Knowledge (XXG)

Quantum dot single-photon source

Source 📝

117:. The spontaneous radiative decay of this exciton results in the emission of a photon. Since a quantum dot has discrete energy levels, it can be achieved that there is never more than one exciton in the quantum dot simultaneously. Therefore, the quantum dot is an emitter of single photons. A key challenge in making a good single-photon source is to make sure that the emission from the quantum dot is collected efficiently. To do that, the quantum dot is placed in an 85:, which is still a technical challenge. The other challenge is to realize high-quality quantum dot single-photon sources at telecom wavelength for fiber telecommunication application. The first report on Purcell-enhanced single-photon emission of a telecom-wavelength quantum dot in a two-dimensional photonic crystal cavity with a quality factor of 2,000 shows the enhancements of the emission rate and the intensity by five and six folds, respectively. 94: 273:
usually have relatively high indices of refraction about n≅3. Therefore, their extraction cone is small. On a smooth surface the micropillar works as an almost perfect waveguide. However losses increase with roughness of the walls and decreasing diameter of the micropillar. The edges thus must be as smooth as possible to minimize losses. This can be achieved by structuring the sample with
156: 313:
Other single-photon sources are nanobeam or photonic crystal waveguides that contain quantum dots. For such structures, no DBRs are needed but can be used to improve the outcoupling efficiency. Compared to micropillars, this architecture has the advantage that on-chip routing of photons is possible.
191:
with the already existing exciton changes the energy for creating another exciton at the same space slightly. If the energy of the pump laser is tuned on resonance, the second exciton cannot be created. Still, there is a small probability of having two excitations in the quantum dot at the same time.
272:
is used to grow the quantum dot above the first DBR. The second layer of DBRs can now be grown on top of the layer with the quantum dots. The diameter of the pillar is only a few microns wide. To prevent the optical mode from exiting the cavity the micropillar must act as a waveguide. Semiconductors
39:
leads to the emission of a single photon. Due to interactions between excitons, the emission when the quantum dot contains a single exciton is energetically distinct from that when the quantum dot contains more than one exciton. Therefore, a single exciton can be deterministically created by a laser
1838:
Liu, Feng; Brash, Alistair J.; O’Hara, John; Martins, Luis M. P. P.; Phillips, Catherine L.; Coles, Rikki J.; Royall, Benjamin; Clarke, Edmund; Bentham, Christopher; Prtljaga, Nikola; Itskevich, Igor E.; Wilson, Luke R.; Skolnick, Maurice S.; Fox, A. Mark (2018). "High Purcell factor generation of
1229:
Ding, Xing; He, Yu; Duan, Z-C; Gregersen, Niels; Chen, M-C; Unsleber, S; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei (2016). "On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven
1634:
Najer, Daniel; Söllner, Immo; Sekatski, Pavel; Dolique, Vincent; Löbl, Matthias C.; Riedel, Daniel; Schott, Rüdiger; Starosielec, Sebastian; Valentin, Sascha R.; Wieck, Andreas D.; Sangouard, Nicolas; Ludwig, Arne; Warburton, Richard J. (2019). "A gated quantum dot strongly coupled to an optical
186:
To eliminate the probability of the simultaneous emission of two photons it has to be made sure that there can only be one exciton in the cavity at one time. The discrete energy states in a quantum dot allow only one excitation. Additionally, the Rydberg blockade prevents the excitation of two
2129:
Schweickert, Lucas; Jöns, Klaus D.; Zeuner, Katharina D.; Covre da Silva, Saimon Filipe; Huang, Huiying; Lettner, Thomas; Reindl, Marcus; Zichi, Julien; Trotta, Rinaldo; Rastelli, Armando; Zwiller, Val (2018). "On-demand generation of background-free single photons from a solid-state source".
76:
since the beginning of the 21st century, research in different kinds of single-photon sources was growing. Early single-photon sources such as heralded photon sources that were first reported in 1985 are based on non-deterministic processes. Quantum dot single-photon sources are on-demand. A
1564:
Tomm, Natasha; Javadi, Alisa; Antoniadis, Nadia Olympia; Najer, Daniel; Löbl, Matthias Christian; Korsch, Alexander Rolf; Schott, Rüdiger; Valentin, Sascha René; Wieck, Andreas Dirk; Ludwig, Arne; Warburton, Richard John (2021). "A bright and fast source of coherent single photons".
228:. However, this way the emitted photons have the same frequency as the pump laser. A polarizer is needed to distinguish between them. As the direction of polarization of the photons from the cavity is random, half of the emitted photons are blocked by this filter. 286:
Tunable micro-cavities hosting quantum dots can be also used as single-photon source. Different compared to micro-pillars, only a single DBR is grown below the quantum dots. The second part of the cavity is a curved top mirror that is physically detached from the
196:. They interact with each other and thus slightly change their energy. Photons resulting from the decay of biexcitons have a different energy than photons resulting from the decay of excitons. They can be filtered out by letting the outgoing beam pass an 1704:
Fischbach, Sarah; Schlehahn, Alexander; Thoma, Alexander; Srocka, Nicole; Gissibl, Timo; Ristok, Simon; Thiele, Simon; Kaganskiy, Arsenty; Strittmatter, André; Heindel, Tobias; Rodt, Sven; Herkommer, Alois; Giessen, Harald; Reitzenstein, Stephan (2017).
