Knowledge

Quantum indeterminacy

Source 📝

2272: 903: 1857:) has a determinate (sharp) value. The values of an observable will be obtained non-deterministically in accordance with a probability distribution that is uniquely determined by the system state. Note that the state is destroyed by measurement, so when we refer to a collection of values, each measured value in this collection must be obtained using a freshly prepared state. 1507: 2212:, experiments of chance, such as coin-tossing and dice-throwing, are deterministic, in the sense that, perfect knowledge of the initial conditions would render outcomes perfectly predictable. The ‘randomness’ stems from ignorance of physical information in the initial toss or throw. In diametrical contrast, in the case of 1860:
This indeterminacy might be regarded as a kind of essential incompleteness in our description of a physical system. Notice however, that the indeterminacy as stated above only applies to values of measurements not to the quantum state. For example, in the spin 1/2 example discussed above, the system
1334: 2251:
in a formal system of Boolean propositions. In experiments measuring photon polarisation, Paterek et al. demonstrate statistics correlating predictable outcomes with logically dependent mathematical propositions, and random outcomes with propositions that are logically independent.
1056:
in measurement may lead to indeterminate outcomes. By the later half of the 18th century, measurement errors were well understood, and it was known that they could either be reduced by better equipment or accounted for by statistical error models. In quantum mechanics, however,
1819:
can be expressed in terms of other variables, for example, a particle with a definitely measured energy has a fundamental limit to how precisely one can specify how long it will have that energy. The magnitude involved in quantum uncertainty is on the order of the
1248: 2255:
In 2020, Steve Faulkner reported on work following up on the findings of Tomasz Paterek et al.; showing what logical independence in the Paterek Boolean propositions means, in the domain of Matrix Mechanics proper. He showed how indeterminacy's
2063: 2175: 1768:
one accepted the formalism he was proposing. However, according to Bell, von Neumann's formal proof did not justify his informal conclusion. A definitive but partial negative answer to 1) has been established by experiment: because
2204:
is the statistical manifestation of that indeterminacy, witnessable in results of experiments repeated many times. However, the relationship between quantum indeterminacy and randomness is subtle and can be considered differently.
1181:. It is immediate from this that measurement in general will be non-deterministic. Quantum mechanics, moreover, gives a recipe for computing a probability distribution Pr on the possible outcomes given the initial system state is 117: 1602: 1961:
are a more general kind of state obtained by a statistical mixture of pure states. For mixed states the "quantum recipe" for determining the probability distribution of a measurement is determined as follows:
1814:
Quantum indeterminacy can also be illustrated in terms of a particle with a definitely measured momentum for which there must be a fundamental limit to how precisely its location can be specified. This quantum
1502:{\displaystyle \sigma _{1}={\begin{pmatrix}0&1\\1&0\end{pmatrix}},\quad \sigma _{2}={\begin{pmatrix}0&-i\\i&0\end{pmatrix}},\quad \sigma _{3}={\begin{pmatrix}1&0\\0&-1\end{pmatrix}}} 1788:, which is distinct from the uncertainty principle). Still, in the most natural interpretation the answer is also no. To see this, consider two sequences of measurements: (A) that measures exclusively 2596:, American Journal of Physics, 1947. Reprinted in Readings in the Philosophy of Science, Ed. H. Feigl and M. Brodbeck, Appleton-Century-Crofts, 1953. Discusses measurement, accuracy and determinism. 1902:
showed that if quantum mechanics is correct, then the classical view of how the real world works (at least after special relativity) is no longer tenable. This view included the following two ideas:
1753:
Can the apparent indeterminacy be construed as in fact deterministic, but dependent upon quantities not modeled in the current theory, which would therefore be incomplete? More precisely, are there
1717: 2547:
Tomasz Paterek, Johannes Kofler, Robert Prevedel, Peter Klimek, Markus Aspelmeyer, Anton Zeilinger, and Caslav Brukner, "Logical independence and quantum randomness – with experimental data",
2505:
Tomasz Paterek, Johannes Kofler, Robert Prevedel, Peter Klimek, Markus Aspelmeyer, Anton Zeilinger, and Caslav Brukner, "Logical independence and quantum randomness – with experimental data",
1941:
direction was determined with certainty, whereas immediately before Alice's measurement Bob's outcome was only statistically determined. From this it follows that either value of spin in the
1188: 1281:
showing eigenvectors for Pauli Spin matrices. The Bloch sphere is a two-dimensional surface the points of which correspond to the state space of a spin 1/2 particle. At the state
1849:
Quantum indeterminacy is the assertion that the state of a system does not determine a unique collection of values for all its measurable properties. Indeed, according to the
1894:
believed that quantum state cannot be a complete description of a physical system and, it is commonly thought, never came to terms with quantum mechanics. In fact, Einstein,
1661: 2531:
Tomasz Paterek, Johannes Kofler, Robert Prevedel, Peter Klimek, Markus Aspelmeyer, Anton Zeilinger, and Caslav Brukner, "Logical independence and quantum randomness",
2489:
Tomasz Paterek, Johannes Kofler, Robert Prevedel, Peter Klimek, Markus Aspelmeyer, Anton Zeilinger, and Caslav Brukner, "Logical independence and quantum randomness",
1806:. The measurement outcomes of (A) are all +1, while the statistical distribution of the measurements (B) is still divided between +1, −1 with equal probability. 1077:
continues to be an active research area in both theoretical and experimental physics. Possibly the first systematic attempt at a mathematical theory was developed by
2200:
Quantum indeterminacy is often understood as information (or lack of it) whose existence we infer, occurring in individual quantum systems, prior to measurement.
