Knowledge (XXG)

Quantum memory

Source 📝

1449:, which must be stored in the memory to faithfully reproduce the stored structural photons. An atomic vapor quantum memory is ideal for storing such beams because the orbital angular momentum of photons can be mapped to the phase and amplitude of the distributed integration excitation. Diffusion is a major limitation of this technique because the motion of hot atoms destroys the spatial coherence of the storage excitation. Early successes included storing weakly coherent pulses of spatial structure in a warm, ultracold atomic whole. In one experiment, the same group of scientists in a caesium 1402:, which means they can represent multiple combinations at the same time. These particles are called quantum bits, or qubits. From a cybersecurity perspective, the magic of qubits is that if a hacker tries to observe them in transit, their fragile quantum states shatter. This means it is impossible for hackers to tamper with network data without leaving a trace. Now, many companies are taking advantage of this feature to create networks that transmit highly sensitive data. In theory, these networks are secure. 4217: 1322:
of the light. For some signals, you cannot measure both the amplitude and phase of the light without interfering with the signal. To store quantum information, light itself needs to be stored without being measured. An atomic gas quantum memory is recording the state of light into the atomic cloud. When light's information is stored by atoms, relative amplitude and phase of light is mapped to atoms and can be retrieved on-demand.
1346:, the storage of qubits is limited by the internal coherence time of the physical qubits holding the information. "Quantum memory" beyond the given physical qubit storage limits will be a quantum information transmission to "storing qubits" not easily affected by environmental noise and other factors. The information would later be transferred back to the preferred "process qubits" to allow rapid operations or reads. 4207: 3332: 1470: 32: 1442:, because they are relatively narrow spectrum line and the number of high density in the warm temperature of 50-100 ∘ C. Alkali vapors have been used in some of the most important memory developments, from early research to the latest results we are discussing, due to their high optical depth, long coherent time and easy near-infrared optical transition. 128: 73: 1280:, a quantum gate that maintains the identity of any state, and a mechanism for converting predetermined photons into on-demand photons. Quantum memory can be used in many aspects, such as quantum computing and quantum communication. Continuous research and experiments have enabled quantum memory to realize the storage of qubits. 1350: 1565:
kind of memory that is different from the general one is created. It has the multimode capacity and can also be used as a high fidelity quantum converter. Experimental results show that in all these operations, the fidelity of the three-dimensional quantum state carried by the photon can be maintained at around 89%.
1321:
Normal, classical optical signals are transmitted by varying the amplitude of light. In this case, a piece of paper, or a computer hard disk, can be used to store information on the lamp. In the quantum information scenario, however, the information may be encoded according to the amplitude and phase
1564:
based on quantum repeater can be constructed by utilizing the storage and coherence of quantum states in the material system. Researchers have shown for the first time in rare-earth ion-doped crystals. By combining the three-dimensional space with two-dimensional time and two-dimensional spectrum, a
1366:
has found a way to increase the efficiency of optical quantum memory to more than 85 percent. The discovery also brings the popularity of quantum computers closer to reality. At the same time, the quantum memory can also be used as a repeater in the quantum network, which lays the foundation for the
1577:
mode of 40 THz and has a wide transient window in a visible and near-infrared band, which makes it suitable for being an optical memory with a very wide band. After the Raman storage interaction, the optical phonon decays into a pair of photons through the channel, and the decay lifetime is 3.5 ps,
1590:
For quantum memory, quantum communication and cryptography are the future research directions. However, there are many challenges to building a global quantum network. One of the most important challenges is to create memories that can store the quantum information carried by light. Researchers at
1516:
of atomic transitions. Slow light, optical storage, and quantum memories can be achieved based on EIT. In contrast to other approaches, EIT has a long storage time and is a relatively easy and inexpensive solution to implement. For example, electromagnetically induced transparency does not require
1288:
The interaction of quantum radiation with multiple particles has sparked scientific interest over the past decade. Quantum memory is one such field, mapping the quantum state of light onto a group of atoms and then restoring it to its original shape. Quantum memory is a key element in information
1429:
The coupling between the nitrogen-vacancy spin ensemble and superconducting qubits provides the possibility for microwave storage of superconducting qubits. Optical storage combines the coupling of electron spin state and superconducting quantum bits, which enables the nitrogen-vacancy center in
1361:
Optical quantum memory is usually used to detect and store single photon quantum states. However, producing efficient memory of this kind is still a huge challenge for current science. A single photon is so low in energy as to be lost in a complex light background. These problems have long kept
1465:
is prepared by an orbital angular momentum unit using spiral phase plates, stored in the second magneto-optical trap and recovered. The dual-orbit setup also proves coherence in multimode memory, where a preannounced single photon stores the orbital angular momentum superposition state for 100
1534:
demonstrated a 92% storage-and-retrieval efficiency in the classical regime with coherent beams and a 70% storage-and-retrieval efficiency was demonstrated for polarization qubits encoded in weak coherent states, beating any classical benchmark. Following these demonstrations, single-photon
1525:
can read EIT while the spin coherence survives due to the time delay of readout pulse caused by a spin recovery in non-uniformly broadened media. Although there are some limitations on operating wavelength, bandwidth, and mode capacity, techniques have been developed to make EIT-based quantum
1581:
Nevertheless, diamond memory has allowed some revealing studies of the interactions between light and matter at the quantum level: optical phonons in a diamond can be used to demonstrate emission quantum memory, macroscopic entanglement, pre-predicted single-photon storage, and single-photon
1607:
can store and protect quantum information, even at high frequencies. This makes ytterbium an ideal candidate for future quantum networks. Because signals cannot be replicated, scientists are now studying how quantum memories can be made to travel farther and farther by capturing photons to
1453:
was able to store and retrieve vector beams at the single-photon level. The memory preserves the rotation invariance of the vector beam, making it possible to use it in conjunction with qubits encoded for maladjusted immune quantum communication.
1608:
synchronize them. In order to do this, it becomes important to find the right materials for making quantum memories. Ytterbium is a good insulator and works at high frequencies so that photons can be stored and quickly restored.
1293:, while opening a new way for the foundation of light-atom interaction. However, restoring the quantum state of light is no easy task. While impressive progress has been made, researchers are still working to make it happen. 1555:
is investigated. Crystals doped with rare earth have broad application prospects in the field of quantum storage because they provide a unique application system. Li Chengfeng from the quantum information laboratory of the
449: 1362:
quantum storage rates below 50%. A team led by professor Du Shengwang of the department of physics at the Hong Kong University of science and technology and William Mong Institute of Nano Science and Technology at
1390:
Optical data storage has been an important research topic for many years. Its most interesting function is the use of the laws of quantum physics to protect data from theft, through quantum computing and
1300:
state in 1993. The experiment was analyzed in 1998 and demonstrated in 2003. In summary, the study of quantum storage in the single photon state can be regarded as the product of the classical optical
1457:
The first storage structure, a real single photon, was achieved with electromagnetically induced transparency in rubidium magneto-optical trap. The predicted single photon generated by spontaneous
1334:, memory is a trivial resource that can be replicated in long-lived memory hardware and retrieved later for further processing. In quantum computing, this is forbidden because, according to the 1482:
GEM (Gradient Echo Memory) is a protocol for storing optical information and it can be applied to both atomic gas and solid-state memories. The idea was first demonstrated by researchers at
1736:
Ohlsson N, Kröll S, Moiseev SA (2003). "Delayed single-photon self-interference — A double slit experiment in the time domain". In Bigelow NP, Eberly JH, Stroud CR, Walmsley IA (eds.).