291:. The top-mirror can be moved with respect to the quantum dot position which allows tuning the cavity quantum dot coupling as needed. A further advantage over micro-pillars is that the charge-environment of the quantum dots can be stabilized by using 1762:
Schöll, Eva; Hanschke, Lukas; Schweickert, Lucas; Zeuner, Katharina D.; Reindl, Marcus; Covre da Silva, Saimon Filipe; Lettner, Thomas; Trotta, Rinaldo; Finley, Jonathan J.; Müller, Kai; Rastelli, Armando; Zwiller, Val; Jöns, Klaus D. (2019).
1440:
Somaschi, Niccolo; Giesz, Valérian; De Santis, Lorenzo; Loredo, JC; Almeida, Marcelo P; Hornecker, Gaston; Portalupi, Simone Luca; Grange, Thomas; Anton, Carlos; Demory, Justin (2016). "Near-optimal single-photon sources in the solid state".
665:. The theoretical solution of the Jaynes-Cummings Hamiltonian is a well-defined mode in which only the polarization is random. After aligning the polarization of the photons, their indistinguishability can be measured. For that, the 677:
is placed on both exits of the beam splitter. Coincidences between the two detectors are measured. If the photons are indistinguishable, no coincidences should occur. Experimentally, almost perfect indistinguishability is found.
861:
Kress, A.; Hofbauer, F.; Reinelt, N.; Kaniber, M.; Krenner, H.J.; Meyer, R.; Böhm, G.; Finley, J.J. (2005). "Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals".
327:. As photons are emitted one at a time, the probability of seeing two photons at the same time for an ideal source is 0. To verify the antibunching of a light source, one can measure the autocorrelation function 2032:
Papon, Camille; Zhou, Xiaoyan; Thyrrestrup, Henri; Liu, Zhe; Stobbe, Søren; Schott, Rüdiger; Wieck, Andreas D.; Ludwig, Arne; Lodahl, Peter; Midolo, Leonardo (2019). "Nanomechanical single-photon routing".
77:
single-photon source based on a quantum dot in a microdisk structure was reported in 2000. Sources were subsequently embedded in different structures such as photonic crystals or micropillars. Adding
167:. In this model, the quantum dot only interacts with one single mode of the optical cavity. The frequency of the optical mode is well defined. This makes the photons indistinguishable if their 159:
Figure 2: The decay of a linewidth broadened excited state results in the emission of a photon of frequency ħω. The linewidth broadening is a result of the finite lifetime of the excited state.
686:
Single-photon sources are of great importance in quantum communication science. They can be used for truly random number generators. Single photons entering a beam splitter exhibit inherent
915:
Moreau, E.; Robert, I.; Gérard, J.M.; Abram, I.; Manin, L.; Thierry-Mieg, V. (2001). "Single-mode solid-state single-photon source based on isolated quantum dots in pillar microcavities".
651: 1908:
Uppu, Ravitej; Pedersen, Freja T.; Wang, Ying; Olesen, Cecilie T.; Papon, Camille; Zhou, Xiaoyan; Midolo, Leonardo; Scholz, Sven; Wieck, Andreas D.; Ludwig, Arne; Lodahl, Peter (2020).
314:
On the other side, the structure sizes are much smaller requiring more advanced nano-fabrication techniques. The close proximity of quantum dots to the surface is a further challenge.
765:
Grangier, Philippe; Roger, Gerard; Aspect, Alain (1986). "Experimental evidence for a photon anticorrelation effect on a beam splitter: a new light on single-photon interferences".
1291:
Gurioli, Massimo; Wang, Zhiming; Rastelli, Armando; Kuroda, Takashi; Sanguinetti, Stefano (2019). "Droplet epitaxy of semiconductor nanostructures for quantum photonic devices".
716:, no eavesdropping can happen without being noticed. The use of quantum randomness while writing the key prevents any patterns in the key that can be used to decipher the code. 240:
cavities, or tunable micro-cavities. Inside the cavity, different types of quantum dots can be used. The most widely used type are self-assembled InAs quantum dots grown in the
541: 451: 367: 499: 587: 409: 204:
can be used for excitation of the quantum dots. In order to have the highest probability of creating an exciton, the pump laser is tuned on resonance. This resembles a
146: 295:
structures. A disadvantage of the micro-cavity system is that it requires additional mechanical components to tune the cavity which increases the overall system size.
1360:
Zhai, Liang; Löbl, Matthias C.; Nguyen, Giang N.; Ritzmann, Julian; Javadi, Alisa; Spinnler, Clemens; Wieck, Andreas D.; Ludwig, Arne; Warburton, Richard J. (2020).
97:
Figure 1: Schematic structure of an optical microcavity with a single quantum dot placed between two layers of DBR's. This structure works as a single photon source.
222: 818:
Michler, P.; Kiraz, A.; Becher, C.; Schoenfeld, W.V.; Petroff, P.M.; Zhang, Lidong; Hu, E.; Imamoglu, A. (2000). "A Quantum Dot Single-Photon Turnstile Device".