1906:
A measurable property of a physical system whose value can be predicted with certainty is actually an element of (local) reality (this was the terminology used by
2385: 1991: 2244:. It refers to the null logical connectivity that exists between mathematical propositions (in the same language) that neither prove nor disprove one another. 2098: 1094: 383: 1049:. The distribution is uniquely determined by the system state, and moreover quantum mechanics provides a recipe for calculating this probability distribution. 2260:
arises in evolved density operators representing mixed states, where measurement processes encounter irreversible 'lost history' and ingression of ambiguity.
1530: 2405:
Gregg Jaeger, "Quantum randomness and unpredictability" Philosophical Transactions of the Royal Society of London A doi/10.1002/prop.201600053 (2016)|Online=
884: 1317:(such as an electron) in which we only consider the spin degree of freedom. The corresponding Hilbert space is the two-dimensional complex Hilbert space 1325:(unique up to phase). In this case, the state space can be geometrically represented as the surface of a sphere, as shown in the figure on the right. 591: 135: 47: 920: 364: 2271: 547: 1784:
The answer to 2) depends on how disturbance is understood, particularly since measurement entails disturbance (however note that this is the
1275: 2305: 2301: 470: 1052:
Indeterminacy in measurement was not an innovation of quantum mechanics, since it had been established early on by experimentalists that
1669: 1069:
An adequate account of quantum indeterminacy requires a theory of measurement. Many theories have been proposed since the beginning of
2233: 1081:. The kinds of measurements he investigated are now called projective measurements. That theory was based in turn on the theory of 986: 967: 130: 939: 1853:, in the quantum mechanical formalism it is impossible that, for a given quantum state, each one of these measurable properties ( 219: 326: 306: 877: 174: 1883:
yields +1. By the von Neumann (so-called) postulates, immediately after the measurement the system is assuredly in the state
296: 2623: 946: 924: 566: 2231:. They proved that quantum randomness is, exclusively, the output of measurement experiments whose input settings introduce 606: 344: 244: 359: 542: 537: 508: 140: 953: 321: 311: 2291: 1933:
state. It was a conclusion of EPR, using the formal apparatus of quantum theory, that once Alice measured spin in the
576: 1850: 493: 1945:
direction is not an element of reality or that the effect of Alice's measurement has infinite speed of propagation.
1929:, perform independent measurements of spin on a pair of electrons, prepared at a source in a special state called a 1732:
can produce either +1, −1 each with probability 1/2. In fact, there is no state in which measurement of both
2676: 2474:
Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment: A new violation of Bell’s inequalities
870: 522: 935: 441: 2286: 1785: 1616: 1082: 527: 488: 416: 339: 199: 1038: 611: 913: 780: 498: 456: 406: 354: 120: 1770: 1136: 785: 503: 411: 331: 301: 264: 2643:, Princeton University Press, 1955. Reprinted in paperback form. Originally published in German in 1932. 1243:{\displaystyle \operatorname {Pr} (\lambda )=\langle \operatorname {E} (\lambda )\psi \mid \psi \rangle } 2330: 2310: 1958: 1816: 1778: 1086: 1058: 254: 239: 166: 2681: 2315: 815: 571: 483: 209: 2247:
In the work of Paterek et al., the researchers demonstrate a link connecting quantum randomness and
2320: 1314: 1074: 1053: 1042: 1020: 960: 670: 478: 396: 224: 204: 156: 2216:, the theorems of Kochen and Specker, the inequalities of John Bell, and experimental evidence of 2406: 2241: 1918: 1120: 391: 316: 249: 161: 2660: 2325: 1148: 1105: 1070: 825: 800: 740: 735: 635: 601: 581: 179: 38: 1764:
Von Neumann formulated the question 1) and provided an argument why the answer had to be no,
1978: 1140: 1078: 830: 820: 810: 710: 690: 675: 645: 513: 401: 2058:{\displaystyle \operatorname {E} _{A}(U)=\int _{U}\lambda \,d\operatorname {E} (\lambda ),} 1159:, then immediately after measurement the system will occupy a state that is an eigenvector 2627: 2588: 2170:{\displaystyle \operatorname {D} _{A}(U)=\operatorname {Tr} (\operatorname {E} _{A}(U)S).} 1891: 1821: 1011: 1007: 855: 725: 705: 451: 291: 2277: 1895: 1749:
There are various questions that can be asked about the above indeterminacy assertion.
1116: 1090: 1061:
is of a much more fundamental nature, having nothing to do with errors or disturbance.
