Knowledge

Quadratic integer

Source πŸ“

3382: 190: 2741: 2733: 1247: 1551:
A quadratic integer has the same norm as its conjugate, and this norm is the product of the quadratic integer and its conjugate. The conjugate of a sum or a product of quadratic integers is the sum or the product (respectively) of the conjugates. This means that the conjugation is an
1107: 3044: 2907: 895: 3107: 3826: 3618: 3192: 2146: 2088: 1810: 1546: 1062: 3674:, for which the ring of quadratic integers is a principal ideal ring. However, the complete list is not known; it is not even known if the number of these principal ideal rings is finite or not. 1737: 3775: 3367: 3321: 731: 331: 1899: 1663: 789: 581: 2397: 2275: 2213: 1850: 1590: 1348: 937: 535: 430: 685: 2508: 1296: 990: 2452: 3261: 3228: 621: 4238: 2805: 452: 4122: 645: 3907:
quadratic integers that is a principal ideal domain is also a Euclidean domain for some Euclidean function, which can indeed differ from the usual norm. The values
1242:{\displaystyle \omega ={\begin{cases}{\sqrt {D}}&{\mbox{if }}D\equiv 2,3{\pmod {4}}\\{{1+{\sqrt {D}}} \over 2}&{\mbox{if }}D\equiv 1{\pmod {4}}\end{cases}}} 2475: 3373:, as a simple computation shows that their product is the ideal generated by 3, and, if they were principal, this would imply that 3 would not be irreducible. 3267:, as they have all a norm of 9, and if they were not irreducible, they would have a factor of norm 3, which is impossible, the norm of an element different of 2514:
fundamental unit" the unique one which has an absolute value greater than 1 (as a real number). It is the unique fundamental unit that may be written as
3867: 2967: 2821: 829: 3896:
the four corresponding rings of quadratic integers are among the rare known examples of principal ideal domains that are not Euclidean domains.
4277: 4103: 1454: 3059: 2014: 734: 3784: 3576: 3115: 2104: 2046: 1768: 1487: 4323: 2416: 1011: 4145: 2025:. Being the simplest examples of algebraic integers, quadratic integers are commonly the starting examples of most studies of 3900: 3477: 1695: 3698: 3326: 3280: 2156: 4180: 3555: 3050: 690: 3573:
The imaginary rings of quadratic integers that are principal ideal rings have been completely determined. These are
267: 3874:
There is no other ring of quadratic integers that is Euclidean with the norm as a Euclidean function. For negative
3656: 1865: 1629: 755: 547: 2366: 2244: 2182: 1819: 1559: 1317: 906: 504: 399: 2760:
or otherwise non-real) number. Therefore, it is natural to treat a quadratic integer ring as a set of algebraic
650: 3914:
were the first for which the ring of quadratic integers was proven to be Euclidean, but not norm-Euclidean.
2026: 174: 3559: 2224: 738: 3688:
When a ring of quadratic integers is a principal ideal domain, it is interesting to know whether it is a
593:
quadratic integers is not a ring because it is not closed under addition or multiplication. For example,
3404:, and the corresponding quadratic integer ring is a set of algebraic real numbers. The solutions of the 2480: 953: 2427: 1259: 4328: 3661: 3541: 3419: 2954: 1908: 1457:, which means that the norm of a product of quadratic integers is always the product of their norms. 1073: 158: 3233: 3200: 1122: 3492: 3275: 3264: 2018: 1607: 596: 455: 4208: 2771: 435: 4263: 4095: 3879: 3778: 3643: 3423: 2910: 2306: 2176: 626: 586: 221: 151: 3544:
property is not always verified for rings of quadratic integers, as seen above for the case of
3405: 229: 162: 4333: 4273: 4157: 4099: 3563: 3381: 2017:
is not true in many rings of quadratic integers. However, there is a unique factorization for
1623: 368: 258: 79:(usual) integers. When algebraic integers are considered, the usual integers are often called 47: 4283: 4252: 4176: 4137: 4087: 3689: 3683: 2958: 2918: 2808: 2757: 2278: 2228: 1853: 1813: 242: 116: 4113: 4041:. In: Analytic Number Theory (St. Louis, 1972), Proc. Sympos. Pure Math. 24(1973), 321–332. 4287: 4109: 3567: 3551: 3370: 2947: 2022: 1619: 750: 538: 501:
The quadratic integers (including the ordinary integers) that belong to a quadratic field
394: 364: 43: 2457: 4267: 3496: 2761: 1979:
The square root of any integer is a quadratic integer, as every integer can be written
1443: 262: 166: 100: 3271:
being at least 4. Thus the factorization of 9 into irreducible factors is not unique.
189: 4317: 3528: 1303: 124: 31: 4305: 3651: 3647: 3473: 2740: 2592: 1927: 1553: 1391: 749:
Here and in the following, the quadratic integers that are considered belong to a
17: 795:
is a square-free integer. This does not restrict the generality, as the equality
3503: 3401: 3039:{\displaystyle {\mathcal {O}}_{\mathbf {Q} ({\sqrt {-5}}\,)}=\mathbf {Z} \left,} 2684: 120: 87: 2902:{\displaystyle {\mathcal {O}}_{\mathbf {Q} ({\sqrt {-3}}\,)}=\mathbf {Z} \left} 3635: 2812: 890:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,)=\mathbb {Q} ({\sqrt {a^{2}D}}\,).} 2021:, which is expressed by the fact that every ring of algebraic integers is a 585:
Although the quadratic integers belonging to a given quadratic field form a
4256: 3955: 2032:
The quadratic integer rings divide in two classes depending on the sign of
224:
had already discovered a multiplication of quadratic integers of the same
3878:, a ring of quadratic integers is Euclidean if and only if the norm is a 4158:"Algebraic theory of Penrose's non-periodic tilings of the plane, I, II" 2732: 4141: 360: 39: 3491:
is an arbitrary integer. This ring also arises from studying 5-fold
2159:– which measures the failure of unique factorization – is given in 3639: 3380: 2739: 2731: 2543:
The fundamental units for the 10 smallest positive square-free
3102:{\displaystyle {\mathcal {O}}_{\mathbf {Q} ({\sqrt {-5}}\,)},} 184: 27:
Root of a quadratic polynomial with a unit leading coefficient
4123:"A quadratic field which is Euclidean but not norm-Euclidean" 939:
is a quadratic integer if and only if there are two integers
3821:{\displaystyle {\mathcal {O}}_{\mathbf {Q} ({\sqrt {D}}\,)}} 3791: 3613:{\displaystyle {\mathcal {O}}_{\mathbf {Q} ({\sqrt {D}}\,)}} 3583: 3187:{\displaystyle 9=3\cdot 3=(2+{\sqrt {-5}})(2-{\sqrt {-5}}).} 3066: 2974: 2828: 2687:
of the fundamental unit may be very large. For example, for
2141:{\displaystyle {\mathcal {O}}_{\mathbf {Q} ({\sqrt {D}}\,)}} 2111: 2083:{\displaystyle {\mathcal {O}}_{\mathbf {Q} ({\sqrt {D}}\,)}} 2053: 1805:{\displaystyle {\mathcal {O}}_{\mathbf {Q} ({\sqrt {D}}\,)}} 1775: 1541:{\displaystyle {\overline {a+b{\sqrt {D}}}}=a-b{\sqrt {D}}.} 50:
of degree two, that is, solutions of equations of the form
3862: 3858:= 2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73 2164: 2160: 1996:
is a square-free integer, and its square root is a root of
1235: 1057:{\displaystyle x={\frac {a}{2}}+{\frac {b}{2}}{\sqrt {D}},} 4182:
Vorlesungen ΓΌber Zahlentheorie von P.G. Lejeune Dirichlet
2424:, there are three other fundamental units, its conjugate 1435:
The norm of a quadratic integer is always an integer. If
4309:, Version 3.01, September 28, 2008. online lecture notes 3527:. Some results were presented to European community by 1442:, the norm of a quadratic integer is the square of its 1079:
In other words, every quadratic integer may be written
363:. Each quadratic integer that is not an integer is not 201: 3692:. This problem has been completely solved as follows. 1706: 1262: 1201: 1135: 4211: 3787: 3701: 3579: 3329: 3283: 3236: 3203: 3118: 3062: 2970: 2824: 2815:
around 1800 to state his biquadratic reciprocity law.