121:. The cavity can, for instance, consist of two DBRs in a micropillar (Fig. 1). The cavity enhances the spontaneous emission in a well-defined optical mode ( 2241: 244:
mode, but other materials and growth methods such as local droplet etching have been used. A list of different experimental realizations is shown below:
304:: To increase the brightness of a quantum dot single-photon source, also microlens structures have been used. The concept is to reduce losses due to 236:
There are several ways to realize a quantum dot-cavity system that can act as a single-photon source. Typical cavity structures are micro-pillars,
81:(DBRs) allowed emission in a well-defined direction and increased emission efficiency. Most quantum dot single-photon sources need to work at 2313: 260:
are grown in alternate order. Their lattice parameters should match to prevent strain. A possible combination is a combination of
2191:
C. K. Hong; Z. Y. Ou & L. Mandel (1987). "Measurement of subpicosecond time intervals between two photons by interference".
1985:"On-chip beamsplitter operation on single photons from quasi-resonantly excited quantum dots embedded in GaAs rib waveguides" 544: 1124:
T. Kazimierczuk; D. Fröhlich; S. Scheel; H. Stolz & M. Bayer (2014). "Giant Rydberg excitons in the copper oxide Cu2O".
64:. Additionally, the cavity leads to emission in a well-defined optical mode increasing the efficiency of the photon source. 249: 188: 78: 73: 1494:
Herve, P.; Vandamme, L. K. J. (1994). "General relation between refractive index and energy gap in semiconductors".
125:), facilitating efficient guiding of the emission into an optical fiber. Furthermore, the reduced exciton lifetime 1014:
Senellart, P.; Solomon, G.; White, A. (2017). "High-performance semiconductor quantum-dot single-photon sources".
592: 1059:"Fast Purcell-enhanced single-photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling" 305: 274: 241: 1983:
Rengstl, U.; Schwartz, M.; Herzog, T.; Hargart, F.; Paul, M.; Portalupi, S. L.; Jetter, M.; Michler, P. (2015).
2238: 709: 2308: 1707:"Single Quantum Dot with Microlens and 3D-Printed Micro-objective as Integrated Bright Single-Photon Source" 176: 1057:
Birowosuto, M. D.; Sumikura, H.; Matsuo, S.; Taniyama, H.; Veldhoven, P.J.; Notzel, R.; Notomi, M. (2012).
782: 253: 1193: 687: 666: 164: 82: 2268: 2200: 2149: 2103: 2052: 1996: 1931: 1858: 1786: 1654: 1584: 1503: 1460: 1383: 1310: 1249: 1143: 1080: 1023: 970: 924: 881: 827: 774: 742: 720: 698: 301: 278: 168: 53: 36: 2233:
C. H. Bennett and G. Brassard. "Quantum cryptography: Public key distribution and coin tossing". In
787: 504: 414: 330: 732: 662: 324: 49: 45: 31:. It is an on-demand single-photon source. A laser pulse can excite a pair of carriers known as an 456: 200:. The quantum dots can be excited both electrically and optically. For optical pumping, a pulsed 2284: 2173: 2139: 2076: 2042: 1921: 1890: 1848: 1776: 1686: 1644: 1616: 1574: 1546: 1476: 1450: 1373: 1342: 1300: 1273: 1239: 1167: 1133: 1070: 897: 871: 800: 713: 691: 180: 41: 712:
scheme. It works with a light source that perfectly emits only one photon at a time. Due to the
550: 372: 1188:
Gold, Peter (2015). "Quantenpunkt-Mikroresonatoren als Bausteine für die Quantenkommunikation".
2216: 2165: 2068: 2014: 1965: 1947: 1882: 1874: 1820: 1802: 1744: 1726: 1678: 1670: 1608: 1600: 1417: 1399: 1334: 1326: 1265: 1159: 1106: 1039: 996: 988: 843: 706: 261: 128: 2276: 2259: 2208: 2157: 2111: 2060: 2004: 1955: 1939: 1866: 1810: 1794: 1734: 1718: 1662: 1592: 1538: 1511: 1468: 1407: 1391: 1318: 1257: 1151: 1096: 1088: 1031: 978: 932: 889: 835: 792: 265: 257: 237: 2245: 1206: 719:
Apart from that, single photon sources can be used to test some fundamental properties of
207: 110: 1765:"Resonance Fluorescence of GaAs Quantum Dots with Near-Unity Photon Indistinguishability" 2272: 2235:
Proceedings of IEEE International Conference on Computers, Systems and Signal Processing
2204: 2153: 2107: 2056: 2000: 1935: 1862: 1790: 1658: 1588: 1542: 1507: 1464: 1387: 1314: 1253: 1147: 1084: 1027: 974: 928: 885: 831: 778: 1960: 1909: 1815: 1764: 1739: 1706: 1412: 1361: 1101: 1058: 197: 122: 118: 93: 61: 28: 2302: 2080: 1894: 1690: 1620: 1550: 1515: 1480: 1346: 1277: 901: 804: 674: 670: 288: 149: 102: 2177: 796: 2288: 1261: 1171: 225: 179:. A vacuum Rabi oscillation of a photon interacting with an exciton is known as an 106: 839: 1798: 1722: 2257:
Wootters, William; Zurek, Wojciech (1982). "A Single Quantum Cannot be Cloned".