790: 750: 730: 700: 680: 630: 596: 446: 436: 229: 2670: 1926: 1109: 850: 845: 775: 745: 715: 586: 532: 259: 234: 17: 2217: 1930: 1899: 1757:
that could account for the statistical indeterminacy in a completely classical way?
1510: 1329: 1278: 1274: 840: 835: 770: 755: 720: 214: 2621: 1760:
Can the indeterminacy be understood as a disturbance of the system being measured?
2296: 1922: 1907: 1152: 902: 805: 760: 695: 650: 2377: 2613:
Can quantum-mechanical description of physical reality be considered complete?
2267: 1954: 1854: 1098: 1046: 1026: 795: 765: 685: 660: 655: 640: 112:{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle } 1010:, that has become one of the characteristics of the standard description of 286: 2522:, Addison-Wesley Publishing Company Inc., Reading Massachusetts USA, 1948. 2611: 1917:
This failure of the classical view was one of the conclusions of the EPR
1311: 1023:
that uniquely determined all the values of its measurable properties, and
665: 2565: 1597:{\displaystyle {\frac {1}{\sqrt {2}}}(1,1),{\frac {1}{\sqrt {2}}}(1,-1)} 1029:, the values of its measurable properties uniquely determined the state. 2548: 2506: 1089:
that had been recently developed (by von Neumann and independently by
2454:
Experimental test of Bell’s inequalities using time-varying analyzers
1104:
In this formulation, the state of a physical system corresponds to a
27:
Apparent lack of definite state before measurement of quantum systems
2220:, all indicate that quantum randomness does not stem from any such 1953:
We have described indeterminacy for a quantum system that is in a
1273: 1513:
and correspond to spin-measurements along the 3 coordinate axes.
2663:
See especially part III "Misconceptions regarding measurement".
2407:
http://onlinelibrary.wiley.com/doi/10.1002/prop.201600053/epdf
2180:
This is a probability measure defined on the Borel subsets of
896: 1321:, with each quantum state corresponding to a unit vector in 2184:
that is the probability distribution obtained by measuring
2227:
In 2008, Tomasz Paterek et al. provided an explanation in
1516:
The Pauli matrices all have the eigenvalues +1, −1.
2636:, W. A. Benjamin, 1963 (paperback reprint by Dover 2004). 1913:
Effects of local actions have a finite propagation speed.
1985:
is a projection-valued measure defined by the condition
2382:
The NIST Reference on Constants, Units, and Uncertainty
1973:
is given by a densely defined self-adjoint operator on
1119:. An observable is represented by a self-adjoint (i.e. 1465: 1409: 1356: 1258:) is the projection onto the space of eigenvectors of 2101: 1994: 1672: 1619: 1533: 1337: 1191: 1171:
will be the corresponding eigenvalue of the equation
50: 2420:
The problem of hidden variables in quantum mechanics
1773:
are violated, any such hidden variable(s) cannot be
2472:Alain Aspect, Philippe Grangier, and GĂ©rard Roger, 2240:Logical independence is a well-known phenomenon in 1725:has the determinate value +1, while measurement of 1527:, these eigenvalues correspond to the eigenvectors 927:. Unsourced material may be challenged and removed. 2169: 2057: 1712:{\displaystyle \psi ={\frac {1}{\sqrt {2}}}(1,1),} 1711: 1655: 1596: 1501: 1242: 111: 2661:Common Misconceptions Regarding Quantum Mechanics 2562:The Underlying Machinery of Quantum Indeterminacy 1969:be an observable of a quantum mechanical system. 1014:. Prior to quantum physics, it was thought that 2452:Alain Aspect, Jean Dalibard, and GĂ©rard Roger, 2365:Speakable and Unspeakable in Quantum Mechanics 1095:Hilbert space formulation of quantum mechanics 2641:Mathematical Foundations of Quantum Mechanics 2634:Mathematical Foundations of Quantum Mechanics 878: 8: 2581:Bell's inequality test: more ideal than ever 1876:that retains only those particles such that 1306:take the values +1, −1 with probability 1/2. 