Knowledge (XXG)

Quadratrix

Source 📝

201: 154: 655: 431: 148:
which has the generating line of the cylinder passing through the initial point of the spiral for its axis. From every point of the curve of intersection, perpendiculars are drawn to the axis. Any plane section of the screw (plectoidal of Pappus) surface so obtained is the
414:, the quadratrix in turn cannot be constructed with compass and straightedge. An accurate construction of the quadratrix would also allow the solution of two other classical problems known to be impossible with compass and straightedge: 440:
The quadratrix of Tschirnhaus is constructed by dividing the arc and radius of a quadrant in the same number of equal parts as before. The mutual intersections of the lines drawn from the points of division of the arc parallel to
517: 320: 179:
are divided into the same number of equal parts. Radii are drawn from the centre of the quadrant to the points of division of the arc, and these radii are intersected by the lines drawn
565: 625: 605: 585: 381:
in the formula for the quadratrix. These poles partition the curve into a central portion flanked by infinite branches. The point where the curve crosses the
675: 741: 411: 670: 755: 52: 456: 262: 703: 395:; therefore, if it were possible to accurately construct the curve, one could construct a line segment whose length is a 780: 721:
A Philosophical and Mathematical Dictionary Containing... Memoirs of the Lives and Writings of the Most Eminent Authors
698: 213: 693: 738: 329: 130: 68: 102: 419: 407: 341: 194: 180: 118: 98: 636: 141: 526: 719: 415: 749: 134: 775: 745: 396: 333: 166: 145: 122: 90: 47:(or quadrature) of another curve. The two most famous curves of this class are those of 610: 590: 570: 28: 785: 769: 666: 661: 126: 78: 759: 200: 153: 137:
containing one of the perpendiculars and inclined to the axis is the quadratrix.
48: 635:
Other curves that have historically been used to square the circle include the
204:
Quadratrix of Dinostratus with a central portion flanked by infinite branches
640: 326: 109:, treats its history, and gives two methods by which it can be generated. 97:, discussed the curve, and showed how it effected a mechanical solution of 86: 40: 20: 679:. Vol. 22 (11th ed.). Cambridge University Press. p. 706. 627:. Its properties are similar to those of the quadratrix of Dinostratus. 430: 363: 82: 56: 660:
This article incorporates text from a publication now in the
429: 199: 152: 114: 94: 36: 44: 85:, who ascribes the invention of the curve to a contemporary of 512:{\displaystyle y=a\cos \!{\big (}{\tfrac {\pi x}{2a}}{\big )}} 332:
is invariant under negation of its argument, and has a simple
377:
where the pole in the cotangent is canceled by the factor of
716:
See definition and drawing in the following online source:
453:, are points on the quadratrix. The Cartesian equation is 315:{\displaystyle y=x\cot \left({\frac {\pi x}{2a}}\right).} 256:-axis, the curve itself can be expressed by the equation 481: 613: 593: 573: 529: 459: 265: 406:, leading to a solution of the classical problem of 187:and through the corresponding points on the radius 16:
Curve with axes measuring the area of another curve
619: 599: 579: 559: 511: 348:-axis, and similarly has a pole for each value of 314: 472: 93:. Dinostratus, a Greek geometer and disciple of 73:The quadratrix of Dinostratus (also called the 121:; a screw surface is then obtained by drawing 504: 475: 8: 197:of these intersections is the quadratrix. 612: 592: 572: 528: 503: 502: 480: 474: 473: 458: 285: 264: 724:. Vol. 2. London. pp. 271–272. 587:being an integer; the maximum values of 140:A right cylinder having for its base an 685: 519:. The curve is periodic, and cuts the 7: 161:Another construction is as follows. 144:is intersected by a right circular 449:through the points of division of 445:, and the lines drawn parallel to 157:Quadratrix of Dinostratus (in red) 133:of a section of this surface by a 14: 653: 410:. Since this is impossible with 252:units from the origin along the 232:units from the origin along the 125:from every point of this spiral 55:, which are both related to the 81:geometers, and is mentioned by 551: 536: 434:Tschirnhaus' quadratrix (red), 1: 117:be drawn on a right circular 699:Encyclopedia of Mathematics 436:Hippias quadratrix (dotted) 214:Cartesian coordinate system 43:which are a measure of the 802: 66: 560:{\displaystyle x=(2n-1)a} 426:Quadratrix of Tschirnhaus 63:Quadratrix of Dinostratus 694:"Dinostratus quadratrix" 412:compass and straightedge 77:) was well known to the 676:Encyclopædia Britannica 621: 601: 581: 561: 513: 437: 316: 205: 158: 35: 'squarer') is a 739:Quadratrix of Hippias 622: 602: 582: 562: 514: 433: 340:, the quadratrix has 317: 212:be the origin of the 203: 156: 131:orthogonal projection 75:quadratrix of Hippias 69:Quadratrix of Hippias 611: 591: 571: 527: 523:-axis at the points 457: 336:at each multiple of 263: 781:Squaring the circle 756:Hippias' Quadratrix 420:trisecting an angle 408:squaring the circle 342:reflection symmetry 99:squaring the circle 744:2012-02-04 at the 718:Hutton C. (1815). 