2212: 737: 24: 2115: 1596: 1395: 893: 1870: 1666: 1322: 2169: 2072: 2018: 1951: 1878: 1806: 1730: 1674: 1604: 1403: 1330: 992: 2239:
http://researcher.watson.ibm.com/researcher/files/us-bennetc/BB84highest.pdf
2064: 1472: 193: 172: 2220: 1969: 1943: 1886: 1824: 1748: 1682: 1612: 1421: 1338: 1269: 1163: 1110: 1043: 1035: 1000: 847: 669:
is used. Two photons of the source are prepared so that they enter a 50:50
876: 269: 1155: 1529:
Reitzenstein, S. & Forchel, A. (2010). "Quantum dot micropillars".
661:
For applications the photons emitted by a single photon source must be
114: 32: 2161: 2009: 1984: 1092: 983: 958: 936: 155: 2280: 57: 957:
Eisaman, M. D.; Fan, J.; Migdall, A.; Polyakov, S. V. (2011-07-01).
2144: 2047: 1926: 1853: 1781: 1649: 1579: 1455: 1378: 1305: 1244: 248:
Micropillars: In this approach, quantum dots are grown between two
1138: 1075: 589:
are typically in the regime of just a few percent. Values down to
292: 201: 702: 48:. The emission of single photons can be proven by measuring the 690:. Random numbers are used extensively in simulations using the 959:"Invited Review Article: Single-photon sources and detectors" 547:. Using resonant excitation schemes, experimental values for 308:
similar to what can be achieved with a solid immersion lens.
673:
at the same time from the two different input channels. A
35:
in the quantum dot. The decay of a single exciton due to
175:. The solution of the Jaynes-Cummings Hamiltonian is a 595: 553: 507: 459: 417: 375: 333: 210: 131: 60:
can be enhanced by integrating the quantum dot in an
1224: 1222: 1220: 1218: 1216: 697:
Furthermore, single photon sources are essential in
268:-layers. After the first DBR, material with smaller 256:(MBE). For the mirrors two materials with different 252:(DBR mirrors). The DBRs are typically both grown by 44:
source that emits photons one by one and thus shows
1362:"Low-noise GaAs quantum dots for quantum photonics" 192:Two excitons confined in a small volume are called 645: 581: 535: 493: 445: 403: 361: 216: 140: 653:have been reached without resonant excitation. 8: 646:{\displaystyle g^{(2)}(0)=7.5\times 10^{-5}} 1839:indistinguishable on-chip single photons". 1435: 1433: 1431: 657:Indistinguishability of the emitted photons 163:The system can then be approximated by the 50:second order intensity correlation function 1910:"Scalable integrated single-photon source" 319:Verification of emission of single photons 89:Theory of realizing a single-photon source 2143: 2046: 2008: 1959: 1925: 1852: 1814: 1780: 1738: 1648: 1578: 1454: 1411: 1377: 1304: 1243: 1137: 1100: 1074: 982: 952: 950: 948: 946: 875: 786: 634: 600: 594: 558: 552: 512: 506: 464: 458: 422: 416: 380: 374: 338: 332: 209: 148:(see Fig. 2) reduces the significance of 130: 760: 758: 154: 92: 2094:Paul, H (1982). "Photon antibunching". 754: 2237:, volume 175, page 8. New York, 1984. 1202: 1191: 1183: 1181: 113:creates an excited state, a so-called 1531:Journal of Physics D: Applied Physics 453:. For an ideal single photon source, 7: 369:. A photon source is antibunched if 40:pulse and the quantum dot becomes a 187:excitons at the same space... The 132: 14: 1496:Infrared Physics & Technology 963:Review of Scientific Instruments 277:and processing the pillars with 21:quantum dot single-photon source 1230:quantum dot in a micropillar". 