1237: 1210: 106: 80: 2196:Logical independence and quantum randomness 2367:, Cambridge University Press, 2004, pg. 5. 885: 871: 29: 2140: 2106: 2100: 2033: 2024: 1999: 1993: 1679: 1671: 1618: 1564: 1534: 1532: 1460: 1451: 1404: 1395: 1351: 1342: 1336: 1190: 1037:can be quantitatively characterized by a 987:Learn how and when to remove this message 98: 87: 86: 72: 57: 49: 2610:A. Einstein, B. Podolsky, and N. Rosen, 2601:On the Einstein–Poldolsky–Rosen paradox 2520:An introduction to mathematical thought 2422:, Journal of Mathematics and Mechanics 2343: 1006:incompleteness in the description of a 54: 37: 2437:On the Einstein Podolsky Rosen paradox 1613:, they correspond to the eigenvectors 1310:In this example, we consider a single 7: 2378:"2022 CODATA Value: Planck constant" 2302:Interpretations of quantum mechanics 1937:direction, Bob's measurement in the 1019:a physical system had a determinate 925:adding citations to reliable sources 2650:, Princeton University Press, 1999. 2549:https://arxiv.org/pdf/0811.4542.pdf 2507:https://arxiv.org/pdf/0811.4542.pdf 2354:, Cambridge University Press, 1992. 2137: 2103: 2037: 1996: 1213: 417:Sum-over-histories (path integral) 103: 77: 33:Part of a series of articles about 25: 2270: 1845:Indeterminacy and incompleteness 901: 2648:Understanding Quantum Mechanics 1810:Other examples of indeterminacy 1446: 1390: 912:needs additional citations for 2538:(2010), no. 013019, 1367–2630. 2496:(2010), no. 013019, 1367–2630. 2161: 2155: 2149: 2133: 2121: 2115: 2049: 2043: 2014: 2008: 1949:Indeterminacy for mixed states 1925:, now commonly referred to as 1921:in which two remotely located 1802:of a spin system in the state 1703: 1691: 1650: 1638: 1632: 1620: 1591: 1576: 1558: 1546: 1225: 1219: 1204: 1198: 1097:(attributed by von Neumann to 567:Relativistic quantum mechanics 99: 92: 73: 1: 2350:V. Braginski and F. Khalili, 1861:can be prepared in the state 1292:are +1 whereas the values of 607:Quantum statistical mechanics 1155:. If the system is in state 2292:Counterfactual definiteness 1795:and (B) that measures only 1656:{\displaystyle (1,0),(0,1)} 577:Quantum information science 2698: 2476:, Physical Review Letters 2463:(1982), no. 25, 1804–1807. 2418:S Kochen and E P Specker, 1083:projection-valued measures 1041:on the set of outcomes of 2287:Complementarity (physics) 1746:have determinate values. 2518:Edward Russell Stabler, 2229:mathematical information 1865:by using measurement of 1167:and the observed value 1039:probability distribution 612:Quantum machine learning 365:Wheeler's delayed-choice 2076:. Given a mixed state 2068:for every Borel subset 936:"Quantum indeterminacy" 322:Leggett–Garg inequality 2533:New Journal of Physics 2491:New Journal of Physics 2458:Physical Revue Letters 2237:into quantum systems. 2171: 2059: 1851:Kochen–Specker theorem 1713: 1657: 1598: 1503: 1307: 1244: 1087:self-adjoint operators 113: 2480:(1982), no. 2, 91–94. 2331:Uncertainty principle 2311:Quantum contextuality 2172: 2060: 1817:uncertainty principle 1779:Bell test experiments 1714: 1658: 1599: 1504: 1277: 1245: 1185:. The probability is 1035:Quantum indeterminacy 1000:Quantum indeterminacy 307:Elitzur–Vaidman 297:Davisson–Germer 114: 18:Quantum indeterminism 2352:Quantum Measurements 2316:Quantum entanglement 2249:logical independence 2234:logical independence 2222:physical information 2099: 1992: 1670: 1617: 1531: 1335: 1189: 921:improve this article 572:Quantum field theory 484:Consistent histories 121:Schrödinger equation 48: 2594:The Logic of Quanta 2321:Quantum measurement 2080:, we introduce