074: 2071: 2066: 2062: 2058: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2019: 2017: 2013: 2008: 2004: 2000: 1996: 1992: 1988: 1984: 1980: 1975: 1970: 1966: 1962: 1958: 1951: 1948: 1943: 1939: 1935: 1931: 1926: 1921: 1917: 1913: 1909: 1905: 1900: 1895: 1891: 1887: 1883: 1876: 1873: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1835: 1830: 1826: 1822: 1821: 1813: 1810: 1805: 1801: 1797: 1793: 1788: 1783: 1779: 1775: 1770: 1765: 1761: 1758: 1757: 1749: 1746: 1741: 1737: 1733: 1729: 1725: 1721: 1716: 1711: 1707: 1704: 1703: 1702:Eur. Phys. J. 1694: 1691: 1686: 1682: 1678: 1674: 1670: 1666: 1662: 1658: 1654: 1649: 1644: 1641:(2): 026701. 1640: 1636: 1635: 1630: 1623: 1620: 1615: 1611: 1605: 1602: 1597: 1593: 1589: 1585: 1580: 1575: 1571: 1567: 1563: 1559: 1554: 1549: 1545: 1541: 1537: 1530: 1527: 1522: 1518: 1513: 1508: 1504: 1500: 1495: 1490: 1486: 1482: 1478: 1471: 1468: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1434: 1429: 1422: 1419: 1414: 1410: 1406: 1402: 1398: 1394: 1389: 1384: 1380: 1376: 1375: 1367: 1364: 1359: 1355: 1351: 1347: 1343: 1339: 1334: 1329: 1326:(2): 022412. 1325: 1321: 1314: 1311: 1306: 1302: 1298: 1294: 1290: 1286: 1282: 1278: 1273: 1268: 1264: 1260: 1256: 1249: 1246: 1240: 1235: 1228: 1225: 1219: 1214: 1207: 1204: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1166: 1161: 1157: 1153: 1152: 1147: 1140: 1137: 1132: 1128: 1124: 1120: 1116: 1112: 1107: 1102: 1098: 1094: 1093: 1085: 1082: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1048: 1043: 1039: 1035: 1034: 1029: 1022: 1020: 1016: 1010: 1005: 1001: 998: 997: 992: 985: 982: 977: 970: 967: 962: 958: 954: 950: 946: 942: 938: 934: 933: 925: 923: 921: 917: 910: 908: 906: 901: 898: 894: 889: 887: 883: 879: 874: 870: 868: 863: 858: 856: 851: 848: 844: 840: 835: 833: 829: 825: 821: 817: 809: 805: 801: 796: 791: 787: 779: 774: 771: 768: 765: 764: 763: 760: 758: 754: 749: 733: 727: 723: 716:decreases as 703: 683: 663: 641: 637: 616: 593: 588: 567: 547: 527: 487: 460: 457: 437: 389: 376: 372: 351: 302: 284: 280: 259: 234: 229: 225: 215: 211: 200: 198: 193: 191: 181: 174: 172: 170: 162: 160: 158: 153: 149: 145: 141: 136: 132: 127: 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 85: 81: 73: 70: 62: 52: 48: 42: 39:This article 37: 28: 27: 22: 4450:Charge qubit 4375:KLM protocol 4324: 4188: 4178: 4057: 3872:Purification 3802:Eastin–Knill 3632:Local search 3578:Edmonds–Karp 3534:Bellman–Ford 3304:minimization 3136:Gauss–Newton 3086:Quasi–Newton 3071:Trust region 2979:Optimization 2940: 2936: 2913: 2893: 2865: 2861: 2841: 2821: 2802: 2755: 2751: 2690: 2686: 2676: 2639: 2633: 2623: 2580: 2574: 2568: 2557:. Retrieved 2553: 2543: 2532:. Retrieved 2527: 2518: 2485: 2478: 2435: 2431: 2425: 2390: 2386: 2376: 2363: 2320: 2314: 2308: 2296:. Retrieved 2292:the original 2287: 2278: 2266:. Retrieved 2262:the original 2257: 2248: 2205: 2199: 2189: 2167: 2142: 2132: 2121:. Retrieved 2117:the original 2112: 2103: 2091:. Retrieved 2087:the original 2082: 2073: 2032: 2028: 1964: 1960: 1950: 1889: 1885: 1875: 1824: 1818: 1812: 1759: 1754: 1748: 1708:(1): 17–24. 