1262:10.1103/PhysRevLett.116.010401 618: 612: 607: 601: 576: 570: 565: 559: 545:Hanbury Brown and Twiss effect 536:{\displaystyle g^{(2)}(\tau )} 530: 524: 519: 513: 482: 476: 471: 465: 446:{\displaystyle g^{(2)}(\tau )} 440: 434: 429: 423: 398: 392: 387: 381: 362:{\displaystyle g^{(2)}(\tau )} 356: 350: 345: 339: 323:Single photon sources exhibit 1: 1543:10.1088/0022-3727/43/3/033001 840:10.1126/science.290.5500.2282 72:With the growing interest in 1799:10.1021/acs.nanolett.8b05132 1723:10.1021/acsphotonics.7b00253 1516:10.1016/1350-4495(94)90026-4 494:{\displaystyle g^{(2)}(0)=0} 250:distributed bragg reflectors 79:distributed bragg reflectors 2213:10.1103/PhysRevLett.59.2044 189:electromagnetic interaction 74:quantum information science 2330: 2116:10.1103/RevModPhys.54.1061 1597:10.1038/s41565-020-00831-x 1396:10.1038/s41467-020-18625-z 894:10.1103/PhysRevB.71.241304 582:{\displaystyle g^{(2)}(0)} 404:{\displaystyle g^{(2)}(0)} 101:Exciting an electron in a 2096:Reviews of Modern Physics 1871:10.1038/s41565-018-0188-x 1667:10.1038/s41586-019-1709-y 1323:10.1038/s41563-019-0355-y 797:10.1209/0295-5075/1/4/004 767:EPL (Europhysics Letters) 306:total internal reflection 275:Electron beam lithography 242:Stranski-Krastanov growth 2314:Condensed matter physics 710:quantum key distribution 232:Experimental realization 141:{\displaystyle \Delta t} 2132:Applied Physics Letters 2065:10.1364/OPTICA.6.000524 1989:Applied Physics Letters 1473:10.1038/nphoton.2016.23 1232:Physical Review Letters 969:(7): 071101–071101–25. 177:vacuum Rabi oscillation 1944:10.1126/sciadv.abc8268 1201:Cite journal requires 1036:10.1038/nnano.2017.218 647: 583: 543:is measured using the 537: 495: 447: 405: 363: 254:molecular beam epitaxy 218: 160: 142: 98: 83:cryogenic temperatures 1841:Nature Nanotechnology 1567:Nature Nanotechnology 1366:Nature Communications 1016:Nature Nanotechnology 688:quantum indeterminacy 667:Hong-Ou-Mandel effect 648: 584: 538: 496: 448: 406: 364: 258:indices of refraction 219: 165:Jaynes-Cummings model 158: 143: 96: 23:is based on a single 743:Single-photon source 721:quantum field theory 699:quantum cryptography 593: 551: 505: 457: 415: 373: 331: 302:solid immersion lens 279:reactive ion etching 217:{\displaystyle \pi } 208: 150:linewidth broadening 129: 56:rate of the emitted 54:spontaneous emission 37:spontaneous emission 2273:1982Natur.299..802W 2205:1987PhRvL..59.2044H 2154:2018ApPhL.112i3106S 2108:1982RvMP...54.1061P 2057:2019Optic...6..524P 2001:2015ApPhL.107b1101R 1936:2020SciA....6.8268U 1863:2018NatNa..13..835L 1791:2019NanoL..19.2404S 1659:2019Natur.575..622N 1589:2021NatNa..16..399T 1508:1994InPhT..35..609H 1465:2016NaPho..10..340S 1388:2020NatCo..11.4745Z 1315:2019NatMa..18..799G 1254:2016PhRvL.116a0401P 1156:10.1038/nature13832 1148:2014Natur.514..343K 1085:2012NatSR...2E.321B 1028:2017NatNa..12.1026S 975:2011RScI...82g1101E 929:2001ApPhL..79.2865M 886:2005PhRvB..71x1304K 832:2000Sci...290.2282M 826:(5500): 2282–2285. 779:1986EL......1..173G 733:Optical microcavity 46:photon antibunching 2244:2020-01-30 at the 714:no-cloning theorem 692:Monte Carlo method 643: 579: 533: 501:. Experimentally, 491: 443: 401: 359: 214: 161: 138: 99: 42:nonclassical light 2267:(5886): 802–803. 2199:(18): 2044–2046. 2162:10.1063/1.5020038 2010:10.1063/1.4926729 1643:(7784): 622–627. 1132:(7522): 343–347. 1093:10.1038/srep00321 1022:(11): 1026–1039. 984:10.1063/1.3610677 937:10.1063/1.1415346 923:(18): 2865–2867. 663:indistinguishable 262:aluminum arsenide 181:exciton-polariton 2321: 2293: 2292: 2281:10.1038/299802a0 2254: 2248: 2231: 2225: 2224: 2188: 2182: 2181: 2147: 2126: 2120: 2119: 2102:(4): 1061–1102. 2091: 2085: 2084: 2050: 2029: 2023: 2022: 2012: 1980: 1974: 1973: 1963: 1929: 1920:(50): eabc8268. 1914:Science Advances 1905: 1899: 1898: 1856: 1835: 1829: 1828: 1818: 1784: 1775:(4): 2404–2410. 1759: 1753: 1752: 1742: 1717:(6): 1327–1332. 