the 1771:Bell's inequalities 1330:Pauli spin matrices 1075:quantum measurement 360:Stern–Gerlach 157:Classical mechanics 2626:2006-02-08 at the 2242:Mathematical Logic 2202:Quantum randomness 2167: 2055: 1919:thought experiment 1709: 1666:Thus in the state 1653: 1594: 1499: 1493: 1437: 1381: 1308: 1240: 548:Von Neumann–Wigner 528:Objective-collapse 327:Mach–Zehnder 317:Leggett inequality 312:Franck–Hertz 162:Old quantum theory 109: 2677:Quantum mechanics 2326:Quantum mechanics 2306:Comparisons chart 2210:classical physics 1689: 1688: 1574: 1573: 1544: 1543: 1149:orthonormal basis 1108:of length 1 in a 1071:quantum mechanics 997: 996: 989: 971: 895: 894: 602:Scattering theory 582:Quantum computing 355:Schrödinger's cat 287:Bell's inequality 95: 70: 39:Quantum mechanics 16:(Redirected from 2689: 2639:J. von Neumann, 2567: 2560:Steve Faulkner, 2558: 2552: 2545: 2539: 2529: 2523: 2516: 2510: 2503: 2497: 2487: 2481: 2470: 2464: 2450: 2444: 2443:(1964), 195–200. 2433: 2427: 2416: 2410: 2403: 2397: 2396: 2394: 2393: 2374: 2368: 2361: 2355: 2348: 2280: 2275: 2274: 2176: 2174: 2173: 2168: 2145: 2144: 2111: 2110: 2064: 2062: 2061: 2056: 2029: 2028: 2004: 2003: 1979:spectral measure 1840: 1837: 1835: 1832: 1829: 1755:hidden variables 1718: 1716: 1715: 1710: 1690: 1684: 1680: 1662: 1660: 1659: 1654: 1603: 1601: 1600: 1595: 1575: 1569: 1565: 1545: 1539: 1535: 1508: 1506: 1505: 1500: 1498: 1497: 1456: 1455: 1442: 1441: 1400: 1399: 1386: 1385: 1347: 1346: 1262:with eigenvalue 1249: 1247: 1246: 1241: 1180: 1141:spectral theorem 1079:John von Neumann 1002:is the apparent 992: 985: 981: 978: 972: 970: 929: 905: 897: 887: 880: 873: 514:Superdeterminism 167:Bra–ket notation 118: 116: 115: 110: 102: 97: 96: 88: 76: 71: 69: 58: 30: 21: 2697: 2696: 2692: 2691: 2690: 2688: 2687: 2686: 2667: 2666: 2657: 2628:Wayback Machine 2576: 2571: 2570: 2559: 2555: 2546: 2542: 2530: 2526: 2517: 2513: 2504: 2500: 2488: 2484: 2471: 2467: 2451: 2447: 2434: 2430: 2417: 2413: 2404: 2400: 2391: 2389: 2376: 2375: 2371: 2362: 2358: 2349: 2345: 2340: 2335: 2276: 2269: 2266: 2214:quantum physics 2198: 2136: 2102: 2097: 2096: 2020: 1995: 1990: 1989: 1951: 1892:Albert Einstein 1882: 1871: 1847: 1838: 1833: 1830: 1827: 1825: 1822:Planck constant 1812: 1801: 1794: 1786:observer effect 1745: 1738: 1731: 1724: 1668: 1667: 1615: 1614: 1612: 1529: 1528: 1526: 1492: 1491: 1483: 1477: 1476: 1471: 1461: 1447: 1436: 1435: 1430: 1424: 1423: 1415: 1405: 1391: 1380: 1379: 1374: 1368: 1367: 1362: 1352: 1338: 1333: 1332: 1305: 1298: 1291: 1272: 1187: 1186: 1172: 1117:complex numbers 1067: 1032: 1012:quantum physics 1008:physical system 993: 982: 976: 973: 930: 928: 918: 906: 891: 862: 861: 860: 625: 617: 616: 562: 561:Advanced topics 554: 553: 552: 504:Hidden-variable 494:de Broglie–Bohm 473: 471:Interpretations 463: 462: 461: 431: 423: 422: 421: 379: 371: 370: 369: 336: 292:CHSH inequality 281: 273: 272: 271: 200:Complementarity 194: 186: 185: 184: 152: 123: 62: 46: 45: 28: 23: 22: 15: 12: 11: 5: 2695: 2693: 2685: 2684: 2679: 2669: 2668: 2665: 2664: 2656: 2655:External links 2653: 2652: 2651: 2644: 2637: 2630: 2608: 2597: 2590: 2575: 2572: 2569: 2568: 2553: 2540: 2524: 2511: 2498: 2482: 2465: 2445: 2428: 2426:(1967), 59–87. 