637:Archimedean spiral 631:Other quadratrices 617: 597: 577: 557: 509: 500: 438: 312: 206: 169:in which the line 159: 142:Archimedean spiral 620:{\displaystyle a} 600:{\displaystyle y} 580:{\displaystyle n} 499: 416:doubling the cube 303: 129:to its axis. The 53:E. W. Tschirnhaus 793: 762:(MAA periodical) 750:MacTutor archive 726: 725: 714: 708: 707: 690: 680: 659: 657: 656: 626: 624: 623: 618: 606: 604: 603: 598: 586: 584: 583: 578: 566: 564: 563: 558: 518: 516: 515: 510: 508: 507: 501: 498: 490: 482: 479: 478: 405: 394: 384: 380: 376: 369: 361: 351: 347: 339: 321: 319: 318: 313: 308: 304: 302: 294: 286: 255: 251: 247: 239: 235: 231: 227: 219: 211: 192: 191: 186: 178: 177: 172: 164: 801: 800: 796: 795: 794: 792: 791: 790: 766: 765: 746:Wayback Machine 735: 730: 729: 717: 715: 711: 692: 691: 687: 669:, ed. (1911). " 665: 654: 652: 649: 633: 609: 608: 589: 588: 569: 568: 525: 524: 491: 483: 455: 454: 435: 428: 400: 386: 382: 378: 371: 367: 353: 349: 345: 337: 295: 287: 281: 261: 260: 253: 249: 241: 237: 233: 229: 221: 217: 209: 189: 188: 184: 175: 174: 170: 162: 91:Hippias of Elis 71: 65: 17: 12: 11: 5: 799: 797: 789: 788: 783: 778: 768: 767: 764: 763: 753: 734: 733:External links 731: 728: 727: 709: 684: 683: 682: 681: 667:Chisholm, Hugh 648: 645: 632: 629: 616: 596: 576: 556: 553: 550: 547: 544: 541: 538: 535: 532: 506: 497: 494: 489: 486: 477: 471: 468: 465: 462: 427: 424: 323: 322: 311: 307: 301: 298: 293: 290: 284: 280: 277: 274: 271: 268: 151: 150: 138: 67:Main article: 64: 61: 15: 13: 10: 9: 6: 4: 3: 2: 798: 787: 784: 782: 779: 777: 774: 773: 771: 761: 757: 754: 751: 747: 743: 740: 737: 736: 732: 723: 722: 713: 710: 705: 701: 700: 695: 689: 686: 678: 677: 672: 668: 663: 662:public domain 651: 650: 646: 644: 642: 638: 630: 628: 614: 594: 574: 554: 548: 545: 542: 539: 533: 530: 522: 495: 492: 487: 484: 469: 466: 463: 460: 452: 448: 444: 432: 425: 423: 421: 417: 413: 409: 404: 398: 393: 389: 374: 365: 360: 356: 352:of the form 343: 335: 331: 328: 309: 305: 299: 296: 291: 288: 282: 278: 275: 272: 269: 266: 259: 258: 257: 245: 240:be the point 225: 220:be the point 215: 202: 198: 196: 182: 168: 155: 147: 143: 139: 136: 132: 128: 127:perpendicular 124: 120: 116: 112: 111: 110: 108: 104: 100: 96: 92: 88: 84: 80: 79:ancient Greek 76: 70: 62: 60: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 720: 712: 697: 688: 674: 634: 520: 450: 446: 442: 439: 402: 399:multiple of 391: 387: 372: 370:, except at 358: 354: 325:Because the 324: 243: 223: 207: 173:and the arc 160: 106: 74: 72: 32: 24: 18: 760:Convergence 344:across the 236:-axis, and 149:quadratrix. 107:Collections 89:, probably 49:Dinostratus 770:Categories 671:Quadratrix 647:References 385:-axis has 366:values of 27:(from 25:quadratrix 704:EMS Press 641:cochleoid 546:− 485:π 327:cotangent 289:π 279:⁡ 105:, in his 41:ordinates 33:quadrator 742:Archived 639:and the 397:rational 330:function 208:Letting 181:parallel 167:quadrant 119:cylinder 87:Socrates 21:geometry 748:at the 706:, 2001 664::  364:integer 83:Proclus 39:having 776:Curves 658:  362:, for 193:. The 113:Let a 103:Pappus 57:circle 195:locus 165:is a 135:plane 123:lines 115:helix 95:Plato 37:curve 31: 29:Latin 786:Area 607:are 418:and 334:pole 242:(0, 226:, 0) 146:cone 51:and 45:area 23:, a 758:at 673:". 470:cos 392:a/π 390:= 2 375:= 0 357:= 2 276:cot 183:to 163:DAB 19:In 772:: 702:, 696:, 643:. 567:, 451:DA 447:AB 443:DA 422:. 401:1/ 359:na 248:, 228:, 216:, 190:DA 185:AB 176:DB 171:DA 101:. 59:. 752:. 615:a 595:y 575:n 555:a 552:) 549:1 543:n 540:2 537:( 534:= 531:x 521:x 505:) 496:a 493:2 488:x 476:( 467:a 464:= 461:y 403:π 388:y 383:y 379:x 373:x 368:n 355:x 350:x 346:y 338:π 310:. 306:) 300:a 297:2 292:x 283:( 273:x 270:= 267:y 254:y 250:a 246:) 244:a 238:B 234:x 230:a 224:a 222:( 218:D 210:A

Index

geometry
Latin
curve
ordinates
area
Dinostratus
E. W. Tschirnhaus
circle
Quadratrix of Hippias
ancient Greek
Proclus
Socrates
Hippias of Elis
Plato
squaring the circle
Pappus
helix
cylinder
lines
perpendicular
orthogonal projection
plane
Archimedean spiral
cone

quadrant
parallel
locus

Cartesian coordinate system

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.