1705: 1700: 1693: 1685:the original 1638: 1634:Phys. Rev. E 1632: 1622: 1613: 1604: 1543: 1539: 1529: 1484: 1480: 1470: 1437: 1431: 1421: 1378: 1372: 1366: 1323: 1319: 1313: 1262: 1258: 1248: 1227: 1206: 1155: 1149: 1139: 1096: 1090: 1084: 1076:the original 1037: 1033:Phys. Rev. E 1031: 999: 994: 984: 969: 936: 930: 902: 890: 875: 871: 859: 852: 836: 813: 761: 750: 201: 196: 194: 187: 166: 128: 112:ground state 108:local minima 87: 83: 82: 80: 65: 59:January 2022 56: 40: 4481:programming 4460:Phase qubit 4365:Circuit QED 3837:No-deleting 3779:cloud-based 3652:Tabu search 3063:Convergence 3034:Line search 2868:: 485–500. 2693:(1): 3446. 2143:Nature News 1892:(1): 2212. 1546:(1): 2212. 1040:(5): 5355. 152:Ising model 144:Hamiltonian 94:of a given 4569:Categories 4521:libquantum 4455:Flux qubit 4360:Cavity QED 4309:Bacon–Shor 4299:stabilizer 3827:No-cloning 3483:algorithms 2991:heuristics 2983:Algorithms 2649:1910.13045 2642:: 106630. 2590:1803.03372 2559:2021-11-12 2534:2016-01-21 2445:1503.04216 2123:2011-05-30 1899:2110.12354 1834:1804.00371 1697:See e.g., 1614:Mathonline 1553:2110.12354 1333:2304.10488 1239:1505.01249 911:References 804:D-Wave One 790:D-Wave Two 116:spin glass 4427:NV center 3862:Threshold 3842:No-hiding 3807:Gleason's 3438:Paradigms 3337:quadratic 3054:Gradients 3016:Functions 2875:1310.1339 2765:1210.0811 2733:257236235 2668:0098-1354 2615:118974781 2330:1401.3500 2215:1304.4595 2180:1204.2821 2065:205224761 1942:248389790 1782:CiteSeerX 1769:0801.2193 1740:118525494 1715:1408.3262 1596:248389790 1494:1411.5693 1462:116931586 1388:0806.1859 1358:258236417 1218:1401.7320 878:D-Wave 2X 843:NASA Ames 814:In 2011, 664:τ 617:τ 568:τ 560:one gets 508:Δ 466:Δ 461:≪ 418:Γ 394:Γ 385:Δ 377:− 332:Δ 311:Δ 221:Δ 216:− 4489:OpenQASM 4465:Transmon 4342:Physical 4142:Quantum 4043:Grover's 3817:Holevo's 3790:Theorems 3740:timeline 3730:NISQ era 3669:Software 3546:Dijkstra 3377:exchange 3175:Hessians 3141:Gradient 2790:19019744 2725:36859591 2510:57916974 2470:66770023 2417:24948715 2369:Cho 2014 2355:19235104 2159:57405432 2057:21562559 2007:37564720 1999:10221904 1934:35468917 1867:53594139 1859:30468584 1804:14255125 1681:16466621 1673:16196745 1588:35468917 1521:25765071 1413:13992889 1305:37564720 1297:10221904 1198:10132718 1190:11313487 1131:97302385 1072:36114913 410:, where 148:Diabatic 146:, i.e., 4479:Quantum 4417:Kane QC 4276:Quantum 4204:Quantum 4133:PostBQP 4103:Quantum 4088:Simon's 3881:Quantum 3718:General 3512:Kruskal 