2411: 2398: 2369: 2356: 2342: 2341: 2339: 2336: 2334: 2333: 2328: 2323: 2318: 2313: 2308: 2299: 2294: 2289: 2283: 2282: 2281: 2278:Physics portal 2265: 2262: 2258:indefiniteness 2197: 2194: 2178: 2177: 2166: 2163: 2160: 2157: 2154: 2151: 2148: 2143: 2139: 2135: 2132: 2129: 2126: 2123: 2120: 2117: 2114: 2109: 2105: 2066: 2065: 2054: 2051: 2048: 2045: 2042: 2039: 2036: 2032: 2027: 2023: 2019: 2016: 2013: 2010: 2007: 2002: 1998: 1950: 1947: 1915: 1914: 1911: 1896:Boris Podolsky 1880: 1869: 1846: 1843: 1811: 1808: 1799: 1792: 1762: 1761: 1758: 1743: 1736: 1729: 1722: 1708: 1705: 1702: 1699: 1696: 1693: 1687: 1683: 1678: 1675: 1664: 1663: 1652: 1649: 1646: 1643: 1640: 1637: 1634: 1631: 1628: 1625: 1622: 1610: 1604: 1593: 1590: 1587: 1584: 1581: 1578: 1572: 1568: 1563: 1560: 1557: 1554: 1551: 1548: 1542: 1538: 1524: 1496: 1490: 1487: 1484: 1482: 1479: 1478: 1475: 1472: 1470: 1467: 1466: 1464: 1459: 1454: 1450: 1445: 1440: 1434: 1431: 1429: 1426: 1425: 1422: 1419: 1416: 1414: 1411: 1410: 1408: 1403: 1398: 1394: 1389: 1384: 1378: 1375: 1373: 1370: 1369: 1366: 1363: 1361: 1358: 1357: 1355: 1350: 1345: 1341: 1303: 1296: 1289: 1285:the values of 1271: 1268: 1239: 1236: 1233: 1230: 1227: 1224: 1221: 1218: 1215: 1212: 1209: 1206: 1203: 1200: 1197: 1194: 1091:Marshall Stone 1066: 1063: 1031: 1030: 1024: 1016: 995: 994: 909: 907: 900: 893: 892: 890: 889: 882: 875: 867: 864: 863: 859: 858: 853: 848: 843: 838: 833: 828: 823: 818: 813: 808: 803: 798: 793: 788: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 648: 643: 638: 633: 627: 626: 623: 622: 619: 618: 615: 614: 609: 604: 599: 597:Density matrix 594: 589: 584: 579: 574: 569: 563: 560: 559: 556: 555: 551: 550: 545: 540: 535: 530: 525: 520: 519: 518: 517: 516: 501: 496: 491: 486: 481: 475: 474: 469: 468: 465: 464: 460: 459: 454: 449: 444: 439: 433: 432: 429: 428: 425: 424: 420: 419: 414: 409: 404: 399: 394: 388: 387: 386: 380: 377: 376: 373: 372: 368: 367: 362: 357: 351: 350: 349: 348: 347: 345:Delayed-choice 340:Quantum eraser 335: 334: 329: 324: 319: 314: 309: 304: 299: 294: 289: 283: 282: 279: 278: 275: 274: 270: 269: 268: 267: 257: 252: 247: 242: 237: 232: 230:Quantum number 227: 222: 217: 212: 207: 202: 196: 195: 192: 191: 188: 187: 183: 182: 177: 171: 170: 169: 164: 159: 153: 150: 149: 146: 145: 144: 143: 138: 133: 125: 124: 119: 108: 105: 101: 94: 91: 85: 82: 79: 75: 68: 65: 61: 56: 53: 42: 41: 35: 34: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2694: 2683: 2680: 2678: 2675: 2674: 2672: 2662: 2659: 2658: 2654: 2649: 2645: 2642: 2638: 2635: 2631: 2629: 2625: 2622: 2619: 2615: 2614: 2609: 2606: 2602: 2598: 2595: 2592:G. Bergmann, 2591: 2589: 2586: 2582: 2578: 2577: 2573: 2566: 2563: 2557: 2554: 2550: 2544: 2541: 2537: 2534: 2528: 2525: 2521: 2515: 2512: 2508: 2502: 2499: 2495: 2492: 2486: 2483: 2479: 2475: 2469: 2466: 2462: 2459: 2455: 2449: 2446: 2442: 2438: 2432: 2429: 2425: 2421: 2415: 2412: 2408: 2402: 2399: 2387: 2383: 2379: 2373: 2370: 2366: 2360: 2357: 2353: 2347: 2344: 2337: 2332: 2329: 2327: 2324: 2322: 2319: 2317: 2314: 2312: 2309: 2307: 2303: 2300: 2298: 2295: 2293: 2290: 2288: 2285: 2284: 2279: 2273: 2268: 2263: 2261: 2259: 2253: 2250: 2245: 2243: 2238: 2236: 2235: 2230: 2225: 2223: 2219: 2215: 2211: 2206: 2203: 2195: 2193: 2191: 2187: 2183: 2164: 2158: 2152: 2146: 2141: 2130: 2127: 2124: 2118: 2112: 2107: 2095: 2094: 2093: 2091: 2087: 2083: 2079: 2075: 2071: 2052: 2046: 2040: 2034: 2030: 2025: 2021: 2017: 2011: 2005: 2000: 1988: 1987: 1986: 1984: 1980: 1976: 1972: 1968: 1963: 1960: 1956: 1948: 1946: 1944: 1940: 1936: 1932: 1928: 1927:Alice and Bob 1924: 1920: 1912: 1909: 1905: 1904: 1903: 1901: 1897: 1893: 1888: 1886: 1879: 1875: 1868: 1864: 1858: 1856: 1852: 1844: 1842: 1823: 1818: 1809: 1807: 1805: 1798: 1791: 1787: 1782: 1780: 1776: 1772: 1767: 1759: 1756: 1752: 1751: 1750: 1747: 1742: 1735: 1728: 1721: 1706: 1700: 1697: 1694: 1685: 1681: 1676: 1673: 1647: 1644: 1641: 1635: 1629: 1626: 1623: 1609: 1605: 1588: 1585: 1582: 1579: 1570: 1566: 1561: 1555: 1552: 1549: 1540: 1536: 1523: 1519: 1518: 1517: 1514: 1512: 1494: 1488: 1485: 1480: 1473: 1468: 1462: 1457: 1452: 1448: 1443: 1438: 1432: 1427: 1420: 1417: 1412: 1406: 1401: 1396: 1392: 1387: 1382: 1376: 1371: 