2774: 2483: 2460: 2430: 2369: 2247: 2185: 2107: 2049: 1868: 1822: 1771: 1698: 1632: 1562: 1490: 1320: 1110: 1014: 956: 909: 832: 758: 693: 653: 629: 599: 550: 507: 438: 402: 270: 3956:"Why is quadratic integer ring defined in that way?" 2917:
Both rings mentioned above are rings of integers of
1732:{\displaystyle \omega ={\tfrac {1+{\sqrt {D}}}{2}}} 4232: 3820: 3770:{\displaystyle N(a+b{\sqrt {D}}\,)=|a^{2}-Db^{2}|} 3769: 3650:, although Heegner's proof was not believed until 3612: 3362:{\displaystyle \langle 3,1-{\sqrt {-5}}\,\rangle } 3361: 3316:{\displaystyle \langle 3,1+{\sqrt {-5}}\,\rangle } 3315: 3255: 3222: 3186: 3101: 3038: 2901: 2799: 2502: 2469: 2446: 2391: 2269: 2207: 2140: 2082: 1893: 1844: 1804: 1731: 1657: 1584: 1540: 1342: 1290: 1241: 1056: 984: 931: 889: 783: 725: 679: 639: 615: 575: 529: 446: 424: 325: 157:Quadratic integers occur in the solutions of many 726:{\displaystyle (1+{\sqrt {2}})\cdot {\sqrt {3}}} 487:is positive, the quadratic integer is real. If 326:{\displaystyle x=(-b\pm {\sqrt {b^{2}-4c}})/2} 86:Common examples of quadratic integers are the 3684:Euclidean domain Β§ Norm-Euclidean fields 2148:are the ordinary integers, and the ring is a 241:of the quadratic integers was first given by 8: 3356: 3330: 3310: 3284: 2399:has infinitely many units that are equal to 2163:; for the imaginary case, they are given in 1894:{\displaystyle \mathbf {Q} ({\sqrt {D}}\,).} 1658:{\displaystyle \mathbf {Q} ({\sqrt {D}}\,).} 1594: 784:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,),} 576:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,).} 237: 228:, which allowed them to solve some cases of 4013: 3990: 2728:Examples of complex quadratic integer rings 2540:positive (integers or halves of integers). 2392:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,)} 2270:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,)} 2208:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,)} 1943:by the square of an integer. In particular 1845:{\displaystyle \mathbf {Q} ({\sqrt {D}}\,)} 1585:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,)} 1343:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,)} 932:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,)} 530:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,)} 454:generated by the square root of the unique 425:{\displaystyle \mathbb {Q} ({\sqrt {D}}\,)} 3628:= βˆ’1, βˆ’2, βˆ’3, βˆ’7, βˆ’11, βˆ’19, βˆ’43, βˆ’67, βˆ’163 2694:, the fundamental units are respectively 2277:has at most six units. In the case of the 165:, and other questions related to integral 4269:Topics in Number Theory, Volumes I and II 4220: 4213: 4212: 4210: 4002: 3812: 3805: 3797: 3796: 3790: 3789: 3786: 3762: 3756: 3740: 3731: 3724: 3717: 3700: 3604: 3597: 3589: 3588: 3582: 3581: 3578: 3355: 3345: 3328: 3309: 3299: 3282: 3243: 3235: 3210: 3202: 3168: 3146: 3117: 3090: 3080: 3072: 3071: 3065: 3064: 3061: 3027: 3017: 3007: 2998: 2988: 2980: 2979: 2973: 2972: 2969: 2879: 2872: 2870: 2861: 2852: 2842: 2834: 2833: 2827: 2826: 2823: 2793: 2783: 2775: 2773: 2487: 2482: 2459: 2431: 2429: 2385: 2378: 2371: 2370: 2368: 2263: 2256: 2249: 2248: 2246: 2201: 2194: 2187: 2186: 2184: 2132: 2125: 2117: 2116: 2110: 2109: 2106: 2074: 2067: 2059: 2058: 2052: 2051: 2048: 1884: 1877: 1869: 1867: 1838: 1831: 1823: 1821: 1796: 1789: 1781: 1780: 1774: 1773: 1770: 1715: 1705: 1697: 1648: 1641: 1633: 1631: 1578: 1571: 1564: 1563: 1561: 1528: 1503: 1491: 1489: 1336: 1329: 1322: 1321: 1319: 1298:is impossible, since it would imply that 1272: 1261: 1216: 1200: 1185: 1178: 1176: 1156: 1134: 1125: 1117: 1109: 1044: 1034: 1021: 1013: 972: 955: 925: 918: 911: 910: 908: 880: 869: 863: 856: 855: 848: 841: 834: 833: 831: 774: 767: 760: 759: 757: 716: 703: 692: 680:{\displaystyle 1+{\sqrt {2}}+{\sqrt {3}}} 670: 660: 652: 630: 628: 606: 598: 566: 559: 552: 551: 549: 523: 516: 509: 508: 506: 440: 439: 437: 418: 411: 404: 403: 401: 315: 295: 289: 269: 4039:On Euclidean rings of algebraic integers 3942: 3930: 3660:). This is a special case of the famous 3377:Examples of real quadratic integer rings 2961:for the norm. This is not the case for 261:of degree two. More explicitly, it is a 4025: 3923: 3667:There are many known positive integers 1256:has been supposed square-free the case 333:, which solves an equation of the form 4092:Elements of the history of mathematics 4050: 3422:that has been widely studied, are the 2345:, there are only two units, which are 2155:For real quadratic integer rings, the 1446:as a complex number (this is false if 1383:are either both integers, or, only if 4061: 3678:Euclidean rings of quadratic integers 3536:Principal rings of quadratic integers 2231:of its conjugate in the second case. 7: 4196:Dummit, D. S.; Foote, R. M. (2004), 3554:, a ring of quadratic integers is a 393:– and lies in a uniquely determined 119:. Another common example is the non- 3828:is a Euclidean domain for negative 1280: 1273: 1224: 1217: 1164: 1157: 1455:completely multiplicative function 38:are a generalization of the usual 25: 3978: 3562:. This occurs if and only if the 3521:, corresponding to the ring is 3495:on Euclidean plane, for example, 2503:{\displaystyle -{\overline {u}}.