1445:
Because of its high information transmission ability, people are more and more interested in its application in the field of quantum information. Structured light can carry
91: 2576: 2235:
Hsiao YF, Tsai PJ, Chen HS, Lin SX, Hung CC, Lee CH, et al. (May 2018). "Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency".
1422:
chip to achieve full photoelectric magnetic field sensing. Despite these closely related experiments, optical storage has yet to be implemented in practice. The existing
349: 1438:
Large resonant light depth is the premise of constructing efficient quantum-optical memory. Alkali metal vapor isotopes of a large number of near-infrared wavelength
1296:
Quantum memory based on the quantum exchange to store photon qubits has been demonstrated to be possible. Kessel and Moiseev discussed quantum storage in the single
3406: 3129: 3368: 2777: 1886:"RC02_William Mong Institute of Nano Science and Technology | Institutes and Centers | Research Institutes and Centers | Research | HKUST Department of Physics" 715: 4098: 1304:
technology proposed in 1979 and 1982, an idea inspired by the high density of data storage in the mid-1970s. Optical data storage can be achieved by using
1216: 3999: 3660: 3300: 1426:(negative charge and neutral nitrogen-vacancy center) energy level structure makes the optical storage of the diamond nitrogen-vacancy center possible. 1414:
in diamond has attracted a lot of research in the past decade due to its excellent performance in optical nanophotonic devices. In a recent experiment,
1560:
developed a solid-state quantum memory and demonstrated the photon computing function using time and frequency. Based on this research, a large-scale
3561: 3312: 2626: 1495: 1415: 923: 467: 379: 3886: 2365:
Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, Zhu SL (March 2019). "Efficient quantum memory for single-photon polarization qubits".
2996: 2569: 2064:
Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J (March 2014). "A quantum memory for orbital angular momentum photonic qubits".
696: 2930: 879: 1535:
polarization qubits were then stored via EIT in a Rb cold atomic ensemble and retrieved with an 85% efficiency and entanglement between two
1486:. The experiment in a three-level system based on hot atomic vapor resulted in demonstration of coherent storage with efficiency up to 87%. 4241: 4210: 3396: 2853: 802: 342: 1933:
Tittel W, Afzelius M, Chaneliere T, Cone RL, Kröll S, Moiseev SA, Sellars M (2010). "Photon-echo quantum memory in solid state systems".
4168: 20: 3744: 4220: 4108: 3361: 2599: 2562: 1753: 1446: 462: 188: 170: 109: 59: 3694: 2493:
Simon C, Afzelius M, Appel J, de la Giroday AB, Dewhurst SJ, Gisin N, Hu CY, Jelezko F, Kröll S (2010-05-01). "Quantum memories".
1512:
between the excitation paths, the optical response of the atomic medium is modified to eliminate absorption and refraction at the
4036: 2709: 2549: 551: 2976: 2971: 1820:
Freer S, Simmons S, Laucht A, Muhonen JT, Dehollain JP, Kalra R, et al. (2016). "A single-atom quantum memory in silicon".
658: 638: 4031: 3759: 3739: 3267: 2694: 1209: 506: 335: 152: 45: 3538: 2951: 628: 4026: 3279: 898: 2192:
Harris SE, Field JE, Imamoglu A (March 1990). "Nonlinear optical processes using electromagnetically induced transparency".
4059: 3881: 3784: 3445: 3257: 3034: 2956: 2739: 2609: 938: 676: 576: 2991: 691: 4064: 3932: 3523: 3354: 2925: 2920: 2891: 2604: 874: 869: 840: 472: 3844: 3704: 3478: 2966: 1984: 653: 643: 143: 4088: 3433: 3377: 3059: 1632: 1557: 1269: 908: 148:
section headers are very disorganized, should be restructured as with other science concepts, not as a research paper.
3533: 2876: 1885: 825: 3960: 3832: 3729: 3605: 3440: 3335: 3097: 2905: 1527: 1517:
the very high power control beams usually needed for Raman quantum memories, nor does it require the use of liquid
1202: 854: 2828: 2759: 773: 3769: 3734: 3630: 3573: 3119: 2986: 2910: 2871: 2802: 2652: 1769:
Hosseini M, Sparkes B, HĂ©tet G, et al. (2009). "Coherent optical pulse sequencer for quantum applications".
859: 820: 748: 671: 531: 3854: 3468: 3942: 3915: 3891: 3645: 3578: 3513: 3498: 3186: 3166: 3156: 3146: 3102: 2677: 1343: 943: 3391: 1430:
diamond to play a role in the hybrid quantum system of the mutual conversion of coherent light and microwave.
4093: 3827: 3719: 3689: 3488: 3295: 2881: 2843: 2807: 1423: 1411: 1112: 830: 788: 738: 686: 452: 4163: 3927: 3920: 3667: 3206: 2981: 2961: 2886: 2797: 2754: 1117: 835: 743: 663: 633: 596: 277: 2298:"Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble" 4083: 3635: 3600: 3231: 2744: 2724: 1399: 1384: 1290: 1258: 586: 571: 3709: 2647: 498: 3873: 3622: 3473: 3262: 3191: 3136: 2866: 2689: 2441: 2384: 2319: 2254: 2201: 2140: 2083: 1942: 1778: 1661: 1592: 1513: 1509: 1462: 1450: 1392: 1257:. Unlike the classical memory of everyday computers, the states stored in quantum memory can be in a 1147: 903: 815: 541: 209: 3975: 1500:
Electromagnetically induced transparency (EIT) was first introduced by Harris and his colleagues at
138: 4192: 4145: 3749: 3503: 3483: 3418: 3413: 3247: 3216: 3161: 3141: 3049: 3006: 2861: 2787: 2714: 2704: 2616: 1548: 1501: 1376: 1331: 1308:
to absorb different frequencies of light, which are then directed to beam space points and stored.
1273: 1002: 810: 728: 556: 536: 488: 297: 204: 51: 3908: 3556: 3493: 3176: 3074: 2782: 2729: 2621: 2528: 2502: 2431: 2400: 2374: 2309: 2278: 2244: 2174: 2130: 2099: 2073: 1966: 1847: 1829: 1802: 1685: 723: 648: 581: 493: 216: 3754: 3307: 2015:
Heshami K, England DG, Humphreys PC, Bustard PJ, Acosta VM, Nunn J, Sussman BJ (November 2016).