3502:BorĹŻvka 3492:Minimum 3229:General 2987:methods 2880:Bibcode 2770:Bibcode 2716:9977923 2695:Bibcode 2595:Bibcode 2490:Bibcode 2450:Bibcode 2395:Bibcode 2387:Science 2335:Bibcode 2298:22 June 2268:22 June 2240:8031023 2220:Bibcode 2037:Bibcode 1979:Bibcode 1961:Science 1925:9038765 1904:Bibcode 1839:Bibcode 1774:Bibcode 1720:Bibcode 1653:Bibcode 1579:9038765 1558:Bibcode 1499:Bibcode 1481:Science 1442:Bibcode 1393:Bibcode 1338:Bibcode 1277:Bibcode 1259:Science 1170:Bibcode 1151:Science 1111:Bibcode 1052:Bibcode 961:9948016 941:Bibcode 905:NP-hard 862:Science 252:, with 118:or the 45:Please 4497:IBM QX 4493:Qiskit 4432:NMR QC 4410:-based 4314:Steane 4285:Codes 4083:Shor's 3989:SARG04 3797:Bell's 3374:Basis- 3332:Linear 3302:Convex 3146:Mirror 3103:L-BFGS 2989:, and 2921:  2900:  2849:  2828:  2809:  2788:  2731:  2723:  2713:  2666:  2613:  2554:Medium 2508:  2468:  2415:  2353:  2238:  2157:  2113:D-Wave 2093:11 May 2063:  2055:  2029:Nature 2005:  1997:  1940:  1932:  1922:  1865:  1857:  1802:  1784:  1738:  1679:  1671:  1594:  1586:  1576:  1519:  1460:  1411:  1356:  1303:  1295:  1196:  1188:  1129:  1070:  959:  839:Google 788:, and 157:Grover 4319:Toric 3762:Qubit 3573:Dinic 3481:Graph 2870:arXiv 2786:S2CID 2760:arXiv 2729:S2CID 2644:arXiv 2611:S2CID 2585:arXiv 2506:S2CID 2466:S2CID 2440:arXiv 2351:S2CID 2325:arXiv 2288:1QBit 2236:S2CID 2210:arXiv 2175:arXiv 2155:S2CID 2061:S2CID 2003:S2CID 1969:arXiv 1938:S2CID 1894:arXiv 1863:S2CID 1829:arXiv 1800:S2CID 1764:arXiv 1736:S2CID 1710:arXiv 1677:S2CID 1643:arXiv 1592:S2CID 1548:arXiv 1489:arXiv 1458:S2CID 1409:S2CID 1383:arXiv 1354:S2CID 1328:arXiv 1301:S2CID 1267:arXiv 1234:arXiv 1213:arXiv 1194:S2CID 1160:arXiv 1127:S2CID 1101:arXiv 1068:S2CID 1042:arXiv 820:qubit 114:of a 4511:Cirq 4502:Quil 4408:Spin 4304:Shor 3984:BB84 3917:LOCC 3539:SPFA 3507:Prim 3101:and 2919:ISBN 2898:ISBN 2847:ISBN 2826:ISBN 2807:ISBN 2721:PMID 2664:ISSN 2413:PMID 2300:2014 2270:2014 2095:2011 2053:PMID 1995:PMID 1930:PMID 1855:PMID 1669:PMID 1584:PMID 1517:PMID 1293:PMID 1186:PMID 957:PMID 884:and 299:the 4325:gnu 4289:CSS 4166:XEB 4128:QMA 4123:QIP 4118:EQP 4113:BQP 4093:VQE 4048:HHL 3852:PBR 3469:cut 3334:and 2941:381 2778:doi 2756:523 2711:PMC 2703:doi 2654:doi 2640:132 2603:doi 2498:doi 2458:doi 2403:doi 2391:344 2343:doi 2228:doi 2147:doi 2045:doi 2033:473 1987:doi 1965:284 1920:PMC 1912:doi 1847:doi 1825:121 1792:doi 1728:doi 1706:224 1661:doi 1574:PMC 1566:doi 1507:doi 1485:348 1450:doi 1401:doi 1346:doi 1324:108 1285:doi 1263:284 1178:doi 1156:292 1119:doi 1097:219 1060:doi 1004:doi 949:doi 830:'s 828:USC 49:to 4571:: 4516:Q# 2985:, 2981:: 2939:. 2935:. 2878:. 2866:79 2864:. 2784:. 2776:. 2768:. 2754:. 2727:. 2719:. 2709:. 2701:. 2691:13 2689:. 2685:. 2662:. 2652:. 2638:. 2632:. 2609:. 