1364: 1359: 1353: 1348: 1343: 1339: 1331: 1326: 1324: 1320: 1316: 1313: 1302: 1295: 1288: 1284: 1280: 1276: 1269: 1267: 1265: 1261: 1257: 1253: 1234: 1231: 1228: 1222: 1216: 1207: 1201: 1195: 1192: 1184: 1179: 1175: 1170: 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1138: 1134: 1130: 1126: 1122: 1118: 1114: 1111: 1110:Hilbert space 1107: 1102: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1064: 1062: 1060: 1059:indeterminacy 1055: 1050: 1048: 1044: 1040: 1036: 1028: 1025: 1022: 1018: 1017: 1015: 1013: 1009: 1005: 1001: 991: 988: 980: 977:December 2008 969: 966: 962: 959: 955: 952: 948: 945: 941: 938: â€“  937: 933: 932:Find sources: 926: 922: 916: 915: 910:This article 908: 904: 899: 898: 888: 883: 881: 876: 874: 869: 868: 866: 865: 857: 854: 852: 849: 847: 844: 842: 839: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 642: 639: 637: 634: 632: 629: 628: 621: 620: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 587:Quantum chaos 585: 583: 580: 578: 575: 573: 570: 568: 565: 564: 558: 557: 549: 546: 544: 543:Transactional 541: 539: 536: 534: 533:Quantum logic 531: 529: 526: 524: 521: 515: 512: 511: 510: 507: 506: 505: 502: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 476: 472: 467: 466: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 434: 427: 426: 418: 415: 413: 410: 408: 405: 403: 400: 398: 395: 393: 390: 389: 385: 382: 381: 375: 374: 366: 363: 361: 358: 356: 353: 352: 346: 343: 342: 341: 338: 337: 333: 330: 328: 325: 323: 320: 318: 315: 313: 310: 308: 305: 303: 300: 298: 295: 293: 290: 288: 285: 284: 277: 276: 266: 263: 262: 261: 260:Wave function 258: 256: 253: 251: 248: 246: 243: 241: 240:Superposition 238: 236: 233: 231: 228: 226: 223: 221: 218: 216: 213: 211: 208: 206: 203: 201: 198: 197: 190: 189: 181: 178: 176: 173: 172: 168: 165: 163: 160: 158: 155: 154: 148: 147: 142: 139: 137: 134: 132: 129: 128: 127: 126: 122: 89: 83: 66: 63: 59: 51: 44: 43: 40: 36: 32: 31: 19: 2647: 2640: 2633: 2620:777 (1935). 2617: 2612: 2604: 2600: 2593: 2587:189 (1999). 2584: 2580: 2561: 2556: 2543: 2535: 2532: 2527: 2519: 2514: 2501: 2493: 2490: 2485: 2477: 2473: 2468: 2460: 2457: 2453: 2448: 2440: 2436: 2431: 2423: 2419: 2414: 2401: 2390:. Retrieved 2381: 2372: 2364: 2359: 2351: 2346: 2257: 2254: 2248: 2246: 2239: 2232: 2228: 2226: 2221: 2218:Alain Aspect 2213: 2209: 2207: 2201: 2199: 2189: 2185: 2181: 2179: 2092:as follows: 2089: 2085: 2082:distribution 2081: 2077: 2073: 2069: 2067: 1982: 1974: 1970: 1966: 1964: 1959:Mixed states 1952: 1942: 1938: 1934: 1931:spin singlet 1916: 1900:Nathan Rosen 1889: 1884: 1877: 1873: 1866: 1862: 1859: 1848: 1836:10 J⋅Hz 1813: 1803: 1796: 1789: 1783: 1774: 1765: 1763: 1754: 1748: 1740: 1733: 1726: 1719: 1665: 1607: 1521: 1515: 1511:self-adjoint 1327: 1322: 1318: 1309: 1300: 1293: 1286: 1282: 1279:Bloch sphere 1263: 1259: 1255: 1251: 1182: 1177: 1173: 1168: 1164: 1160: 1156: 1153:eigenvectors 1144: 1132: 1128: 1124: 1112: 1103: 1068: 1051: 1043:measurements 1034: 1033: 1003: 999: 998: 983: 974: 964: 957: 950: 943: 931: 919:Please help 914:verification 911: 442:Klein–Gordon 378:Formulations 215:Energy level 210:Entanglement 193:Fundamentals 180:Interference 131:Introduction 2682:Determinism 2632:G. Mackey, 2616:Phys. Rev. 2607:195 (1964). 