Knowledge (XXG)

Quadric (algebraic geometry)

Source 📝

32: 463: 3942: 2090:
The space of 2-planes in a split quadric 5-fold is isomorphic to a split quadric 6-fold. Likewise, both components of the space of 3-planes in a split quadric 6-fold are isomorphic to a split quadric 6-fold. (This is related to the phenomenon of
3546: 3649: 3684: 1285: 4884: 4639: 2882: 4995: 4745: 4473: 1410: 2724: 896: 3431: 1750: 453: 3248: 3147: 2050: 1900: 677: 729: 282: 3047: 936: 1134: 1085: 2519: 1013: 982: 772: 214: 138: 3085: + 2). (The numbering refers to the dimensions of the corresponding vector spaces. In the case of middle-dimensional linear subspaces of a quadric of even dimension 2 2423: 2377: 2083: 1991: 1949: 1816: 1779: 1693: 1656: 1623: 1584: 2472: 2348: 2235: 4326: 4180: 3451: 3010: 5089: 5049: 4404: 4359: 4266: 4221: 3293: 2963: 2261: 1527: 1039: 332: 4009: 2607: 2577: 4036: 3975: 3569: 3356: 104: 3937:{\displaystyle CH^{*}\operatorname {OGr} (m,2m+1)\cong \mathbb {Z} /(e_{j}^{2}-2e_{j-1}e_{j+1}+2e_{j-2}e_{j+2}-\cdots +(-1)^{j}e_{2j}=0{\text{ for all }}j),} 953:
A central part of the geometry of quadrics is the study of the linear spaces that they contain. (In the context of projective geometry, a linear subspace of
3149:
for one of the two connected components.) As a result, the isotropic Grassmannians of a split quadric over a field also have algebraic cell decompositions.
2306:, except in the middle dimension of an even-dimensional quadric, where there are two cells. The corresponding cell closures (Schubert varieties) are: 1156: 4768: 4528: 1041:.) A key point is that every linear space contained in a smooth quadric has dimension at most half the dimension of the quadric. Moreover, when 5600: 5384: 5351: 5277: 5242: 2754: 5490: 4899: 4654: 5413: 4428: 1308: 2624: 159: 815: 5368: 3384: 2132: 1711: 372: 4062:
on a quadric, analogous to the maximal linear subspaces among all subvarieties of a quadric. To describe these bundles, let
1425:. In particular, over an algebraically closed field, there is only one smooth quadric of each dimension, up to isomorphism. 5335: 3678:+1). These descriptions can be used to compute the cohomology ring (or equivalently the Chow ring) of the spinor variety: 735:, not all zero (hence corresponding to a point in projective space), then there is a one-to-one correspondence defined by 5595: 3193: 3092: 2965:.) This calculation shows the importance of the linear subspaces of a quadric: the Chow ring of all algebraic cycles on 2000: 1850: 5590: 567: 5401: 4123: 474:
can be written (after some linear change of coordinates) as a polynomial in a proper subset of the variables, then
3434: 2136: 2116: 791: 491: 624: 4059: 1828: 682: 235: 4507: 3015: 1840: 1662:. (For example, ellipses, parabolas and hyperbolas are different kinds of conics in the affine plane over 904: 339: 225: 2173:.) Cellular varieties are very special among all algebraic varieties. For example, a cellular variety is 1105: 1056: 2489: 2144: 987: 956: 746: 579: 184: 112: 2399: 2353: 2059: 1967: 1925: 1792: 1755: 1669: 1632: 1599: 1560: 5442: 5013: 2155:. (In particular, this applies to every smooth quadric over an algebraically closed field.) That is, 2152: 366: 354: 2437: 2313: 5339: 3541:{\displaystyle \operatorname {SO} (n+2)/(\operatorname {U} (r+1)\times \operatorname {SO} (n-2r)),} 3324: 346: 60: 2192: 1045:
is algebraically closed, this is an optimal bound, meaning that every smooth quadric of dimension