1701: 1695: 1694: 1652: 1631: 1625: 1624: 1582: 1561: 1555: 1554: 1526: 1520: 1519: 1491: 1485: 1484: 1458: 1443:Nature Photonics 1437: 1426: 1425: 1415: 1381: 1357: 1351: 1350: 1308: 1293:Nature Materials 1288: 1282: 1281: 1247: 1226: 1211: 1210: 1204: 1199: 1197: 1189: 1185: 1176: 1175: 1141: 1121: 1115: 1114: 1104: 1078: 1054: 1048: 1047: 1011: 1005: 1004: 986: 954: 941: 940: 917:Appl. Phys. Lett 912: 906: 905: 879: 877:quant-ph/0501013 858: 852: 851: 815: 809: 808: 790: 762: 652: 650: 649: 644: 642: 641: 611: 610: 588: 586: 585: 580: 569: 568: 542: 540: 539: 534: 523: 522: 500: 498: 497: 492: 475: 474: 452: 450: 449: 444: 433: 432: 410: 408: 407: 402: 391: 390: 368: 366: 365: 360: 349: 348: 266:gallium arsenide 238:photonic crystal 223: 221: 220: 215: 171:is aligned by a 147: 145: 144: 139: 16:Laser technology 2329: 2328: 2324: 2323: 2322: 2320: 2319: 2318: 2299: 2298: 2297: 2296: 2256: 2255: 2251: 2246:Wayback Machine 2232: 2228: 2193:Phys. Rev. Lett 2190: 2189: 2185: 2128: 2127: 2123: 2093: 2092: 2088: 2031: 2030: 2026: 1982: 1981: 1977: 1907: 1906: 1902: 1837: 1836: 1832: 1761: 1760: 1756: 1703: 1702: 1698: 1633: 1632: 1628: 1563: 1562: 1558: 1528: 1527: 1523: 1493: 1492: 1488: 1439: 1438: 1429: 1359: 1358: 1354: 1290: 1289: 1285: 1228: 1227: 1214: 1200: 1190: 1187: 1186: 1179: 1123: 1122: 1118: 1056: 1055: 1051: 1013: 1012: 1008: 956: 955: 944: 914: 913: 909: 860: 859: 855: 817: 816: 812: 788:10.1.1.178.4356 764: 763: 756: 751: 729: 707:provable secure 684: 659: 630: 596: 591: 590: 554: 549: 548: 508: 503: 502: 460: 455: 454: 418: 413: 412: 376: 371: 370: 334: 329: 328: 321: 234: 206: 205: 127: 126: 111:conduction band 91: 70: 17: 12: 11: 5: 2327: 2325: 2317: 2316: 2311: 2309:Quantum optics 2301: 2300: 2295: 2294: 2249: 2226: 2183: 2121: 2086: 2024: 1975: 1900: 1847:(9): 835–840. 1830: 1754: 1696: 1635:microcavity". 1626: 1573:(4): 399–403. 1556: 1521: 1502:(4): 609–615. 1486: 1449:(5): 340–345. 1427: 1352: 1299:(8): 799–810. 1283: 1212: 1203:|journal= 1177: 1116: 1049: 1006: 942: 907: 870:(24): 241304. 853: 810: 753: 752: 750: 747: 746: 745: 740: 735: 728: 725: 683: 680: 658: 655: 640: 637: 633: 629: 626: 623: 620: 617: 614: 609: 606: 603: 599: 578: 575: 572: 567: 564: 561: 557: 532: 529: 526: 521: 518: 515: 511: 490: 487: 484: 481: 478: 473: 470: 467: 463: 442: 439: 436: 431: 428: 425: 421: 400: 397: 394: 389: 386: 383: 379: 358: 355: 352: 347: 344: 341: 337: 320: 317: 316: 315: 310: 309: 300:Microlens and 297: 296: 283: 282: 233: 230: 224:-pulse on the 213: 198:optical filter 152:due to noise. 137: 134: 123:Purcell effect 119:optical cavity 90: 87: 69: 66: 62:optical cavity 29:optical cavity 15: 13: 10: 9: 6: 4: 3: 2: 2326: 2315: 2312: 2310: 2307: 2306: 2304: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2262: 2261: 2253: 2250: 2247: 2243: 2240: 2236: 2230: 2227: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2187: 2184: 2179: 2175: 2171: 2167: 2163: 2159: 2155: 2151: 2146: 2141: 2138:(9): 093106. 2137: 2133: 2125: 2122: 2117: 2113: 2109: 2105: 2101: 2097: 2090: 2087: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2054: 2049: 2044: 2040: 2036: 2028: 2025: 2020: 2016: 2011: 2006: 2002: 1998: 1995:(2): 021101. 1994: 1990: 1986: 1979: 1976: 1971: 1967: 1962: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1928: 1923: 1919: 1915: 1911: 1904: 1901: 1896: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1855: 1850: 1846: 1842: 1834: 1831: 1826: 1822: 1817: 1812: 1808: 1804: 1800: 1796: 1792: 1788: 1783: 1778: 1774: 1770: 1766: 1758: 1755: 1750: 1746: 1741: 1736: 1732: 1728: 1724: 1720: 1716: 1712: 1711:ACS Photonics 1708: 1700: 1697: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1651: 1646: 1642: 1638: 1630: 1627: 1622: 1618: 1614: 1610: 1606: 1602: 1598: 1594: 1590: 1586: 1581: 1576: 1572: 1568: 1560: 1557: 1552: 1548: 1544: 1540: 1537:(3): 033001. 1536: 1532: 1525: 1522: 1517: 1513: 1509: 1505: 1501: 1497: 1490: 1487: 1482: 1478: 1474: 1470: 1466: 1462: 1457: 1452: 1448: 1444: 1436: 1434: 1432: 1428: 1423: 1419: 1414: 1409: 1405: 1401: 1397: 1393: 1389: 1385: 1380: 1375: 1371: 1367: 1363: 1356: 1353: 1348: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1307: 1302: 1298: 1294: 1287: 1284: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1246: 1241: 1238:(2): 020401. 