} 2015:fundamental theorem of arithmetic 1291:{\textstyle D\equiv 0{\pmod {4}}} 985:{\displaystyle x=a+b{\sqrt {D}},} 498:(that is, complex and non-real). 4272:. New York: Dover Publications. 3798: 3654:gave a later proof in 1967 (see 3590: 3073: 3053:. This can be shown as follows. 3008: 2981: 2942:) correspondingly. In contrast, 2862: 2835: 2776: 2447:{\displaystyle {\overline {u}},} 2118: 2060: 1958:, being a root of the equation 1870: 1824: 1782: 1634: 1398:of such a quadratic integer is 188: 2179:in the ring of the integers of 1765:otherwise. It is often denoted 1556:of the ring of the integers of 173:is basic for many questions of 4227: 4217: 3901:generalized Riemann hypothesis 3882:for it. It follows that, for 3813: 3802: 3763: 3732: 3725: 3705: 3605: 3594: 3478:Peter Gustav Lejeune Dirichlet 3256:{\displaystyle 2-{\sqrt {-5}}} 3223:{\displaystyle 2+{\sqrt {-5}}} 3178: 3159: 3156: 3137: 3091: 3077: 2999: 2985: 2853: 2839: 2794: 2780: 2414:is a particular unit called a 2386: 2375: 2363:, the ring of the integers of 2264: 2253: 2241:, the ring of the integers of 2202: 2191: 2150:complex quadratic integer ring 2133: 2122: 2075: 2064: 1885: 1874: 1839: 1828: 1797: 1786: 1649: 1638: 1595:Β§ Quadratic integer rings 1579: 1568: 1337: 1326: 1284: 1274: 1228: 1218: 1168: 1158: 926: 915: 881: 860: 849: 838: 775: 764: 710: 694: 567: 556: 524: 513: 419: 408: 312: 277: 238:Β§ Explicit representation 235:The characterization given in 90:of rational integers, such as 1: 2410:is an arbitrary integer, and 616:{\displaystyle 1+{\sqrt {2}}} 4233:{\displaystyle \mathbb {Z} } 3506:treated the Pell's equation 2800:{\displaystyle \mathbf {Z} } 2492: 2436: 2227:is its conjugate. It is the 2101:, the only real elements of 2090:are real, and the ring is a 1511: 647:are quadratic integers, but 447:{\displaystyle \mathbb {Q} } 4098:. Berlin: Springer-Verlag. 3556:unique factorization domain 3476:. This ring was studied by 3051:unique factorization domain 2420:. Given a fundamental unit 2215:if and only if its norm is 2092:real quadratic integer ring 640:{\displaystyle {\sqrt {3}}} 171:rings of quadratic integers 4350: 3681: 3480:. Its units have the form 3385:Powers of the golden ratio 2811:, which was introduced by 822:(for any positive integer 46:. Quadratic integers are 4165:Indagationes Mathematicae 4156:de Bruijn, N. G. (1981), 3400:is a positive irrational 2341:. For all other negative 2175:A quadratic integer is a 1610:(different from 0 and 1) 4121:Clark, David A. (1994), 3550:. However, as for every 2953:Both above examples are 2223:. In the first case its 1460:Every quadratic integer 1097:are integers, and where 4324:Algebraic number theory 4306:Algebraic Number Theory 4130:Manuscripta Mathematica 4014:Dummit & Foote 2004 3991:Dummit & Foote 2004 3903:implies that a ring of 3899:On the other hand, the 3695:Equipped with the norm 3558:if and only if it is a 2027:algebraic number theory 1602:Quadratic integer rings 1314:A quadratic integer in 745:Explicit representation 175:algebraic number theory 4257:10.4153/CJM-2004-003-9 4234: 4185:(2nd ed.), Vieweg 3960:math.stackexchange.com 3933:, Supplement X, p. 447 3822: 3771: 3634:This result was first 3614: 3560:principal ideal domain 3386: 3363: 3317: 3257: 3224: 3188: 3103: 3040: 2903: 2801: 2745: 2737: 2504: 2471: 2448: 2393: 2288:), the four units are 2271: 2225:multiplicative inverse 2209: 2142: 2084: 1976:as its discriminant. 1895: 1846: 1806: 1733: 1659: 1616:quadratic integer ring 1586: 1542: 1392:halves of odd integers 1344: 1292: 1243: 1058: 986: 933: 891: 785: 727: 681: 641: 617: 577: 531: 448: 426: 367:– namely, it's a real 327: 150:, which generates the 115:, which generates the 4235: 3890:= βˆ’19, βˆ’43, βˆ’67, βˆ’163 3840:= βˆ’1,β€‰βˆ’2,β€‰βˆ’3,β€‰βˆ’7,β€‰βˆ’11 3823: 3772: 3657:Stark–Heegner theorem 3615: 3566:of the corresponding 3502:Indian mathematician 3384: 3364: 3318: 3258: 3225: 3189: 3104: 3041: 2955:principal ideal rings 2904: 2802: 2768:A classic example is 2743: 2735: 2510:Commonly, one calls " 2505: 2472: 2449: 2394: 2316:), the six units are 2305:. In the case of the 2272: 2210: 2143: 2085: 1896: 1847: 1812:, because it is the 1807: 1734: 1660: 1587: 1543: 1345: 1293: 1244: 1059: 987: 934: 892: 786: 728: 682: 642: 618: 578: 532: 449: 427: 328: 222:Indian mathematicians 