2599:J.S. Bell, 2579:A. Aspect, 2435:John Bell, 2363:J.S. Bell, 2297:EPR paradox 1855:observables 1137:dimensional 1123:) operator 1065:Measurement 831:von Neumann 816:Schrödinger 592:EPR paradox 523:Many-worlds 457:Schrödinger 412:Schrödinger 407:Phase-space 397:Interaction 302:Double-slit 280:Experiments 255:Uncertainty 225:Nonlocality 220:Measurement 205:Decoherence 175:Hamiltonian 2671:Categories 2646:R. OmnĂšs, 2603:, Physics 2574:References 2439:, Physics 2392:2024-05-18 2388:. May 2024 1955:pure state 1135:is finite 1099:Paul Dirac 1093:) and the 1047:observable 1027:conversely 947:newspapers 826:Sommerfeld 741:Heisenberg 736:Gutzwiller 676:de Broglie 624:Scientists 538:Relational 489:Copenhagen 392:Heisenberg 250:Tunnelling 151:Background 2583:, Nature 2147:⁡ 2131:⁡ 2113:⁡ 2047:λ 2041:⁡ 2031:λ 2022:∫ 2006:⁡ 1923:observers 1890:However, 1674:ψ 1586:− 1486:− 1449:σ 1418:− 1393:σ 1340:σ 1238:⟩ 1235:ψ 1232:∣ 1229:ψ 1223:λ 1217:⁡ 1211:⟨ 1202:λ 1196:⁡ 1139:, by the 1121:Hermitian 1115:over the 1004:necessary 856:Zeilinger 701:Ehrenfest 430:Equations 107:⟩ 104:Ψ 93:^ 81:⟩ 78:Ψ 55:ℏ 2624:Archived 2564:(2020). 2264:See also 1315:particle 1312:spin 1/2 781:Millikan 706:Einstein 691:Davisson 646:Blackett 631:Aharonov 499:Ensemble 479:Bayesian 384:Overview 265:Collapse 245:Symmetry 136:Glossary 2551:(2010). 2509:(2010). 1977:. The 1839:‍ 1270:Example 1147:has an 961:scholar 821:Simmons 811:Rydberg 776:Moseley 756:Kramers 746:Hilbert 731:Glauber 726:Feynman 711:Everett 681:Compton 452:Rydberg 141:History 2088:under 1874:filter 1250:where 1106:vector 1054:errors 1045:of an 963:  956:  949:  942:  934:  851:Zeeman 846:Wigner 796:Planck 766:Landau 751:Jordan 402:Matrix 332:Popper 2338:Notes 1872:as a 1826:6.626 1777:(see 1775:local 1131:. If 1021:state 968:JSTOR 954:books 806:Raman 791:Pauli 786:Onnes 721:Fermi 696:Debye 686:Dirac 651:Bloch 641:Bethe 509:Local 447:Pauli 437:Dirac 235:State 2386:NIST 1965:Let 1898:and 1739:and 1606:For 1520:For 1509:are 1328:The 1299:and 1085:for 1073:and 940:news 841:Wien 836:Weyl 801:Rabi 771:Laue 761:Lamb 716:Fock 671:Bose 666:Born 661:Bohr 656:Bohm 636:Bell 2585:398 2409:PDF 2208:In 2188:in 2084:of 2072:of 1981:of 1908:EPR 1841:). 1828:070 1781:). 1163:of 1151:of 1127:on 1101:). 923:by 2673:: 2618:47 2536:12 2494:12 2478:49 2461:49 2456:, 2424:17 2384:. 2380:. 2304:: 2224:. 2192:. 2128:Tr 1957:. 1910:). 1887:. 1831:15 1766:if 1266:. 1193:Pr 1178:λe 1176:= 1174:Ae 1143:, 2605:1 2441:1 2395:. 2190:S 2186:A 2182:R 2165:. 2162:) 2159:S 2156:) 2153:U 2150:( 2142:A 2138:E 2134:( 2125:= 2122:) 2119:U 2116:( 2108:A 2104:D 2090:S 2086:A 2078:S 2074:R 2070:U 2053:, 2050:) 2044:( 2038:E 2035:d 2026:U 2018:= 2015:) 2012:U 2009:( 2001:A 1997:E 1983:A 1975:H 1971:A 1967:A 1943:x 1939:x 1935:x 1885:ψ 1881:1 1878:σ 1870:1 1867:σ 1863:ψ 1834:× 1824:( 1804:ψ 1800:3 1797:σ 1793:1 1790:σ 1744:3 1741:σ 1737:1 1734:σ 1730:3 1727:σ 1723:1 1720:σ 1707:, 1704:) 1701:1 1698:, 1695:1 1692:( 1686:2 1682:1 1677:= 1651:) 1648:1 1645:, 1642:0 1639:( 1636:, 1633:) 1630:0 1627:, 1624:1 1621:( 1611:3 1608:σ 1592:) 1589:1 1583:, 1580:1 1577:( 1571:2 1567:1 1562:, 1559:) 1556:1 1553:, 1550:1 1547:( 1541:2 1537:1 1525:1 1522:σ 1495:) 1489:1 1481:0 1474:0 1469:1 1463:( 1458:= 1453:3 1444:, 1439:) 1433:0 1428:i 1421:i 1413:0 1407:( 1402:= 1397:2 1388:, 1383:) 1377:0 1372:1 1365:1 1360:0 1354:( 1349:= 1344:1 1323:C 1319:C 1304:3 1301:σ 1297:2 1294:σ 1290:1 1287:σ 1283:ψ 1264:λ 1260:A 1256:λ 1254:( 1252:E 1226:) 1220:( 1214:E 1208:= 1205:) 1199:( 1183:ψ 1169:λ 1165:A 1161:e 1157:ψ 1145:A 1133:H 1129:H 1125:A 1113:H 990:) 984:( 979:) 975:( 965:· 958:· 951:· 944:· 917:. 886:e 879:t 872:v 100:| 90:H 84:= 74:| 67:t 64:d 60:d 52:i 20:)

Index

Quantum indeterminism
Quantum mechanics
Schrödinger equation
Introduction
Glossary
History
Classical mechanics
Old quantum theory
Bra–ket notation
Hamiltonian
Interference
Complementarity
Decoherence
Entanglement
Energy level
Measurement
Nonlocality
Quantum number
State
Superposition
Symmetry
Tunnelling
Uncertainty
Wave function
Collapse
Bell's inequality
CHSH inequality
Davisson–Germer
Double-slit
Elitzur–Vaidman

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