2601:. 2593:. 2581:59 2579:. 2552:. 2526:. 2504:. 2496:. 2464:. 2456:. 2448:. 2436:92 2434:. 2411:. 2401:. 2389:. 2385:. 2371:). 2349:. 2341:. 2333:. 2319:. 2286:. 2256:. 2234:. 2226:. 2218:. 2206:10 2204:. 2198:. 2153:. 2145:. 2141:. 2111:. 2081:. 2059:. 2051:. 2043:. 2031:. 2027:. 2015:^ 2001:. 1993:. 1985:. 1977:. 1963:. 1959:. 1936:. 1928:. 1918:. 1910:. 1902:. 1890:13 1888:. 1884:. 1861:. 1853:. 1845:. 1837:. 1823:. 1798:. 1790:. 1780:. 1772:. 1760:80 1734:. 1726:. 1718:. 1675:. 1667:. 1659:. 1651:. 1639:72 1637:. 1631:. 1612:. 1590:. 1582:. 1572:. 1564:. 1556:. 1544:13 1542:. 1538:. 1515:. 1505:. 1497:. 1483:. 1479:. 1456:. 1448:. 1438:39 1436:. 1430:. 1407:. 1399:. 1391:. 1379:49 1377:. 1352:. 1344:. 1336:. 1322:. 1299:. 1291:. 1283:. 1275:. 1261:. 1257:. 1192:. 1184:. 1176:. 1168:. 1154:. 1148:. 1125:. 1117:. 1109:. 1095:. 1066:. 1058:. 1050:. 1038:58 1036:. 1030:. 1018:^ 1000:33 993:. 955:. 947:. 937:39 935:. 919:^ 841:, 748:. 124:ja 88:QA 4504:– 4495:– 4491:– 4192:2 4189:T 4182:1 4179:T 3703:e 3696:t 3689:v 3467:/ 2971:e 2964:t 2957:v 2927:. 2906:. 2888:. 2886:. 2882:: 2872:: 2855:. 2834:. 2815:. 2792:. 2780:: 2772:: 2762:: 2735:. 2705:: 2697:: 2670:. 2656:: 2646:: 2617:. 2605:: 2597:: 2587:: 2562:. 2537:. 2512:. 2500:: 2492:: 2472:. 2460:: 2452:: 2442:: 2419:. 2405:: 2397:: 2357:. 2345:: 2337:: 2327:: 2321:4 2302:. 2272:. 2242:. 2230:: 2222:: 2212:: 2183:. 2177:: 2161:. 2149:: 2126:. 2097:. 2067:. 2047:: 2039:: 2009:. 1989:: 1981:: 1971:: 1944:. 1914:: 1906:: 1896:: 1869:. 1849:: 1841:: 1831:: 1806:. 1794:: 1776:: 1766:: 1742:. 1730:: 1722:: 1712:: 1663:: 1655:: 1645:: 1616:. 1598:. 1568:: 1560:: 1550:: 1523:. 1509:: 1501:: 1491:: 1464:. 1452:: 1444:: 1415:. 1403:: 1395:: 1385:: 1360:. 1348:: 1340:: 1330:: 1307:. 1287:: 1279:: 1269:: 1242:. 1236:: 1221:. 1215:: 1200:. 1180:: 1172:: 1162:: 1133:. 1121:: 1113:: 1103:: 1062:: 1054:: 1044:: 1012:. 1006:: 963:. 951:: 943:: 734:N 728:/ 724:1 704:w 684:N 642:N 638:e 594:N 589:e 548:w 528:N 488:N 458:w 438:w 390:w 373:e 352:w 285:B 281:k 260:T 235:T 230:B 226:k 212:e 86:( 72:) 66:( 61:) 57:( 43:. 23:.

Index

Annealing (disambiguation)
help improve it
make it understandable to non-experts
Learn how and when to remove this message
global minimum
objective function
quantum fluctuations
combinatorial optimization
local minima
ground state
spin glass
traveling salesman problem
ja
Schrödinger equation
quantum tunneling
adiabatic quantum computation
Hamiltonian
Diabatic
Ising model
Grover
simulated annealing
Simple analogy describing the difference between Simulated Annealing and Quantum Annealing.
quantum Monte Carlo
Boltzmann constant
quantum computer
quantum entanglement
D-Wave Systems § Computer systems
D-Wave Two

D-Wave Systems

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