4172: 3817: 3724: 3681: 3612: 3528: 3508: 3463: 3423: 3401: 3317: 3226: 3196: 3124: 3087: 3082: 3064: 3029: 3019: 2734: 2699: 2682: 2585: 2520: 2347: 2270: 2217: 2166: 2046: 1958: 1909: 1794: 1749: 1677: 1627: 1277: 1262: 1238: 1230: 1157: 1132: 1072: 1067: 967: 933: 913: 511: 370: 239: 2469: 3839: 3789: 3566: 3044: 3039: 2896: 2792: 2512: 2449: 2392: 2337: 2327: 2262: 2209: 2156: 2148: 2091: 2036: 2028: 1950: 1839: 1786: 1741: 1716: 1669: 1539:-based quantum memories was also achieved with an overall transfer efficiency close to 90%. 1458: 1335: 1162: 1152: 1142: 1042: 1022: 1007: 977: 845: 733: 3965: 3903: 3593: 3588: 3274: 3201: 3181: 3151: 3114: 3109: 3014: 2838: 1561: 1547:
The mutual transformation of quantum information between light and matter is the focus of
1380: 1242: 1187: 1057: 1037: 783: 623: 1721: 1704: 2445: 2388: 2323: 2258: 2205: 2144: 2087: 1946: 1782: 1665: 4074: 4051: 4018: 3822: 3699: 3252: 3221: 3211: 2833: 2823: 2657: 2342: 2297: 2161: 2118: 2041: 2016: 1574: 1552: 1122: 1082: 1062: 1032: 1012: 962: 928: 778: 768: 561: 283: 245: 225: 4235: 3896: 3714: 3640: 3171: 3024: 2915: 2749: 2719: 2672: 2404: 2103: 1970: 1851: 1439: 1339: 1250: 1246: 1182: 1177: 1107: 1077: 1047: 918: 864: 591: 566: 270: 229: 2532: 2282: 4116: 4041: 3054: 2667: 2662: 2266: 2178: 1806: 1689: 1301: 1172: 1167: 1102: 1087: 1052: 546: 2032: 2516: 1745: 1253:
for later retrieval. These states hold useful computational information known as
4126: 3980: 3518: 3092: 2213: 1596: 1522: 1137: 1092: 1027: 982: 2420:"Efficient reversible entanglement transfer between light and quantum memories" 2332: 1843: 4187: 4121: 3985: 3346: 2396: 1505: 1469: 1127: 1097: 1017: 992: 987: 972: 235: 2524: 2095: 1962: 1681: 1673: 444:{\displaystyle i\hbar {\frac {d}{dt}}|\Psi \rangle ={\hat {H}}|\Psi \rangle } 3970: 2946: 2642: 1652:
Lvovsky AI, Sanders BC, Tittel W (December 2009). "Optical quantum memory".
1604: 1531: 618: 2351: 2274: 2221: 2170: 2050: 1954: 1798: 2454: 2419: 1551:. The interaction between a single photon and a cooled crystal doped with 4155: 4131: 3990: 3955: 1305: 997: 1790: 1383:, quantum repeater, linear optical quantum computation or long-distance 4182: 3799: 2152: 1622: 1419: 287: 249: 1578:
which makes the diamond memory unsuitable for communication protocol.
4159: 3655: 2296:
Vernaz-Gris P, Huang K, Cao M, Sheremet AS, Laurat J (January 2018).
1536: 1518: 1297: 312: 2554: 2436: 2379: 2314: 2249: 2119:"High efficiency coherent optical memory with warm rubidium vapour" 1865: 1834: 1268:
Quantum memory is essential for the development of many devices in
3428: 2507: 2135: 2078: 1617: 1468: 1363: 1348: 1254: 318: 306: 4177: 3650: 3583: 1600: 1349: 3350: 2558: 1249:
states (represented by "1"s and "0"s), quantum memory stores a
3794: 3779: 1483: 1342:
cannot be reproduced completely. Therefore, in the absence of
1272:, including a synchronization tool that can match the various 266: 121: 66: 25: 2017:"Quantum memories: emerging applications and recent advances" 2418:
Cao M, Hoffet F, Qiu S, Sheremet AS, Laurat J (2020-10-20).
1709:
Journal of Physics B: Atomic, Molecular and Optical Physics
1603:
have discovered a new material in which an element called
1530:. In 2018, a highly efficient EIT-based optical memory in 1406:
Microwave storage and light learning microwave conversion
2117:
Hosseini M, Sparkes B, Campbell G, et al. (2011).
87: 382: 4144: 4107: 4073: 4050: 4017: 4008: 3941: 3870: 3808: 3768: 3680: 3621: 3547: 3456: 3384: 3288: 3240: 3073: 3005: 2939: 2852: 2816: 2770: 2635: 2592: 1395:unconditionally guaranteed communication security. 82:
may be too technical for most readers to understand
2200:(10). American Physical Society (APS): 1107–1110. 1866:"Shengwang Du Group | Atom and Quantum Optics Lab" 1434:Orbital angular momentum is stored in alkali vapor 1289:processing, such as optical quantum computing and 443: 1398:They allow particles to be superimposed and in a 1245:. Whereas ordinary memory stores information as 2010: 2008: 2006: 2004: 1526:memories a valuable tool in the development of 19:"QRAM" redirects here. Not to be confused with 3362: 2570: 1210: 343: 16:Quantum-mechanical version of computer memory 8: 2470:"Solid State Quantum Memories | QPSA @ ICFO" 1375:Quantum memory is an important component of 1261:, giving much more practical flexibility in 438: 412: 60:Learn how and when to remove these messages 4014: 3618: 3369: 3355: 3347: 2577: 2563: 2555: 1217: 1203: 361: 350: 336: 200: 2506: 2453: 2435: 2378: 2341: 2331: 2313: 2248: 2160: 2134: 2077: 2040: 1833: 1720: 430: 419: 418: 404: 389: 381: 189:Learn how and when to remove this message 171:Learn how and when to remove this message 110:Learn how and when to remove this message 94:, without removing the technical details. 1910:"Quantum memories [GAP-Optique]" 1496:Electromagnetically induced transparency 1490:Electromagnetically induced transparency 1416:electromagnetically induced transparency 3887:Continuous-variable quantum information 1644: 386: 369: 296: 258: 215: 1504:in 1990. The work showed that when a 92:make it understandable to non-experts 7: 1573:Diamond has very high Raman gain in 1265:than classical information storage. 1985:"Quantum Communication | PicoQuant" 21:Quarterdeck Expanded Memory Manager 749:Sum-over-histories (path integral) 435: 409: 365:Part of a series of articles about 14: 1740:. Springer US. pp. 383–384. 1738:Coherence and Quantum Optics VIII 1528:quantum telecommunication systems 41:This article has multiple issues. 4216: 4215: 4206: 4205: 3331: 3330: 1418:was implemented on a multi-pass 1379:processing applications such as 126: 71: 30: 2495:The European Physical Journal D 1703:Le GouĂ«t JL, Moiseev S (2012). 