159:Diophantine equations 4209: 4205:Harper, M. (2004), " 4028:, pp. II:57, 81 3785: 3699: 3662:class number problem 3577: 3542:unique factorization 3426:of these rings, for 3420:Diophantine equation 3327: 3281: 3234: 3201: 3116: 3060: 3049:which is not even a 2968: 2822: 2772: 2481: 2458: 2428: 2367: 2245: 2183: 2105: 2047: 1866: 1820: 1769: 1696: 1630: 1560: 1488: 1318: 1310:Norm and conjugation 1302:is divisible by the 1260: 1108: 1012: 954: 907: 830: 756: 691: 651: 627: 597: 548: 505: 436: 400: 268: 4264:LeVeque, William J. 3493:rotational symmetry 2911:Eisenstein integers 2752: < 0, 2307:Eisenstein integers 1608:square-free integer 735:minimal polynomials 543:ring of integers of 456:square-free integer 432:, the extension of 152:Eisenstein integers 4230: 4142:10.1007/BF02567617 3880:Euclidean function 3846:and, for positive 3818: 3779:Euclidean function 3767: 3610: 3387: 3359: 3313: 3253: 3220: 3184: 3099: 3036: 2899: 2797: 2746: 2738: 2500: 2470:{\displaystyle -u} 2467: 2444: 2389: 2267: 2205: 2138: 2080: 2043:, all elements of 1939:is the product of 1891: 1842: 1802: 1729: 1727: 1655: 1624:algebraic integers 1622:consisting of the 1582: 1538: 1340: 1288: 1239: 1234: 1205: 1139: 1054: 982: 947:such that either 929: 887: 781: 733:are not, as their 723: 677: 637: 613: 573: 527: 444: 422: 323: 200:. You can help by 48:algebraic integers 36:quadratic integers 18:Quadratic integers 4279:978-0-486-42539-9 4225: 4177:Dedekind, Richard 4105:978-3-540-64767-6 4088:Bourbaki, Nicolas 3810: 3722: 3602: 3353: 3307: 3251: 3218: 3176: 3154: 3088: 3025: 2996: 2959:Euclidean domains 2919:cyclotomic fields 2893: 2887: 2850: 2809:Gaussian integers 2791: 2744:Eisenstein primes 2736:Gaussian integers 2495: 2439: 2383: 2279:Gaussian integers 2261: 2199: 2130: 2072: 1911:of all equations 1882: 1836: 1794: 1726: 1720: 1646: 1576: 1533: 1514: 1508: 1453:). The norm is a 1334: 1204: 1196: 1190: 1138: 1130: 1049: 1042: 1029: 1002:is a multiple of 977: 923: 878: 846: 772: 721: 708: 675: 665: 635: 611: 564: 521: 475:for some integer 416: 369:irrational number 310: 259:algebraic integer 255:quadratic integer 218: 217: 117:Gaussian integers 81:rational integers 16:(Redirected from 4341: 4291: 4259: 4245:Can. J. Math. 56 4239: 4237: 4236: 4231: 4226: 4221: 4216: 4201: 4198:Abstract Algebra 4192: 4191: 4190: 4172: 4162: 4152: 4150: 4144:, archived from 4127: 4117: 4094:. Translated by 4083: 4064: 4059: 4053: 4048: 4042: 4035: 4029: 4023: 4017: 4011: 4005: 4000: 3994: 3988: 3982: 3976: 3970: 3969: 3967: 3966: 3952: 3946: 3940: 3934: 3928: 3913: 3891: 3877: 3865: 3859: 3849: 3841: 3831: 3827: 3825: 3824: 3819: 3817: 3816: 3811: 3806: 3801: 3795: 3794: 3776: 3774: 3773: 3768: 3766: 3761: 3760: 3745: 3744: 3735: 3723: 3718: 3690:Euclidean domain 3673: 3629: 3619: 3617: 3616: 3611: 3609: 3608: 3603: 3598: 3593: 3587: 3586: 3549: 3526: 3520: 3518: 3512: 3490: 3486: 3471: 3470: 3468: 3467: 3464: 3461: 3460: 3459: 3443: 3432: 3417: 3399: 3395: 3368: 3366: 3365: 3360: 3354: 3346: 3322: 3320: 3319: 3314: 3308: 3300: 3270: 3262: 3260: 3259: 3254: 3252: 3244: 3229: 3227: 3226: 3221: 3219: 3211: 3193: 3191: 3190: 3185: 3177: 3169: 3155: 3147: 3108: 3106: 3105: 3100: 3095: 3094: 3089: 3081: 3076: 3070: 3069: 3045: 3043: 3042: 3037: 3032: 3028: 3026: 3018: 3011: 3003: 3002: 2997: 2989: 2984: 2978: 2977: 2908: 2906: 2905: 2900: 2898: 2894: 2889: 2888: 2880: 2871: 2865: 2857: 2856: 2851: 2843: 2838: 2832: 2831: 2818:The elements in 2806: 2804: 2803: 2798: 2792: 2784: 2779: 2755: 2751: 2723: 2722: 2721: 2713: 2712: 2711: 2703: 2702: 2701: 2693: 2682: 2678: 2677: 2676: 2668: 2667: 2666: 2658: 2657: 2655: 2654: 2651: 2648: 2647: 2646: 2634: 2633: 2632: 2624: 2623: 2622: 2614: 2613: 2612: 2604: 2603: 2602: 2590: 2589: 2587: 2586: 2583: 2580: 2579: 2578: 2566: 2565: 2564: 2556: 2555: 2554: 2546: 2539: 2535: 2531: 2530: 2529: 2509: 2507: 2506: 2501: 2496: 2488: 2476: 2474: 2473: 2468: 2453: 2451: 2450: 2445: 2440: 2432: 2423: 2417:fundamental unit 2413: 2409: 2405: 2398: 2396: 2395: 2390: 2384: 2379: 2374: 2362: 2352: 2348: 2344: 2340: 2339: 2337: 2336: 2333: 2330: 2329: 2328: 2315: 2304: 2303: 2302: 2296: 2295: 2287: 2276: 2274: 2273: 2268: 2262: 2257: 2252: 2240: 2222: 2218: 2214: 2212: 2211: 2206: 2200: 2195: 2190: 2147: 2145: 2144: 2139: 2137: 2136: 2131: 2126: 2121: 2115: 2114: 2100: 2089: 2087: 2086: 2081: 2079: 2078: 2073: 2068: 2063: 2057: 2056: 2042: 2035: 2009: 1995: 1991: 1975: 1968: 1957: 1951: 1950: 1942: 1938: 1925: 1907:consists of all 1906: 1900: 1898: 1897: 1892: 1883: 1878: 1873: 1861: 1854:integral closure 1851: 1849: 1848: 1843: 1837: 1832: 1827: 1814:ring of integers 1811: 1809: 1808: 1803: 1801: 1800: 1795: 1790: 1785: 1779: 1778: 1764: 1763: 1762: 1749: 1738: 1736: 1735: 1730: 1728: 1722: 1721: 