1237: 1233: 1225: 1223: 1221: 1219: 1217: 1213: 1208: 1195: 1184: 1182: 1178: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1140: 1135: 1131: 1127: 1120: 1117: 1112: 1108: 1103: 1098: 1094: 1090: 1086: 1082: 1077: 1072: 1068: 1064: 1060: 1053: 1050: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1017: 1010: 1007: 1002: 998: 994: 990: 985: 980: 976: 972: 968: 964: 960: 953: 951: 949: 947: 943: 938: 934: 930: 926: 922: 918: 911: 908: 903: 899: 895: 891: 887: 883: 878: 873: 869: 865: 857: 854: 849: 845: 841: 837: 833: 829: 825: 821: 814: 811: 806: 802: 798: 794: 789: 784: 780: 776: 772: 768: 761: 759: 755: 748: 744: 741: 739: 736: 734: 731: 730: 726: 724: 722: 717: 715: 711: 708: 704: 700: 695: 693: 689: 681: 679: 676: 672: 671:beam splitter 668: 664: 656: 654: 638: 635: 631: 627: 624: 621: 615: 604: 597: 573: 562: 555: 546: 527: 516: 509: 488: 485: 479: 468: 461: 437: 426: 419: 395: 384: 377: 353: 342: 335: 326: 318: 312: 311: 307: 303: 299: 298: 294: 290: 289:semiconductor 285: 284: 280: 276: 271: 267: 263: 259: 255: 251: 247: 246: 245: 243: 239: 231: 229: 227: 211: 203: 199: 195: 190: 184: 182: 178: 174: 170: 166: 157: 153: 151: 135: 124: 120: 116: 112: 108: 104: 103:semiconductor 95: 88: 86: 84: 80: 75: 67: 65: 63: 59: 55: 51: 47: 43: 38: 34: 30: 27:placed in an 26: 22: 2264: 2258: 2252: 2234: 2229: 2196: 2192: 2186: 2135: 2131: 2124: 2099: 2095: 2089: 2038: 2034: 2027: 1992: 1988: 1978: 1917: 1913: 1903: 1844: 1840: 1833: 1772: 1769:Nano Letters 1768: 1757: 1714: 1710: 1699: 1640: 1636: 1629: 1570: 1566: 1559: 1534: 1530: 1524: 1499: 1495: 1489: 1446: 1442: 1369: 1365: 1355: 1296: 1292: 1286: 1235: 1231: 1194:cite journal 1129: 1125: 1119: 1066: 1062: 1052: 1019: 1015: 1009: 966: 962: 920: 916: 910: 867: 864:Phys. Rev. B 863: 856: 823: 819: 813: 770: 766: 718: 705:scheme is a 696: 685: 682:Applications 660: 325:antibunching 322: 235: 226:Bloch sphere 185: 169:polarization 162: 107:valence band 100: 71: 20: 18: 1372:(1): 4745. 738:Quantum dot 25:quantum dot 2303:Categories 2145:1712.06937 2048:1811.10962 2041:(4): 524. 1927:2003.08919 1854:1706.04422 1782:1901.09721 1650:1812.08662 1580:2007.12654 1456:1510.06499 1379:2003.00023 1306:2103.15083 1245:1507.04937 773:(4): 173. 749:References 194:biexcitons 2170:0003-6951 2081:117682842 2073:2334-2536 2019:0003-6951 1952:2375-2548 1895:205568107 1879:1748-3387 1807:1530-6984 1731:2330-4022 1691:204832937 1675:0028-0836 1621:220769410 1605:1748-3387 1551:122998636 1481:119281960 1404:2041-1723 1347:155091956 1331:1476-1122 1278:206266974 1139:1407.0691 1076:1203.6171 993:0034-6748 902:119442776 805:250837011 783:CiteSeerX 636:− 628:× 528:τ 438:τ 354:τ 212:π 173:polarizer 133:Δ 105:from the 2242:Archived 2221:10035403 2178:21749500 1970:33298444 1887:30013218 1825:30862165 1749:28670600 1683:31634901 1613:33510454 1422:32958795 1339:31086322 1270:26799002 1164:25318523 1111:22432053 1063:Sci. Rep 1044:29109549 1001:21806165 848:11125136 727:See also 675:detector 270:band gap 2289:4339227 2269:Bibcode 2201:Bibcode 2150:Bibcode 2104:Bibcode 2053:Bibcode 1997:Bibcode 1961:7725451 1932:Bibcode 1859:Bibcode 1816:6463245 1787:Bibcode 1740:5485799 1655:Bibcode 1585:Bibcode 1504:Bibcode 1461:Bibcode 1413:7506537 1384:Bibcode 1311:Bibcode 1250:Bibcode 1172:4470179 1144:Bibcode 1102:3307054 1081:Bibcode 1069:: 321. 