49:or discuss these issues on the 3280:Relativistic quantum mechanics 2267:10.1103/PhysRevLett.120.183602 1822:Quantum Science and Technology 1722:10.1088/0953-4075/45/12/120201 1543:Crystals doped with rare earth 1270:quantum information processing 899:Relativistic quantum mechanics 431: 424: 405: 1: 3882:Adiabatic quantum computation 3258:Quantum statistical mechanics 3035:Quantum differential calculus 2957:Delayed-choice quantum eraser 2740:Symmetry in quantum mechanics 2033:10.1080/09500340.2016.1148212 1935:Laser & Photonics Reviews 939:Quantum statistical mechanics 3933:Topological quantum computer 1746:10.1007/978-1-4419-8907-9_80 4242:Quantum information science 4211:Quantum information science 3378:Quantum information science 3060:Quantum stochastic calculus 3050:Quantum measurement problem 2972:Mach–Zehnder interferometer 2214:10.1103/physrevlett.64.1107 1633:Quantum information science 1558:Chinese Academy of Sciences 1521:temperatures. In addition, 909:Quantum information science 146:. The specific problem is: 4258: 3606:quantum gate teleportation 2517:10.1140/epjd/e2010-00103-y 2333:10.1038/s41467-017-02775-8 1569:Raman scattering in solids 1493: 142:to meet Knowledge (XXG)'s 18: 4201: 3735:Quantum Fourier transform 3631:Post-quantum cryptography 3574:Entanglement distillation 3326: 3120:Quantum complexity theory 3098:Quantum cellular automata 2803:Path integral formulation 2397:10.1038/s41566-019-0368-8 1317:Atomic Gas Quantum Memory 4221:Quantum mechanics topics 3916:Quantum machine learning 3892:One-way quantum computer 3745:Quantum phase estimation 3646:Quantum key distribution 3579:Monogamy of entanglement 3187:Quantum machine learning 3167:Quantum key distribution 3157:Quantum image processing 3147:Quantum error correction 2997:Wheeler's delayed choice 2096:10.1038/nphoton.2013.355 2021:Journal of Modern Optics 1844:10.1088/2058-9565/aa63a4 1674:10.1038/nphoton.2009.231 1582:frequency manipulation. 1447:orbital angular momentum 1371:Research and application 1344:quantum error correction 944:Quantum machine learning 697:Wheeler's delayed-choice 3828:Randomized benchmarking 3690:Amplitude amplification 3103:Quantum finite automata 2237:Physical Review Letters 2194:Physical Review Letters 1424:nitrogen-vacancy center 1412:nitrogen-vacancy center 654:Leggett–Garg inequality 3928:Quantum Turing machine 3921:quantum neural network 3668:Quantum secret sharing 3207:Quantum neural network 1955:10.1002/lpor.200810056 1599:working with France's 1474: 1353: 1284:Background and history 445: 4000:Entanglement-assisted 3961:quantum convolutional 3636:Quantum coin flipping 3601:Quantum teleportation 3562:entanglement-assisted 3392:DiVincenzo's criteria 3232:Quantum teleportation 2760:Wave–particle duality 2455:10.1364/OPTICA.400695 2302:Nature Communications 1472: 1385:quantum communication 1352: 1291:quantum communication 1259:quantum superposition 639:Elitzur–Vaidman 629:Davisson–Germer 446: 217:Information-theoretic 3811:processor benchmarks 3740:Quantum optimization 3623:Quantum cryptography 3434:physical vs. logical 3263:Quantum field theory 3192:Quantum metamaterial 3137:Quantum cryptography 2867:Consistent histories 1593:University of Geneva 1514:resonant frequencies 1510:quantum interference 1463:magneto-optical trap 1451:magneto-optical trap 1393:quantum cryptography 1326:Solid Quantum Memory 1241:version of ordinary 904:Quantum field theory 816:Consistent histories 453:Schrödinger equation 380: 153:improve this article 3524:Quantum speed limit 3419:Quantum programming 3414:Quantum information 3248:Quantum fluctuation 3217:Quantum programming 3177:Quantum logic gates 3162:Quantum information 3142:Quantum electronics 2617:Classical mechanics 2446:2020Optic...7.1440C 2389:2019NaPho..13..346W 2324:2018NatCo...9..363V 2259:2018PhRvL.120r3602H 2206:1990PhRvL..64.1107H 2145:2011NatCo...2..174H 2088:2014NaPho...8..234N 1947:2010LPRv....4..244T 1791:10.1038/nature08325 1783:2009Natur.461..241H 1666:2009NaPho...3..706L 1549:quantum informatics 1502:Stanford University 1400:superposition state 1377:quantum information 1332:classical computing 692:Stern–Gerlach 489:Classical mechanics 298:Quantum information 4173:Forest/Rigetti QCS 3909:quantum logic gate 3695:Bernstein–Vazirani 3682:Quantum algorithms 3557:Classical capacity 3441:Quantum processors 3424:Quantum simulation 3301:in popular culture 3083:Quantum algorithms 2931:Von Neumann–Wigner 2911:Objective collapse 2622:Old quantum theory 2153:10.1038/ncomms1175 1586:Future development 1475: 1367:quantum Internet. 1354: 1263:quantum algorithms 1239:quantum-mechanical 880:Von Neumann–Wigner 860:Objective-collapse 659:Mach–Zehnder 649:Leggett inequality 644:Franck–Hertz 494:Old quantum theory 441: 4229: 4228: 4140: 4139: 4037:Linear optical QC 3818:Quantum supremacy 3772:complexity theory 3725:Quantum annealing 3676: 3675: 3613:Superdense coding 3402:Quantum computing 3344: 3343: 3318:Quantum mysticism 3296:Schrödinger's cat 3227:Quantum simulator 3197:Quantum metrology 3125:Quantum computing 3088:Quantum amplifier 3065:Quantum spacetime 3030:Quantum cosmology 3020:Quantum chemistry 2735:Scattering theory 2683:Zero-point energy 2678:Degenerate levels 2586:Quantum mechanics 2430:(10): 1440–1444. 2027:(20): 2005–2028. 1989:www.picoquant.com 1777:(7261): 241–245. 