1716: 1707: 1691: 1664: 1662: 1661: 1656: 1647: 1642: 1637: 1613: 1591: 1589: 1588: 1583: 1577: 1572: 1567: 1547: 1545: 1544: 1539: 1534: 1529: 1515: 1510: 1509: 1504: 1492: 1477: 1476: 1475: 1452: 1441: 1430: 1421: 1420: 1389: 1382: 1378: 1370: 1369: 1368: 1350:may be written 1349: 1347: 1346: 1341: 1335: 1330: 1325: 1301: 1297: 1295: 1294: 1289: 1287: 1255: 1248: 1246: 1245: 1240: 1238: 1237: 1231: 1206: 1202: 1197: 1192: 1191: 1186: 1177: 1171: 1140: 1136: 1131: 1126: 1100: 1096: 1092: 1088: 1071: 1067: 1063: 1061: 1060: 1055: 1050: 1045: 1043: 1035: 1030: 1022: 1005: 1001: 991: 989: 988: 983: 978: 973: 946: 942: 938: 936: 935: 930: 924: 919: 914: 902: 896: 894: 893: 888: 879: 874: 873: 864: 859: 847: 842: 837: 825: 821: 820: 819: 807: 806: 794: 790: 788: 787: 782: 773: 768: 763: 732: 730: 729: 724: 722: 717: 709: 704: 686: 684: 683: 678: 676: 671: 666: 661: 646: 644: 643: 638: 636: 631: 622: 620: 619: 614: 612: 607: 582: 580: 579: 574: 565: 560: 555: 536: 534: 533: 528: 522: 517: 512: 493: 486: 480: 474: 460: 453: 451: 450: 445: 443: 431: 429: 428: 423: 417: 412: 407: 392: 382:and non-real if 381: 359: 353: 347: 332: 330: 329: 324: 319: 311: 300: 299: 290: 243:Richard Dedekind 227: 213: 210: 192: 185: 163:Pell's equations 149: 148: 146: 145: 142: 139: 138: 137: 114: 113: 112: 98: 97: 96: 78: 74: 67: 44:quadratic fields 21: 4349: 4348: 4344: 4343: 4342: 4340: 4339: 4338: 4314: 4313: 4312: 4299: 4297:Further reading 4294: 4280: 4262: 4207: 4206: 4204: 4195: 4188: 4186: 4175: 4160: 4155: 4148: 4125: 4120: 4106: 4086: 4077: 4073: 4068: 4067: 4060: 4056: 4049: 4045: 4037:P. Weinberger, 4036: 4032: 4024: 4020: 4012: 4008: 4001: 3997: 3989: 3985: 3977: 3973: 3964: 3962: 3954: 3953: 3949: 3941: 3937: 3929: 3925: 3920: 3908: 3886: 3875: 3861: 3854: 3847: 3836: 3829: 3788: 3783: 3782: 3752: 3736: 3697: 3696: 3686: 3680: 3668: 3624: 3580: 3575: 3574: 3568:quadratic field 3552:Dedekind domain 3545: 3538: 3522: 3514: 3508: 3507: 3497:Penrose tilings 3488: 3481: 3465: 3462: 3457: 3455: 3453: 3452: 3450: 3445: 3438: 3427: 3408: 3406:Pell's equation 3397: 3390: 3379: 3325: 3324: 3279: 3278: 3268: 3232: 3231: 3199: 3198: 3197:The factors 3, 3114: 3113: 3063: 3058: 3057: 3016: 3012: 2971: 2966: 2965: 2948:Dedekind domain 2941: 2930: 2866: 2825: 2820: 2819: 2770: 2769: 2762:complex numbers 2753: 2749: 2730: 2719: 2717: 2715: 2709: 2707: 2705: 2699: 2697: 2695: 2688: 2680: 2674: 2672: 2670: 2664: 2662: 2660: 2652: 2649: 2644: 2642: 2640: 2639: 2637: 2636: 2630: 2628: 2626: 2620: 2618: 2616: 2610: 2608: 2606: 2600: 2598: 2596: 2584: 2581: 2576: 2574: 2572: 2571: 2569: 2568: 2562: 2560: 2558: 2552: 2550: 2548: 2544: 2537: 2533: 2525: 2523: 2515: 2479: 2478: 2456: 2455: 2426: 2425: 2421: 2411: 2407: 2400: 2365: 2364: 2357: 2350: 2346: 2342: 2334: 2331: 2326: 2324: 2322: 2321: 2319: 2317: 2310: 2300: 2298: 2293: 2291: 2289: 2282: 2243: 2242: 2235: 2220: 2216: 2181: 2180: 2173: 2108: 2103: 2102: 2095: 2050: 2045: 2044: 2037: 2033: 2023:Dedekind domain 1997: 1993: 1980: 1970: 1959: 1953: 1946: 1944: 1940: 1930: 1912: 1902: 1864: 1863: 1857: 1852:, which is the 1818: 1817: 1772: 1767: 1766: 1758: 1756: 1751: 1740: 1708: 1694: 1693: 1666: 1628: 1627: 1620:integral domain 1618:, which is the 1611: 1604: 1558: 1557: 1493: 1486: 1485: 1471: 1469: 1461: 1447: 1436: 1416: 1414: 1402: 1384: 1380: 1376: 1364: 1362: 1354: 1316: 1315: 1312: 1299: 1258: 1257: 1253: 1233: 1232: 1198: 1173: 1172: 1132: 1118: 1106: 1105: 1098: 1094: 1090: 1080: 1069: 1065: 1010: 1009: 1003: 1000: βˆ’ 1 996: 952: 951: 944: 940: 905: 904: 900: 865: 828: 827: 823: 815: 813: 799: 797: 796: 792: 754: 753: 751:quadratic field 747: 689: 688: 649: 648: 625: 624: 595: 594: 546: 545: 539:integral domain 503: 502: 488: 482: 476: 462: 461:that satisfies 458: 434: 433: 398: 397: 395:quadratic field 383: 372: 355: 349: 334: 291: 266: 265: 251: 230:Pell's equation 225: 214: 208: 205: 198:needs expansion 183: 169:. The study of 167:quadratic forms 143: 140: 135: 133: 131: 130: 128: 127: 110: 108: 103: 94: 92: 91: 76: 72: 54: 28: 23: 22: 15: 12: 11: 5: 4347: 4345: 4337: 4336: 4331: 4326: 4316: 4315: 4311: 4310: 4300: 4298: 4295: 4293: 4292: 4278: 4260: 4229: 4224: 4219: 4215: 4202: 4200:(3rd ed.) 4193: 4173: 4153: 4118: 4104: 4084: 4082:(2nd ed.) 4074: 4072: 4069: 4066: 4065: 4054: 4043: 4030: 4018: 4006: 4003:de Bruijn 1981 3995: 3983: 3971: 3947: 3935: 3922: 3921: 3919: 3916: 3894: 3893: 3872: 3871: 3844: 3843: 3815: 3809: 3804: 3800: 3793: 3765: 3759: 3755: 3751: 3748: 3743: 3739: 3734: 3730: 3727: 3721: 3716: 3713: 3710: 3707: 3704: 3679: 3676: 3632: 3631: 3607: 3601: 3596: 3592: 3585: 3537: 3534: 3533: 3532: 3500: 3431:≑ 2, 3 (mod 4) 3378: 3375: 3358: 3352: 3349: 3344: 3341: 3338: 3335: 3332: 3312: 3306: 3303: 3298: 3295: 3292: 