1024:Bibcode 971:Bibcode 925:Bibcode 882:Bibcode 828:Bibcode 820:Science 775:Bibcode 115:exciton 109:to the 68:History 58:photons 33:exciton 2287:  2260:Nature 2219:  2176:  2168:  2079:  2071:  2035:Optica 2017:  1968:  1958:  1950:  1893:  1885:  1877:  1823:  1813:  1805:  1747:  1737:  1729:  1689:  1681:  1673:  1637:Nature 1619:  1611:  1603:  1549:  1479:  1420:  1410:  1402:  1345:  1337:  1329:  1276:  1268:  1170:  1162:  1126:Nature 1109:  1099:  1042:  999:  991:  900:  846:  803:  785:  701:. The 52:. The 2285:S2CID 2174:S2CID 2140:arXiv 2077:S2CID 2043:arXiv 1922:arXiv 1891:S2CID 1849:arXiv 1777:arXiv 1687:S2CID 1645:arXiv 1617:S2CID 1575:arXiv 1547:S2CID 1477:S2CID 1451:arXiv 1374:arXiv 1343:S2CID 1301:arXiv 1274:S2CID 1240:arXiv 1168:S2CID 1134:arXiv 1071:arXiv 898:S2CID 872:arXiv 801:S2CID 293:diode 202:laser 2217:PMID 2166:ISSN 2069:ISSN 2015:ISSN 1966:PMID 1948:ISSN 1883:PMID 1875:ISSN 1821:PMID 1803:ISSN 1745:PMID 1727:ISSN 1679:PMID 1671:ISSN 1609:PMID 1601:ISSN 1418:PMID 1400:ISSN 1335:PMID 1327:ISSN 1266:PMID 1207:help 1160:PMID 1107:PMID 1040:PMID 997:PMID 989:ISSN 844:PMID 703:BB84 264:and 2277:doi 2265:299 2209:doi 2158:doi 2136:112 2112:doi 2061:doi 2005:doi 1993:107 1956:PMC 1940:doi 1867:doi 1811:PMC 1795:doi 1735:PMC 1719:doi 1663:doi 1641:575 1593:doi 1539:doi 1512:doi 1469:doi 1408:PMC 1392:doi 1319:doi 1258:doi 1236:116 1152:doi 1130:514 1097:PMC 1089:doi 1032:doi 979:doi 933:doi 890:doi 836:doi 824:290 793:doi 625:7.5 2305:: 2283:. 2275:. 2263:. 2215:. 2207:. 2197:59 2195:. 2172:. 2164:. 2156:. 2148:. 2134:. 2110:. 2100:54 2098:. 2075:. 2067:. 2059:. 2051:. 2037:. 2013:. 2003:. 1991:. 1987:. 1964:. 1954:. 1946:. 1938:. 1930:. 1916:. 1912:. 1889:. 1881:. 1873:. 1865:. 1857:. 1845:13 1843:. 1819:. 1809:. 1801:. 1793:. 1785:. 1773:19 1771:. 1767:. 1743:. 1733:. 1725:. 1713:. 1709:. 1685:. 1677:. 1669:. 1661:. 1653:. 1639:. 1615:. 1607:. 1599:. 1591:. 1583:. 1571:16 1569:. 1545:. 1535:43 1533:. 1510:. 1500:35 1498:. 1475:. 1467:. 1459:. 1447:10 1445:. 1430:^ 1416:. 1406:. 1398:. 1390:. 1382:. 1370:11 1368:. 1364:. 1341:. 1333:. 1325:. 1317:. 1309:. 1297:18 1295:. 1272:. 1264:. 1256:. 1248:. 1234:. 1215:^ 1198:: 1196:}} 1192:{{ 1180:^ 1166:. 1158:. 1150:. 1142:. 1128:. 1105:. 1095:. 1087:. 1079:. 1065:. 1061:. 1038:. 1030:. 1020:12 1018:. 995:. 987:. 977:. 967:82 965:. 961:. 945:^ 931:. 921:79 919:. 896:. 888:. 880:. 868:71 866:. 842:. 834:. 822:. 799:. 791:. 781:. 769:. 757:^ 723:. 694:. 632:10 411:≤ 183:. 19:A 2291:. 2279:: 2271:: 2223:. 2211:: 2203:: 2180:. 2160:: 2152:: 2142:: 2118:. 2114:: 2106:: 2083:. 2063:: 2055:: 2045:: 2039:6 2021:. 2007:: 1999:: 1972:. 1942:: 1934:: 1924:: 1918:6 1897:. 1869:: 1861:: 1851:: 1827:. 1797:: 1789:: 1779:: 1751:. 1721:: 1715:4 1693:. 1665:: 1657:: 1647:: 1623:. 1595:: 1587:: 1577:: 1553:. 1541:: 1518:. 1514:: 1506:: 1483:. 1471:: 1463:: 1453:: 1424:. 1394:: 1386:: 1376:: 1349:. 1321:: 1313:: 1303:: 1280:. 1260:: 1252:: 1242:: 1209:) 1205:( 1174:. 1154:: 1146:: 1136:: 1113:. 1091:: 1083:: 1073:: 1067:2 1046:. 1034:: 1026:: 1003:. 981:: 973:: 939:. 935:: 927:: 904:. 892:: 884:: 874:: 850:. 838:: 830:: 807:. 795:: 777:: 771:1 639:5 622:= 619:) 616:0 613:( 608:) 605:2 602:( 598:g 577:) 574:0 571:( 566:) 563:2 560:( 556:g 531:) 525:( 520:) 517:2 514:( 510:g 489:0 486:= 483:) 480:0 477:( 472:) 469:2 466:( 462:g 441:) 435:( 430:) 427:2 424:( 420:g 399:) 396:0 393:( 388:) 385:2 382:( 378:g 357:) 351:( 346:) 343:2 340:( 336:g 281:. 136:t

Index

quantum dot
optical cavity
exciton
spontaneous emission
nonclassical light
photon antibunching
second order intensity correlation function
spontaneous emission
photons
optical cavity
quantum information science
distributed bragg reflectors
cryogenic temperatures

semiconductor
valence band
conduction band
exciton
optical cavity
Purcell effect
linewidth broadening

Jaynes-Cummings model
polarization
polarizer
vacuum Rabi oscillation
exciton-polariton
electromagnetic interaction
biexcitons
optical filter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.