1628:Quantum computing 1231:quantum computing 1227: 1226: 934:Scattering theory 914:Quantum computing 687:Schrödinger's cat 619:Bell's inequality 427: 402: 371:Quantum mechanics 360: 359: 199: 198: 191: 181: 180: 173: 144:quality standards 135:This article may 120: 119: 112: 64: 4249: 4219: 4218: 4209: 4208: 4015: 3945:error correction 3874:computing models 3840:Relaxation times 3730:Quantum counting 3619: 3567:quantum capacity 3514:No-teleportation 3499:No-communication 3371: 3364: 3357: 3348: 3334: 3333: 3045:Quantum geometry 3040:Quantum dynamics 2897:Superdeterminism 2793:Matrix mechanics 2648:Bra–ket notation 2579: 2572: 2565: 2556: 2550:2007 "blueprint" 2537: 2536: 2510: 2490: 2484: 2483: 2481: 2480: 2466: 2460: 2459: 2457: 2439: 2415: 2409: 2408: 2382: 2367:Nature Photonics 2362: 2356: 2355: 2345: 2335: 2317: 2293: 2287: 2286: 2252: 2232: 2226: 2225: 2189: 2183: 2182: 2164: 2138: 2114: 2108: 2107: 2081: 2066:Nature Photonics 2061: 2055: 2054: 2044: 2012: 1999: 1998: 1996: 1995: 1981: 1975: 1974: 1930: 1924: 1923: 1921: 1920: 1906: 1900: 1899: 1897: 1896: 1882: 1876: 1875: 1873: 1872: 1862: 1856: 1855: 1837: 1817: 1811: 1810: 1766: 1760: 1759: 1733: 1727: 1726: 1724: 1705:"Quantum Memory" 1700: 1694: 1693: 1654:Nature Photonics 1649: 1459:four-wave mixing 1336:no clone theorem 1278:quantum computer 1219: 1212: 1205: 846:Superdeterminism 499:Bra–ket notation 450: 448: 447: 442: 434: 429: 428: 420: 408: 403: 401: 390: 362: 352: 345: 338: 201: 194: 187: 176: 169: 165: 162: 156: 130: 129: 122: 115: 108: 104: 101: 95: 75: 74: 67: 56: 34: 33: 26: 4257: 4256: 4252: 4251: 4250: 4248: 4247: 4246: 4232: 4231: 4230: 4225: 4197: 4147: 4136: 4109:Superconducting 4103: 4069: 4060:Neutral atom QC 4052:Ultracold atoms 4046: 4011:implementations 4010: 4004: 3944: 3937: 3904:Quantum circuit 3872: 3866: 3860: 3850: 3810: 3804: 3771: 3764: 3720:Hidden subgroup 3672: 3661:other protocols 3617: 3594:quantum network 3589:Quantum channel 3549: 3543: 3489:No-broadcasting 3479:Gottesman–Knill 3452: 3380: 3375: 3345: 3340: 3322: 3308:Wigner's friend 3284: 3275:Quantum gravity 3236: 3222:Quantum sensing 3202:Quantum network 3182:Quantum machine 3152:Quantum imaging 3115:Quantum circuit 3110:Quantum channel 3069: 3015:Quantum biology 3001: 2977:Elitzur–Vaidman 2952:Davisson–Germer 2935: 2887:Hidden-variable 2877:de Broglie–Bohm 2854:Interpretations 2848: 2812: 2766: 2653:Complementarity 2631: 2588: 2583: 2546: 2541: 2540: 2492: 2491: 2487: 2478: 2476: 2468: 2467: 2463: 2417: 2416: 2412: 2364: 2363: 2359: 2295: 2294: 2290: 2234: 2233: 2229: 2191: 2190: 2186: 2116: 2115: 2111: 2063: 2062: 2058: 2014: 2013: 2002: 1993: 1991: 1983: 1982: 1978: 1932: 1931: 1927: 1918: 1916: 1908: 1907: 1903: 1894: 1892: 1884: 1883: 1879: 1870: 1868: 1864: 1863: 1859: 1819: 1818: 1814: 1768: 1767: 1763: 1756: 1735: 1734: 1730: 1702: 1701: 1697: 1660:(12): 706–714. 1651: 1650: 1646: 1641: 1614: 1588: 1571: 1562:quantum network 1553:rare earth ions 1545: 1498: 1492: 1480: 1473:Optical Quantum 1436: 1408: 1381:quantum network 1373: 1359: 1328: 1319: 1314: 1286: 1243:computer memory 1223: 1194: 1193: 1192: 957: 949: 948: 894: 893:Advanced topics 886: 885: 884: 836:Hidden-variable 826:de Broglie–Bohm 805: 803:Interpretations 795: 794: 793: 763: 755: 754: 753: 711: 703: 702: 701: 668: 624:CHSH inequality 613: 605: 604: 603: 532:Complementarity 526: 518: 517: 516: 484: 455: 394: 378: 377: 356: 208: 195: 184: 183: 182: 177: 166: 160: 157: 150: 131: 127: 116: 105: 99: 96: 88:help improve it 85: 76: 72: 35: 31: 24: 17: 12: 11: 5: 4255: 4253: 4245: 4244: 4234: 4233: 4227: 4226: 4224: 4223: 4213: 4202: 4199: 4198: 4196: 4195: 4193:many others... 4190: 4185: 4180: 4175: 4166: 4152: 4150: 4142: 4141: 4138: 4137: 4135: 4134: 4129: 4124: 4119: 4113: 4111: 4105: 4104: 4102: 4101: 4096: 4091: 4086: 4080: 4078: 4071: 4070: 4068: 4067: 4065:Trapped-ion QC 4062: 4056: 4054: 4048: 4047: 4045: 4044: 4039: 4034: 4029: 4023: 4021: 4019:Quantum optics 4012: 4006: 4005: 4003: 4002: 3997: 3996: 3995: 3988: 3983: 3978: 3973: 3968: 3963: 3958: 3949: 3947: 3939: 3938: 3936: 3935: 3930: 3925: 3924: 3923: 3913: 3912: 3911: 3901: 3900: 3899: 3889: 3884: 3878: 3876: 3868: 3867: 3865: 3864: 3863: 3862: 3858: 3852: 3848: 3837: 3836: 3835: 3825: 3823:Quantum volume 3820: 3814: 3812: 3806: 3805: 3803: 3802: 3797: 3792: 3787: 3782: 3776: 3774: 3766: 3765: 3763: 3762: 3757: 3752: 3747: 3742: 3737: 3732: 3727: 3722: 3717: 3712: 3707: 3702: 3700:Boson sampling 3697: 3692: 3686: 3684: 3678: 3677: 3674: 3673: 3671: 3670: 3665: 3664: 3663: 3658: 3653: 3643: 3638: 3633: 3627: 3625: 3616: 3615: 3610: 3609: 3608: 3598: 3597: 3596: 3586: 3581: 3576: 3571: 3570: 3569: 3564: 3553: 3551: 3545: 3544: 3542: 3541: 3536: 3534:Solovay–Kitaev 3531: 3526: 3521: 3516: 3511: 3506: 3501: 3496: 3491: 3486: 3481: 3476: 3471: 3466: 3460: 3458: 3454: 3453: 3451: 3450: 3449: 3448: 3438: 3437: 3436: 3426: 3421: 3416: 3411: 3410: 3409: 3399: 3394: 3388: 3386: 3382: 3381: 3376: 3374: 3373: 3366: 3359: 3351: 3342: 3341: 3339: 3338: 3327: 3324: 3323: 3321: 3320: 3315: 3310: 3305: 3304: 3303: 3292: 3290: 3286: 3285: 3283: 3282: 3277: 3272: 3271: 3270: 3260: 3255: 3253:Casimir effect 3250: 3244: 3242: 3238: 3237: 3235: 3234: 3229: 3224: 3219: 3214: 3212:Quantum optics 3209: 3204: 3199: 3194: 3189: 3184: 3179: 3174: 3169: 3164: 3159: 3154: 3149: 3144: 3139: 3134: 3133: 3132: 3122: 3117: 3112: 3107: 3106: 3105: 3095: 3090: 3085: 3079: 3077: 3071: 3070: 3068: 3067: 3062: 3057: 3052: 3047: 3042: 3037: 3032: 3027: 3022: 3017: 3011: 3009: 3003: 3002: 3000: 2999: 2994: 2989: 2987:Quantum eraser 2984: 2979: 2974: 2969: 2964: 2959: 2954: 2949: 2943: 2941: 2937: 2936: 2934: 2933: 2928: 2923: 2918: 2913: 2908: 2903: 2902: 2901: 2900: 2899: 2884: 2879: 2874: 2869: 2864: 2858: 2856: 2850: 2849: 2847: 2846: 2841: 2836: 2831: 2826: 2820: 2818: 2814: 2813: 2811: 2810: 2805: 2800: 2795: 2790: 2785: 2780: 2774: 2772: 2768: 2767: 2765: 2764: 2763: 2762: 2757: 2747: 2742: 2737: 2732: 2727: 2722: 2717: 2712: 2707: 2702: 2697: 2692: 2687: 2686: 2685: 2680: 2675: 2670: 2660: 2658:Density matrix 2655: 2650: 2645: 2639: 2637: 2633: 2632: 2630: 2629: 2624: 2619: 2614: 2613: 2612: 2602: 2596: 2594: 2590: 2589: 2584: 2582: 2581: 2574: 2567: 2559: 2553: 2552: 2545: 2544:External links 2542: 2539: 2538: 2485: 2461: 2410: 2373:(5): 346–351. 