3289: 3286: 3250: 3247: 3242: 3239: 3217: 3214: 3209: 3206: 3195: 3194: 3183: 3180: 3175: 3172: 3167: 3164: 3161: 3158: 3153: 3150: 3145: 3142: 3139: 3136: 3133: 3130: 3127: 3124: 3121: 3098: 3093: 3087: 3084: 3079: 3075: 3068: 3047: 3046: 3035: 3031: 3024: 3021: 3015: 3010: 3006: 3001: 2995: 2992: 2987: 2983: 2976: 2946:is not even a 2939: 2928: 2915: 2914: 2897: 2892: 2886: 2883: 2878: 2875: 2869: 2864: 2860: 2855: 2849: 2846: 2841: 2837: 2830: 2816: 2796: 2790: 2787: 2782: 2778: 2756:is a complex ( 2729: 2726: 2499: 2494: 2491: 2486: 2466: 2463: 2443: 2438: 2435: 2388: 2382: 2377: 2373: 2266: 2260: 2255: 2251: 2204: 2198: 2193: 2189: 2172: 2169: 2135: 2129: 2124: 2120: 2113: 2077: 2071: 2066: 2062: 2055: 1890: 1887: 1881: 1876: 1872: 1841: 1835: 1830: 1826: 1799: 1793: 1788: 1784: 1777: 1725: 1719: 1714: 1711: 1704: 1701: 1665:It is the set 1654: 1651: 1645: 1640: 1636: 1603: 1600: 1581: 1575: 1570: 1566: 1549: 1548: 1537: 1532: 1527: 1524: 1521: 1518: 1513: 1507: 1502: 1499: 1496: 1444:absolute value 1433: 1432: 1373: 1372: 1339: 1333: 1328: 1324: 1311: 1308: 1286: 1283: 1279: 1276: 1271: 1268: 1265: 1250: 1249: 1236: 1230: 1227: 1223: 1220: 1215: 1212: 1209: 1199: 1195: 1189: 1184: 1181: 1175: 1174: 1170: 1167: 1163: 1160: 1155: 1152: 1149: 1146: 1143: 1133: 1129: 1124: 1123: 1121: 1116: 1113: 1101:is defined by 1077: 1076: 1053: 1048: 1041: 1038: 1033: 1028: 1025: 1020: 1017: 993: 992: 981: 976: 971: 968: 965: 962: 959: 928: 922: 917: 913: 886: 883: 877: 872: 868: 862: 858: 854: 851: 845: 840: 836: 780: 777: 771: 766: 762: 746: 743: 720: 715: 712: 707: 702: 699: 696: 674: 669: 664: 659: 656: 634: 610: 605: 602: 572: 569: 563: 558: 554: 526: 520: 515: 511: 442: 421: 415: 410: 406: 322: 318: 314: 309: 306: 303: 298: 294: 288: 285: 282: 279: 276: 273: 263:complex number 250: 247: 216: 215: 195: 193: 182: 179: 101:complex number 69: 68: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4346: 4335: 4332: 4330: 4327: 4325: 4322: 4321: 4319: 4308: 4307: 4302: 4301: 4296: 4289: 4285: 4281: 4275: 4271: 4270: 4265: 4261: 4258: 4254: 4250: 4246: 4242: 4222: 4203: 4199: 4194: 4184: 4183: 4178: 4174: 4170: 4166: 4159: 4154: 4151:on 2015-01-29 4147: 4143: 4139: 4135: 4131: 4124: 4119: 4115: 4111: 4107: 4101: 4097: 4096:Meldrum, John 4093: 4089: 4085: 4081: 4076: 4075: 4070: 4063: 4058: 4055: 4052: 4047: 4044: 4040: 4034: 4031: 4027: 4022: 4019: 4016:, p. 272 4015: 4010: 4007: 4004: 3999: 3996: 3993:, p. 229 3992: 3987: 3984: 3980: 3975: 3972: 3961: 3957: 3951: 3948: 3944: 3943:Bourbaki 1994 3939: 3936: 3932: 3931:Dedekind 1871 3927: 3924: 3917: 3915: 3911: 3906: 3902: 3897: 3889: 3885: 3884: 3883: 3881: 3869: 3864: 3857: 3853: 3852: 3851: 3839: 3835: 3834: 3833: 3807: 3780: 3757: 3753: 3749: 3746: 3741: 3737: 3728: 3719: 3714: 3711: 3708: 3702: 3693: 3691: 3685: 3677: 3675: 3671: 3665: 3663: 3659: 3658: 3653: 3649: 3645: 3641: 3637: 3627: 3623: 3622: 3621: 3599: 3571: 3569: 3565: 3561: 3557: 3553: 3548: 3543: 3535: 3530: 3529:Pierre Fermat 3525: 3517: 3511: 3505: 3501: 3498: 3494: 3485: 3479: 3475: 3448: 3441: 3436: 3435: 3434: 3430: 3425: 3421: 3415: 3411: 3407: 3403: 3393: 3383: 3376: 3374: 3372: 3350: 3347: 3342: 3339: 3336: 3333: 3304: 3301: 3296: 3293: 3290: 3287: 3277: 3272: 3266: 3248: 3245: 3240: 3237: 3215: 3212: 3207: 3204: 3181: 3173: 3170: 3165: 3162: 3151: 3148: 3143: 3140: 3134: 3131: 3128: 3125: 3122: 3119: 3112: 3111: 3110: 3096: 3085: 3082: 3054: 3052: 3033: 3029: 3022: 3019: 3013: 3004: 2993: 2990: 2964: 2963: 2962: 2960: 2956: 2951: 2949: 2945: 2938: 2934: 2927: 2923: 2920: 2912: 2895: 2890: 2884: 2881: 2876: 2873: 2867: 2858: 2847: 2844: 2817: 2814: 2810: 2788: 2785: 2767: 2766: 2765: 2763: 2759: 2742: 2734: 2727: 2725: 2691: 2686: 2679:. For larger 2594: 2541: 2528: 2522: 2518: 2513: 2497: 2489: 2484: 2464: 2461: 2441: 2433: 2419: 2418: 2404: 2380: 2360: 2354: 2313: 2308: 2285: 2280: 2258: 2238: 2232: 2230: 2226: 2196: 2178: 2170: 2168: 2166: 2162: 2158: 2153: 2151: 2127: 2098: 2093: 2069: 2040: 2030: 2028: 2024: 2020: 2016: 2011: 2007: 2004: 2000: 1990: 1987: 1983: 1977: 1974: 1966: 1962: 1956: 1949: 1937: 1933: 1929: 1923: 1919: 1915: 1910: 1905: 1888: 1879: 1860: 1855: 1833: 1815: 1791: 1761: 1754: 1747: 1743: 1723: 1717: 1712: 1709: 1702: 1699: 1689: 1685: 1681: 1677: 1673: 1669: 1652: 1643: 1626:contained in 1625: 1621: 1617: 1609: 1601: 1599: 1597: 1596: 1573: 1555: 1535: 1530: 1525: 1522: 1519: 1516: 1505: 1500: 1497: 1494: 1484: 1483: 1482: 1481: 1474: 1468: 1464: 1458: 1456: 1450: 1445: 1439: 1429: 1425: 1419: 1413: 1409: 1405: 1401: 1400: 1399: 1397: 1393: 1387: 1367: 1361: 1357: 1353: 1352: 1351: 1331: 1309: 1307: 1305: 1281: 1277: 1269: 1266: 1263: 1225: 1221: 1213: 1210: 1207: 1193: 1187: 1182: 1179: 1165: 1161: 1153: 1150: 1147: 1144: 