2357: 2288: 2243:(18): 183602. 2227: 2184: 2109: 2072:(3): 234–238. 2056: 2000: 1976: 1941:(2): 244–267. 1925: 1901: 1890:physics.ust.hk 1877: 1857: 1812: 1761: 1754: 1728: 1715:(12): 120201. 1695: 1643: 1642: 1640: 1637: 1636: 1635: 1630: 1625: 1620: 1613: 1610: 1587: 1584: 1575:optical phonon 1570: 1567: 1544: 1541: 1491: 1488: 1479: 1476: 1435: 1432: 1407: 1404: 1372: 1369: 1358: 1355: 1327: 1324: 1318: 1315: 1313: 1310: 1285: 1282: 1235:quantum memory 1225: 1224: 1222: 1221: 1214: 1207: 1199: 1196: 1195: 1191: 1190: 1185: 1180: 1175: 1170: 1165: 1160: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1105: 1100: 1095: 1090: 1085: 1080: 1075: 1070: 1065: 1060: 1055: 1050: 1045: 1040: 1035: 1030: 1025: 1020: 1015: 1010: 1005: 1000: 995: 990: 985: 980: 975: 970: 965: 959: 958: 955: 954: 951: 950: 947: 946: 941: 936: 931: 929:Density matrix 926: 921: 916: 911: 906: 901: 895: 892: 891: 888: 887: 883: 882: 877: 872: 867: 862: 857: 852: 851: 850: 849: 848: 833: 828: 823: 818: 813: 807: 806: 801: 800: 797: 796: 792: 791: 786: 781: 776: 771: 765: 764: 761: 760: 757: 756: 752: 751: 746: 741: 736: 731: 726: 720: 719: 718: 712: 709: 708: 705: 704: 700: 699: 694: 689: 683: 682: 681: 680: 679: 677:Delayed-choice 672:Quantum eraser 667: 666: 661: 656: 651: 646: 641: 636: 631: 626: 621: 615: 614: 611: 610: 607: 606: 602: 601: 600: 599: 589: 584: 579: 574: 569: 564: 562:Quantum number 559: 554: 549: 544: 539: 534: 528: 527: 524: 523: 520: 519: 515: 514: 509: 503: 502: 501: 496: 491: 485: 482: 481: 478: 477: 476: 475: 470: 465: 457: 456: 451: 440: 437: 433: 426: 423: 417: 414: 411: 407: 400: 397: 393: 388: 385: 374: 373: 367: 366: 358: 357: 355: 354: 347: 340: 332: 329: 328: 327: 326: 316: 310: 301: 300: 294: 293: 292: 291: 281: 274: 261: 260: 256: 255: 254: 253: 243: 233: 220: 219: 213: 212: 197: 196: 179: 178: 134: 132: 125: 118: 117: 79: 77: 70: 65: 39: 38: 36: 29: 15: 13: 10: 9: 6: 4: 3: 2: 4254: 4243: 4240: 4239: 4237: 4222: 4214: 4212: 4204: 4203: 4200: 4194: 4191: 4189: 4186: 4184: 4181: 4179: 4176: 4174: 4170: 4167: 4165: 4161: 4157: 4154: 4153: 4151: 4149: 4143: 4133: 4130: 4128: 4125: 4123: 4120: 4118: 4115: 4114: 4112: 4110: 4106: 4100: 4097: 4095: 4092: 4090: 4089:Spin qubit QC 4087: 4085: 4082: 4081: 4079: 4076: 4072: 4066: 4063: 4061: 4058: 4057: 4055: 4053: 4049: 4043: 4040: 4038: 4035: 4033: 4030: 4028: 4025: 4024: 4022: 4020: 4016: 4013: 4007: 4001: 3998: 3994: 3993: 3989: 3987: 3984: 3982: 3979: 3977: 3974: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3953: 3951: 3950: 3948: 3946: 3940: 3934: 3931: 3929: 3926: 3922: 3919: 3918: 3917: 3914: 3910: 3907: 3906: 3905: 3902: 3898: 3897:cluster state 3895: 3894: 3893: 3890: 3888: 3885: 3883: 3880: 3879: 3877: 3875: 3869: 3861: 3857: 3853: 3851: 3847: 3843: 3842: 3841: 3838: 3834: 3831: 3830: 3829: 3826: 3824: 3821: 3819: 3816: 3815: 3813: 3807: 3801: 3798: 3796: 3793: 3791: 3788: 3786: 3783: 3781: 3778: 3777: 3775: 3773: 3767: 3761: 3758: 3756: 3753: 3751: 3748: 3746: 3743: 3741: 3738: 3736: 3733: 3731: 3728: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3708: 3706: 3705:Deutsch–Jozsa 3703: 3701: 3698: 3696: 3693: 3691: 3688: 3687: 3685: 3683: 3679: 3669: 3666: 3662: 3659: 3657: 3654: 3652: 3649: 3648: 3647: 3644: 3642: 3641:Quantum money 3639: 3637: 3634: 3632: 3629: 3628: 3626: 3624: 3620: 3614: 3611: 3607: 3604: 3603: 3602: 3599: 3595: 3592: 3591: 3590: 3587: 3585: 3582: 3580: 3577: 3575: 3572: 3568: 3565: 3563: 3560: 3559: 3558: 3555: 3554: 3552: 3550:communication 3546: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3515: 3512: 3510: 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3490: 3487: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3461: 3459: 3455: 3447: 3444: 3443: 3442: 3439: 3435: 3432: 3431: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3408: 3405: 3404: 3403: 3400: 3398: 3395: 3393: 3390: 3389: 3387: 3383: 3379: 3372: 3367: 3365: 3360: 3358: 3353: 3352: 3349: 3337: 3329: 3328: 3325: 3319: 3316: 3314: 3311: 3309: 3306: 3302: 3299: 3298: 3297: 3294: 3293: 3291: 3287: 3281: 3278: 3276: 3273: 3269: 3266: 3265: 3264: 3261: 3259: 3256: 3254: 3251: 3249: 3246: 3245: 3243: 3239: 3233: 3230: 3228: 3225: 3223: 3220: 3218: 3215: 3213: 3210: 3208: 3205: 3203: 3200: 3198: 3195: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3172:Quantum logic 3170: 3168: 3165: 3163: 3160: 3158: 3155: 3153: 3150: 3148: 3145: 3143: 3140: 3138: 3135: 3131: 3128: 3127: 3126: 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3104: 3101: 3100: 3099: 3096: 3094: 3091: 3089: 3086: 3084: 3081: 3080: 3078: 3076: 3072: 3066: 3063: 3061: 3058: 3056: 3053: 3051: 3048: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3028: 3026: 3025:Quantum chaos 3023: 3021: 3018: 3016: 3013: 3012: 3010: 3008: 3004: 2998: 2995: 2993: 2992:Stern–Gerlach 2990: 2988: 2985: 2983: 2980: 2978: 2975: 2973: 2970: 2968: 2965: 2963: 2960: 2958: 2955: 2953: 2950: 2948: 2945: 2944: 2942: 2938: 2932: 2929: 2927: 2926:Transactional 2924: 2922: 2919: 2917: 2916:Quantum logic 2914: 2912: 2909: 2907: 2904: 2898: 2895: 2894: 2893: 2890: 2889: 2888: 2885: 2883: 2880: 2878: 2875: 2873: 2870: 2868: 2865: 2863: 2860: 2859: 2857: 2855: 2851: 2845: 2842: 2840: 2837: 2835: 2832: 2830: 2827: 2825: 2822: 2821: 2819: 2815: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2775: 2773: 2769: 2761: 2758: 2756: 2753: 2752: 2751: 2750:Wave function 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2725:Superposition 2723: 2721: 2720:Quantum state 2718: 2716: 2713: 2711: 2708: 2706: 2703: 2701: 2698: 2696: 2693: 2691: 2688: 2684: 2681: 2679: 2676: 2674: 2673:Excited state 2671: 2669: 2666: 2665: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2640: 2638: 2634: 2628: 2625: 2623: 2620: 2618: 2615: 2611: 2608: 2607: 2606: 2603: 2601: 2598: 2597: 2595: 2591: 2587: 2580: 2575: 2573: 2568: 2566: 2561: 2560: 2557: 2551: 2548: 2547: 2543: 2534: 2530: 2526: 2522: 2518: 2514: 2509: 2504: 2500: 2496: 2489: 2486: 2475: 2471: 2465: 2462: 2456: 2451: 2447: 2443: 2438: 2433: 2429: 2425: 2421: 2414: 2411: 2406: 2402: 2398: 2394: 2390: 2386: 2381: 2376: 2372: 2368: 2361: 2358: 2353: 2349: 2344: 2339: 2334: 2329: 2325: 2321: 2316: 2311: 2307: 2303: 2299: 2292: 2289: 2284: 2280: 2276: 2272: 2268: 2264: 2260: 2256: 2251: 2246: 2242: 2238: 2231: 2228: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2195: 2188: 2185: 2180: 2176: 2172: 2168: 2163: 2158: 2154: 2150: 2146: 2142: 2137: 2132: 2128: 2124: 2120: 2113: 2110: 2105: 2101: 2097: 2093: 2089: 2085: 2080: 2075: 2071: 2067: 2060: 2057: 2052: 2048: 2043: 2038: 2034: 2030: 2026: 2022: 2018: 2011: 2009: 2007: 2005: 2001: 1990: 1986: 1980: 1977: 1972: 1968: 1964: 1960: 1956: 1952: 1948: 1944: 1940: 1936: 1929: 1926: 1915: 1911: 1905: 1902: 1891: 1887: 1881: 1878: 1867: 1861: 1858: 1853: 1849: 1845: 1841: 1836: 1831: 1827: 1823: 1816: 1813: 1808: 1804: 1800: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1765: 1762: 1757: 1755:9781441989079 1751: 1747: 1743: 1739: 1732: 1729: 1723: 1718: 1714: 1710: 1706: 1699: 1696: 1691: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1648: 1645: 1638: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1615: 1611: 1609: 1606: 1602: 1598: 1594: 1585: 1583: 1579: 1576: 1568: 1566: 1563: 1559: 1554: 1550: 1542: 1540: 1538: 1533: 1529: 1524: 1520: 1515: 1511: 1507: 1503: 1497: 1489: 1487: 1485: 1477: 1471: 1467: 1466:nanoseconds. 1464: 1460: 1455: 1452: 1448: 1443: 1441: 1440:optical depth 1433: 1431: 1427: 1425: 1421: 1417: 1413: 1405: 1403: 1401: 1396: 1394: 1388: 1386: 1382: 1378: 1370: 1368: 1365: 1356: 1351: 1347: 1345: 1341: 1340:quantum state 1337: 1333: 1325: 1323: 1316: 1311: 1309: 1307: 1303: 1299: 1294: 1292: 1283: 1281: 1279: 1275: 1271: 1266: 1264: 1260: 1256: 1252: 1251:quantum state 1248: 1244: 1240: 1236: 1232: 1220: 1215: 1213: 1208: 1206: 1201: 1200: 1198: 1197: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1046: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 960: 953: 952: 945: 942: 940: 937: 935: 932: 930: 927: 925: 922: 920: 919:Quantum chaos 917: 915: 912: 910: 907: 905: 902: 900: 897: 896: 890: 889: 881: 878: 876: 875:Transactional 873: 871: 868: 866: 865:Quantum logic 863: 861: 858: 856: 853: 847: 844: 843: 842: 839: 838: 837: 834: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 808: 804: 799: 798: 790: 787: 785: 782: 780: 777: 775: 772: 770: 767: 766: 759: 758: 750: 747: 745: 742: 740: 737: 735: 732: 730: 727: 725: 722: 721: 717: 714: 713: 707: 706: 698: 695: 693: 690: 688: 685: 684: 678: 675: 674: 673: 670: 669: 665: 662: 660: 657: 655: 652: 650: 647: 645: 642: 640: 637: 635: 632: 630: 627: 625: 622: 620: 617: 616: 609: 608: 598: 595: 594: 593: 592:Wave function 590: 588: 585: 583: 580: 578: 575: 573: 572:Superposition 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 529: 522: 521: 513: 510: 508: 505: 504: 500: 497: 495: 492: 490: 487: 486: 480: 479: 474: 471: 469: 466: 464: 461: 460: 459: 458: 454: 421: 415: 398: 395: 391: 383: 376: 375: 372: 368: 364: 363: 353: 348: 346: 341: 339: 334: 333: 331: 330: 325:-dimensional) 324: 320: 317: 314: 311: 308: 305: 304: 303: 302: 299: 295: 289: 285: 282: 279: 275: 272: 268: 265: 264: 263: 262: 257: 251: 247: 244: 241: 237: 234: 231: 227: 224: 223: 222: 221: 218: 214: 211: 206: 203: 202: 193: 190: 175: 172: 164: 154: 149: 145: 141: 140: 133: 124: 123: 114: 111: 103: 93: 89: 83: 80:This article 78: 69: 68: 63: 61: 54: 53: 48: 47: 42: 37: 28: 27: 22: 4117:Charge qubit 4042:KLM protocol 3991: 3855: 3845: 3539:Purification 3469:Eastin–Knill 3055:Quantum mind 2967:Franck–Hertz 2829:Klein–Gordon 2778:Formulations 2771:Formulations 2700:Interference 2690:Entanglement 2668:Ground state 2663:Energy level 2636:Fundamentals 2600:Introduction 2498: 2494: 2488: 2477:. Retrieved 2474:qpsa.icfo.es 2473: 2464: 2427: 2423: 2413: 2370: 2366: 2360: 2305: 2301: 2291: 2240: 2236: 2230: 2197: 2193: 2187: 2126: 2122: 2112: 2069: 2065: 2059: 2024: 2020: 1992:. Retrieved 1988: 1979: 1938: 1934: 1928: 1917:. Retrieved 1914:www.unige.ch 1913: 1904: 1893:. Retrieved 1889: 1880: 1869:. Retrieved 1860: 1825: 1821: 1815: 1774: 1770: 1764: 1737: 1731: 1712: 1708: 1698: 1657: 1653: 1647: 1589: 1580: 1572: 1546: 1499: 1481: 1456: 1444: 1437: 1428: 1409: 1397: 1389: 1374: 1360: 1329: 1320: 1302:data storage 1295: 1287: 1267: 1234: 1228: 774:Klein–Gordon 710:Formulations 547:Energy level 542:Entanglement 525:Fundamentals 512:Interference 463:Introduction 322: 259:Data storage 185: 167: 158: 151:Please help 147: 136: 106: 97: 81: 57: 50: 44: 43:Please help 40: 4148:programming 4127:Phase qubit 4032:Circuit QED 3504:No-deleting 3446:cloud-based 3313:EPR paradox 3093:Quantum bus 2962:Double-slit 2940:Experiments 2906:Many-worlds 2844:Schrödinger 2808:Phase space 2798:Schrödinger 2788:Interaction 2745:Uncertainty 2715:Nonlocality 2710:Measurement 2705:Decoherence 2695:Hamiltonian 2501:(1): 1–22. 1597:Switzerland 1523:photon echo 1163:von Neumann 1148:Schrödinger 924:EPR paradox 855:Many-worlds 789:Schrödinger 744:Schrödinger 739:Phase-space 729:Interaction 634:Double-slit 612:Experiments 587:Uncertainty 557:Nonlocality 552:Measurement 537:Decoherence 507:Hamiltonian 210:information 155:if you can. 4188:libquantum 4122:Flux qubit 4027:Cavity QED 3976:Bacon–Shor 3966:stabilizer 3494:No-cloning 3241:Extensions 3075:Technology 2921:Relational 2872:Copenhagen 2783:Heisenberg 2730:Tunnelling 2593:Background 2479:2019-05-12 2437:2007.00022 2380:2004.03123 2315:1707.09372 2308:(1): 363. 