1141: 1127: 1119: 1114: 1111: 1104: 1103: 1102: 1087: 1083: 1075: 1051: 1046: 1039: 1036: 1031: 1026: 1023: 1018: 1015: 1008: 1007: 1006: 999: 979: 974: 969: 966: 963: 960: 957: 950: 949: 948: 920: 897: 884: 875: 870: 866: 852: 843: 818: 811: 805: 802: 778: 769: 752: 744: 742: 740: 736: 718: 713: 705: 700: 697: 672: 667: 662: 657: 654: 632: 608: 603: 600: 592: 589:, the set of 588: 583: 570: 561: 544: 540: 518: 499: 497: 491: 485: 479: 473: 469: 465: 457: 413: 396: 390: 386: 379: 375: 370: 366: 362: 358: 352: 345: 341: 337: 320: 316: 307: 304: 301: 296: 292: 286: 283: 280: 274: 271: 264: 260: 256: 248: 246: 244: 240: 239: 233: 231: 223: 212: 203: 199: 196:This section 194: 191: 187: 186: 180: 178: 176: 172: 168: 164: 160: 155: 153: 126: 125:root of unity 122: 118: 106: 102: 89: 84: 82: 65: 61: 57: 53: 52: 51: 49: 45: 41: 37: 33: 32:number theory 19: 4304: 4303:J.S. Milne. 4268: 4248: 4244: 4241:is Euclidean 4240: 4197: 4187:, retrieved 4181: 4168: 4164: 4146:the original 4133: 4129: 4091: 4079: 4057: 4046: 4038: 4033: 4026:LeVeque 2002 4021: 4009: 3998: 3986: 3974: 3963:. Retrieved 3959: 3950: 3945:, p. 99 3938: 3926: 3909: 3904: 3898: 3895: 3887: 3873: 3855: 3845: 3837: 3694: 3687: 3669: 3666: 3655: 3652:Harold Stark 3648:Kurt Heegner 3633: 3625: 3572: 3564:class number 3546: 3539: 3523: 3515: 3509: 3483: 3474:golden ratio 3446: 3439: 3428: 3413: 3409: 3391: 3388: 3273: 3196: 3055: 3048: 2952: 2943: 2936: 2932: 2925: 2921: 2916: 2747: 2692:= 19, 31, 43 2689: 2685:coefficients 2593:golden ratio 2542: 2526: 2520: 2516: 2511: 2415: 2402: 2358: 2355: 2311: 2283: 2236: 2233: 2174: 2165:OEIS A000924 2161:OEIS A003649 2157:class number 2154: 2149: 2096: 2091: 2038: 2031: 2012: 2005: 2002: 1998: 1988: 1985: 1981: 1978: 1972: 1969:, which has 1964: 1960: 1954: 1947: 1935: 1931: 1928:discriminant 1921: 1917: 1913: 1903: 1858: 1759: 1752: 1745: 1741: 1687: 1683: 1679: 1675: 1671: 1667: 1615: 1605: 1593: 1554:automorphism 1550: 1479: 1472: 1466: 1462: 1459: 1448: 1437: 1434: 1427: 1423: 1417: 1411: 1407: 1403: 1395: 1385: 1374: 1365: 1359: 1355: 1313: 1251: 1085: 1081: 1078: 997: 994: 898: 816: 809: 803: 800: 748: 590: 584: 542: 500: 495: 489: 483: 477: 471: 467: 463: 388: 384: 377: 373: 356: 350: 343: 339: 335: 254: 252: 236: 234: 219: 206: 202:adding to it 197: 170: 156: 104: 88:square roots 85: 80: 70: 63: 59: 55: 35: 29: 4329:Ring theory 4136:: 327–330, 4051:Harper 2004 3636:conjectured 3504:Brahmagupta 3402:real number 3265:irreducible 2909:are called 1952:belongs to 1422: ) = 1388:≑ 1 (mod 4) 899:An element 541:called the 4318:Categories 4288:1009.11001 4189:2009-08-05 4171:(1): 39–66 4078:Artin, M, 4071:References 4062:Clark 1994 3965:2016-12-31 3860:(sequence 3682:See also: 2813:Carl Gauss 2716:3482 + 531 2706:1520 + 273 1614:defines a 826:) implies 249:Definition 209:March 2015 161:, such as 99:, and the 4266:(2002) . 4251:: 55–70, 3747:− 3371:principal 3357:⟩ 3348:− 3343:− 3331:⟨ 3311:⟩ 3302:− 3285:⟨ 3246:− 3241:− 3213:− 3171:− 3166:− 3149:− 3129:⋅ 3083:− 3020:− 2991:− 2957:and also 2882:− 2845:− 2786:− 2758:imaginary 2493:¯ 2485:− 2462:− 2454:and also 2437:¯ 1901:The ring 1700:ω 1598:, below. 1523:− 1512:¯ 1480:conjugate 1267:≡ 1211:≡ 1145:≡ 1112:ω 714:⋅ 496:imaginary 302:− 287:± 281:− 245:in 1871. 220:Medieval 4334:Integers 4179:(1871), 4090:(1994). 3912:= 14, 69 3850:, when 3570:is one. 3531:in 1657. 3487:, where 3369:are not 3109:we have 2696:170 + 39 2406:, where 2401:Β±  2229:negation 1992:, where 1406: ( 1203:if  1137:if  1089:, where 537:form an 494:, it is 365:rational 361:integers 40:integers 4114:1290116 4080:Algebra 3981:, Ch 13 3866:in the 3863:A048981 3472:is the 3469:⁠ 3456:√ 3451:⁠ 2718:√ 2708:√ 2698:√ 2673:√ 2663:√ 2656:⁠ 2643:√ 2638:⁠ 2629:√ 2619:√ 2609:√ 2599:√ 2588:⁠ 2575:√ 2570:⁠ 2561:√ 2551:√ 2532:, with 2524:√ 2338:⁠ 2325:√ 2320:⁠ 2299:√ 2292:√ 2290:1, βˆ’1, 1945:√ 1757:√ 1470:√ 1415:√ 1390:, both 1363:√ 995:or, if 814:√ 812:  798:√ 348:, with 181:History 147:⁠ 134:√ 129:⁠ 109:√ 93:√ 4286:  4276:  4112:  4102:  3832:when 3672:> 0 3644:proven 3394:> 0 3276:ideals 2931:) and 2807:, the 2683:, the 2661:15 + 4 2627:10 + 3 2361:> 0 2239:< 0 2099:< 0 2041:> 0 2019:ideals 1926:whose 1750:, and 1692:where 1606:Every 1592:– see 1478:has a 1451:> 0 1440:< 0 1394:. The 1375:where 1304:square 791:where 741:four. 739:degree 492:< 0 391:< 0 380:> 0 257:is an 123:cubic 4161:(PDF) 4149:(PDF) 4126:(PDF) 3979:Artin 3918:Notes 3777:as a 3640:Gauss 3620:for 3424:units 2607:8 + 3 2597:5 + 2 2591:(the 2323:Β±1 Β± 2171:Units 2094:. If 2036:. If 1909:roots 1072:both 1064:with 737:have 481:. If 132:βˆ’1 + 71:with 4274:ISBN 4100:ISBN 3905:real 3868:OEIS 3642:and 3540:The 3513:βˆ’ 61 3437:For 3418:, a 3389:For 3323:and 3274:The 3263:are 3230:and 2748:For 2714:and 2671:4 + 2641:3 + 2617:3 + 2573:1 + 2559:2 + 2549:1 + 2547:are 2536:and 2477:and 2349:and 2318:Β±1, 2314:= βˆ’3 2286:= βˆ’1 2177:unit 2013:The 1396:norm 1379:and 1306:4). 