2250:1605.08519 2123:Nat Commun 1994:2019-05-12 1919:2019-05-12 1895:2019-05-12 1871:2019-05-12 1835:1608.07109 1828:: 015009. 1639:References 1506:laser beam 1494:See also: 1158:Sommerfeld 1073:Heisenberg 1068:Gutzwiller 1008:de Broglie 956:Scientists 870:Relational 821:Copenhagen 724:Heisenberg 582:Tunnelling 483:Background 46:improve it 4094:NV center 3529:Threshold 3509:No-hiding 3474:Gleason's 2947:Bell test 2817:Equations 2643:Born rule 2525:1434-6079 2508:1003.1107 2405:126945158 2136:1009.0567 2104:118585951 2079:1308.0238 1971:120294578 1963:1863-8899 1852:118590076 1682:1749-4893 1605:ytterbium 1532:cold atom 1508:causes a 1357:Discovery 1306:absorbers 1274:processes 1188:Zeilinger 1033:Ehrenfest 762:Equations 439:⟩ 436:Ψ 425:^ 413:⟩ 410:Ψ 387:ℏ 315:(ternary) 161:June 2019 100:June 2019 52:talk page 4236:Category 4156:OpenQASM 4132:Transmon 4009:Physical 3809:Quantum 3710:Grover's 3484:Holevo's 3457:Theorems 3407:timeline 3397:NISQ era 3336:Category 3130:Timeline 2882:Ensemble 2862:Bayesian 2755:Collapse 2627:Glossary 2610:Timeline 2533:11793247 2352:29371593 2283:21741318 2275:29775362 2222:10041301 2171:21285952 2051:27695198 1799:19741705 1612:See also 1113:Millikan 1038:Einstein 1023:Davisson 978:Blackett 963:Aharonov 831:Ensemble 811:Bayesian 716:Overview 597:Collapse 577:Symmetry 468:Glossary 309:(binary) 137:require 4146:Quantum 4084:Kane QC 3943:Quantum 3871:Quantum 3800:PostBQP 3770:Quantum 3755:Simon's 3548:Quantum 3385:General 3289:Related 3268:History 3007:Science 2839:Rydberg 2605:History 2442:Bibcode 2385:Bibcode 2343:5785556 2320:Bibcode 2255:Bibcode 2202:Bibcode 2179:6545778 2162:3105315 2141:Bibcode 2129:: 174. 2084:Bibcode 2042:5020357 1943:Bibcode 1807:1077208 1779:Bibcode 1690:4661175 1662:Bibcode 1623:Quantum 1461:in one 1420:diamond 1237:is the 1153:Simmons 1143:Rydberg 1108:Moseley 1088:Kramers 1078:Hilbert 1063:Glauber 1058:Feynman 1043:Everett 1013:Compton 784:Rydberg 473:History 288:decimal 278:ternary 250:base 10 246:hartley 226:shannon 139:cleanup 86:Please 4164:IBM QX 4160:Qiskit 4099:NMR QC 4077:-based 3981:Steane 3952:Codes 3750:Shor's 3656:SARG04 3464:Bell's 2982:Popper 2531:  2523:  2424:Optica 2403:  2350:  2340:  2281:  2273:  2220:  2177:  2169:  2159:  2102:  2049:  2039:  1969:  1961:  1850:  1805:  1797:  1771:Nature 1752:  1688:  1680:  1537:cesium 1519:helium 1338:, any 1298:photon 1255:qubits 1247:binary 1183:Zeeman 1178:Wigner 1128:Planck 1098:Landau 1083:Jordan 734:Matrix 664:Popper 313:qutrit 276:trit ( 271:binary 240:base e 230:base 2 3986:Toric 3429:Qubit 2892:Local 2834:Pauli 2824:Dirac 2529:S2CID 2503:arXiv 2432:arXiv 2401:S2CID 2375:arXiv 2310:arXiv 2279:S2CID 2245:arXiv 2175:S2CID 2131:arXiv 2100:S2CID 2074:arXiv 1967:S2CID 1848:S2CID 1830:arXiv 1803:S2CID 1686:S2CID 1618:Qubit 1364:HKUST 1312:Types 1276:in a 1138:Raman 1123:Pauli 1118:Onnes 1053:Fermi 1028:Debye 1018:Dirac 983:Bloch 973:Bethe 841:Local 779:Pauli 769:Dirac 567:State 319:qudit 307:qubit 205:Units 4178:Cirq 4169:Quil 4075:Spin 3971:Shor 3651:BB84 3584:LOCC 2521:ISSN 2348:PMID 2271:PMID 2218:PMID 2167:PMID 2047:PMID 1959:ISSN 1795:PMID 1750:ISBN 1678:ISSN 1601:CNRS 1591:the 1410:The 1173:Wien 1168:Weyl 1133:Rabi 1103:Laue 1093:Lamb 1048:Fock 1003:Bose 998:Born 993:Bohr 988:Bohm 968:Bell 3992:gnu 3956:CSS 3833:XEB 3795:QMA 3790:QIP 3785:EQP 3780:BQP 3760:VQE 3715:HHL 3519:PBR 2513:doi 2450:doi 2393:doi 2338:PMC 2328:doi 2263:doi 2241:120 2210:doi 2157:PMC 2149:doi 2092:doi 2037:PMC 2029:doi 1951:doi 1840:doi 1787:doi 1775:461 1742:doi 1717:doi 1670:doi 1595:in 1484:ANU 1478:GEM 1330:In 1229:In 284:dit 267:bit 236:nat 90:to 4238:: 4183:Q# 2527:. 2519:. 2511:. 2499:58 2497:. 2472:. 2448:. 2440:. 2426:. 2422:. 2399:. 2391:. 2383:. 2371:13 2369:. 2346:. 2336:. 2326:. 2318:. 2304:. 2300:. 2277:. 2269:. 2261:. 2253:. 2239:. 2216:. 2208:. 2198:64 2196:. 2173:. 2165:. 2155:. 2147:. 2139:. 2125:. 2121:. 2098:. 2090:. 2082:. 2068:. 2045:. 2035:. 2025:63 2023:. 2019:. 2003:^ 1987:. 1965:. 1957:. 1949:. 1937:. 1912:. 1888:. 1846:. 1838:. 1824:. 1801:. 1793:. 1785:. 1773:. 1748:. 1713:45 1711:. 1707:. 1684:. 1676:. 1668:. 1656:. 1387:. 1233:, 207:of 55:. 4171:– 4162:– 4158:– 3859:2 3856:T 3849:1 3846:T 3370:e 3363:t 3356:v 2578:e 2571:t 2564:v 2535:. 2515:: 2505:: 2482:. 2458:. 2452:: 2444:: 2434:: 2428:7 2407:. 2395:: 2387:: 2377:: 2354:. 2330:: 2322:: 2312:: 2306:9 2285:. 2265:: 2257:: 2247:: 2224:. 2212:: 2204:: 2181:. 2151:: 2143:: 2133:: 2127:2 2106:. 2094:: 2086:: 2076:: 2070:8 2053:. 2031:: 1997:. 1973:. 1953:: 1945:: 1939:4 1922:. 1898:. 1874:. 1854:. 1842:: 1832:: 1826:2 1809:. 1789:: 1781:: 1758:. 1744:: 1725:. 1719:: 1692:. 1672:: 1664:: 1658:3 1218:e 1211:t 1204:v 432:| 422:H 416:= 406:| 399:t 396:d 392:d 384:i 351:e 344:t 337:v 323:d 321:( 290:) 286:( 280:) 273:) 269:( 252:) 248:( 242:) 238:( 232:) 228:( 192:) 186:( 174:) 168:( 163:) 159:( 113:) 107:( 102:) 98:( 84:. 62:) 58:( 23:.

Index

Quarterdeck Expanded Memory Manager
improve it
talk page
Learn how and when to remove these messages
help improve it
make it understandable to non-experts
Learn how and when to remove this message
cleanup
quality standards
improve this article
Learn how and when to remove this message
Learn how and when to remove this message
Units
information
Information-theoretic
shannon
base 2
nat
base e
hartley
base 10
bit
binary
ternary
dit
decimal
Quantum information
qubit
qutrit
qudit

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