1252:(as 1093:and 1068:and 943:and 687:and 623:and 587:ring 354:and 121:real 75:and 4284:Zbl 4253:doi 4243:", 4138:doi 3646:by 3638:by 3519:= 1 3442:= 5 3433:. 3416:= 1 3056:In 2595:), 2512:the 2356:If 2297:, βˆ’ 2234:If 2219:or 2152:. 2008:= 0 1967:= 0 1934:βˆ’ 4 1924:= 0 1862:in 1856:of 1816:of 1748:+ 1 1744:= 4 1739:if 1670:= { 1278:mod 1222:mod 1162:mod 1074:odd 903:of 591:all 466:βˆ’ 4 387:βˆ’ 4 376:βˆ’ 4 371:if 346:= 0 204:. 66:= 0 42:to 30:In 4320:: 4282:. 4249:56 4247:, 4223:14 4169:43 4167:, 4163:, 4134:83 4132:, 4128:, 4110:MR 4108:. 3958:. 3870:). 3781:, 3664:. 3454:1+ 3449:= 3444:, 3414:DY 3412:βˆ’ 3396:, 3269:Β±1 2950:. 2764:. 2724:. 2720:43 2710:31 2704:, 2700:19 2675:15 2669:, 2665:14 2659:, 2645:13 2635:, 2631:11 2625:, 2621:10 2615:, 2605:, 2567:, 2557:, 2519:+ 2353:. 2351:βˆ’1 2327:βˆ’3 2301:βˆ’1 2294:βˆ’1 2221:βˆ’1 2167:. 2029:. 2010:. 2001:βˆ’ 1984:= 1963:βˆ’ 1920:+ 1918:Bx 1916:+ 1755:= 1690:}, 1686:∈ 1682:, 1678:: 1676:Ο‰b 1674:+ 1465:+ 1428:Db 1426:βˆ’ 1410:+ 1358:+ 1086:Ο‰b 1084:+ 808:= 472:De 470:= 342:+ 340:bx 338:+ 253:A 232:. 177:. 154:. 136:βˆ’3 111:βˆ’1 107:= 83:. 62:+ 60:bx 58:+ 34:, 4290:. 4255:: 4228:] 4218:[ 4214:Z 4140:: 4116:. 3968:. 3910:D 3892:, 3888:D 3876:D 3856:D 3848:D 3842:, 3838:D 3830:D 3814:) 3808:D 3803:( 3799:Q 3792:O 3764:| 3758:2 3754:b 3750:D 3742:2 3738:a 3733:| 3729:= 3726:) 3720:D 3715:b 3712:+ 3709:a 3706:( 3703:N 3670:D 3630:. 3626:D 3606:) 3600:D 3595:( 3591:Q 3584:O 3547:Z 3524:Z 3516:Y 3510:X 3499:. 3489:n 3484:Ο‰ 3482:Β± 3466:2 3463:/ 3458:5 3447:Ο‰ 3440:D 3429:D 3410:X 3398:Ο‰ 3392:D 3351:5 3340:1 3337:, 3334:3 3305:5 3297:+ 3294:1 3291:, 3288:3 3249:5 3238:2 3216:5 3208:+ 3205:2 3182:. 3179:) 3174:5 3163:2 3160:( 3157:) 3152:5 3144:+ 3141:2 3138:( 3135:= 3132:3 3126:3 3123:= 3120:9 3097:, 3092:) 3086:5 3078:( 3074:Q 3067:O 3034:, 3030:] 3023:5 3014:[ 3009:Z 3005:= 3000:) 2994:5 2986:( 2982:Q 2975:O 2944:Z 2940:3 2937:ΞΆ 2935:( 2933:Q 2929:4 2926:ΞΆ 2924:( 2922:Q 2913:. 2896:] 2891:2 2885:3 2877:+ 2874:1 2868:[ 2863:Z 2859:= 2854:) 2848:3 2840:( 2836:Q 2829:O 2795:] 2789:1 2781:[ 2777:Z 2754:Ο‰ 2750:D 2690:D 2681:D 2653:2 2650:/ 2611:7 2601:6 2585:2 2582:/ 2577:5 2563:3 2553:2 2545:D 2538:b 2534:a 2527:D 2521:b 2517:a 2498:. 2490:u 2465:u 2442:, 2434:u 2422:u 2412:u 2408:i 2403:u 2387:) 2381:D 2376:( 2372:Q 2359:D 2347:1 2343:D 2335:2 2332:/ 2312:D 2309:( 2284:D 2281:( 2265:) 2259:D 2254:( 2250:Q 2237:D 2217:1 2203:) 2197:D 2192:( 2188:Q 2134:) 2128:D 2123:( 2119:Q 2112:O 2097:D 2076:) 2070:D 2065:( 2061:Q 2054:O 2039:D 2034:D 2006:D 2003:m 1999:x 1994:D 1989:D 1986:m 1982:n 1973:D 1971:4 1965:D 1961:x 1955:Z 1948:D 1941:D 1936:C 1932:B 1922:C 1914:x 1904:Z 1889:. 1886:) 1880:D 1875:( 1871:Q 1859:Z 1840:) 1834:D 1829:( 1825:Q 1798:) 1792:D 1787:( 1783:Q 1776:O 1760:D 1753:Ο‰ 1746:k 1742:D 1724:2 1718:D 1713:+ 1710:1 1703:= 1688:Z 1684:b 1680:a 1672:a 1668:Z 1653:. 1650:) 1644:D 1639:( 1635:Q 1612:D 1580:) 1574:D 1569:( 1565:Q 1536:. 1531:D 1526:b 1520:a 1517:= 1506:D 1501:b 1498:+ 1495:a 1473:D 1467:b 1463:a 1449:D 1438:D 1431:. 1424:a 1418:D 1412:b 1408:a 1404:N 1386:D 1381:b 1377:a 1371:, 1366:D 1360:b 1356:a 1338:) 1332:D 1327:( 1323:Q 1300:D 1285:) 1282:4 1275:( 1270:0 1264:D 1254:D 1229:) 1226:4 1219:( 1214:1 1208:D 1194:2 1188:D 1183:+ 1180:1 1169:) 1166:4 1159:( 1154:3 1151:, 1148:2 1142:D 1128:D 1120:{ 1115:= 1099:Ο‰ 1095:b 1091:a 1082:a 1070:b 1066:a 1052:, 1047:D 1040:2 1037:b 1032:+ 1027:2 1024:a 1019:= 1016:x 1004:4 998:D 980:, 975:D 970:b 967:+ 964:a 961:= 958:x 945:b 941:a 927:) 921:D 916:( 912:Q 901:x 885:. 882:) 876:D 871:2 867:a 861:( 857:Q 853:= 850:) 844:D 839:( 835:Q 824:a 817:D 810:a 804:D 801:a 793:D 779:, 776:) 770:D 765:( 761:Q 719:3 711:) 706:2 701:+ 698:1 695:( 673:3 668:+ 663:2 658:+ 655:1 633:3 609:2 604:+ 601:1 571:. 568:) 562:D 557:( 553:Q 525:) 519:D 514:( 510:Q 490:D 484:D 478:e 468:c 464:b 459:D 441:Q 420:) 414:D 409:( 405:Q 389:c 385:b 378:c 374:b 357:c 351:b 344:c 336:x 321:2 317:/ 313:) 308:c 305:4 297:2 293:b 284:b 278:( 275:= 272:x 226:D 211:) 207:( 144:2 141:/ 105:i 95:2 77:c 73:b 64:c 56:x 20:)

Index

Quadratic integers
number theory
integers
quadratic fields
algebraic integers
square roots
complex number
Gaussian integers
real
root of unity
Eisenstein integers
Diophantine equations
Pell's equations
quadratic forms
algebraic number theory

adding to it
Indian mathematicians
Pell's equation
Β§ Explicit representation
Richard Dedekind
algebraic integer
complex number
integers
rational
irrational number
quadratic field
square-free integer
integral domain
ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