5557: 5466: 5234: 4759: 4291: 4145: 3069:-dimensional quadric (like the quadric itself) is a projective homogeneous variety, known as the 2272: 2169: 1659: 152: 64: 17: 2545:
over a field, as follows. When the base field is the complex numbers, this is also the integral
2976: 2159:
can be written as a finite union of disjoint subsets that are isomorphic to affine spaces over
5585: 5486: 5409: 5380: 5347: 5273: 5238: 5058: 5018: 3644:{\displaystyle \operatorname {SO} (n+2)/(\operatorname {U} (1)\times \operatorname {SO} (n)).} 3438: 2276: 736: 4483:
viewed as the isotropic Grassmannian of 2-planes in a 4-dimensional symplectic vector space.
4376: 4331: 4238: 4193: 3265: 2935: 2429:, one from each of the two families of middle-dimensional linear spaces (as described above). 2240: 1964:
Gr(2,4), the space of 2-planes in a 4-dimensional vector space (or equivalently, of lines in
1506: 1018: 311: 5549: 5516: 5450: 5430: 5265: 4495: 4491: 4487: 3984: 3308: 2582: 2552: 2174: 1832: 598: 148: 68: 5569: 5530: 5500: 5462: 5423: 5394: 5361: 5252: 4014: 3953: 3334: 3299: + 1) on this projective space does not come from a linear representation of SO(2 1993:). (This is related to the exceptional isomorphism of linear algebraic groups between SO(6, 1918:
on which the form restricts to zero. Furthermore, the space of lines in the quadric 3-fold
77: 5565: 5526: 5496: 5458: 5419: 5390: 5376: 5357: 5248: 1907: 1782: 1449: 479: 1460:
has even dimension. That is, there are two different "types" of maximal linear spaces in
5446: 3563:= 0, the isotropic Grassmannian is the quadric itself, which can therefore be viewed as 482:
over a lower-dimensional quadric. It is reasonable to focus attention on the case where
4511: 4115: 2107:
always has two connected components, each isomorphic to the isotropic Grassmannian of (
614: 515: 293: 163: 141: 5521: 1140:. Thus every smooth quadric over an algebraically closed field is split. If a quadric 369:, one can also think of a projective variety in a more elementary way, as a subset of 5579: 5470: 3556: 503: 5433:(1988), "On the derived categories of coherent sheaves on some homogeneous spaces", 5537: 5478: 4755: 2186: 2163:
of various dimensions. (For projective homogeneous varieties, the cells are called
1961: 1501: 2525:-dimensional quadric. It is the iterated cone over a smooth quadric of dimension 2 1549:
can be any smooth quadric over an algebraically closed field.) In low dimensions,
5228: 4475:
are the line bundles O(−1,0) and O(0,−1). The spinor bundle on a quadric 3-fold
4418:
even, any reflection in the orthogonal group switches the two spinor bundles on
3948: 3255: 3174: 939: 523: 40: 21: 3445: + 2). From the latter point of view, this isotropic Grassmannian is 1468:
has even dimension. The two families can be described by: for a smooth quadric
794:. In particular, every quadric over an algebraically closed field is rational. 4762:
of algebraic vector bundles on a smooth quadric; it is the free abelian group
3312: 2546: 2264: 305: 56: 2538: 514:
has characteristic not 2, smoothness of a quadric is also equivalent to the
1280:{\displaystyle x_{0}x_{1}+x_{2}x_{3}+\cdots +x_{2m-2}x_{2m-1}+x_{2m}^{2}=0} 1148:
is split, then it can be written (after a linear change of coordinates) as
790:-rational point then it has infinitely many. This equivalence is proved by 31: 4879:{\displaystyle K_{0}(X)=\mathbb {Z} \{S_{+},S_{-},O,O(1),\ldots ,O(n-1)\}} 4634:{\displaystyle D^{b}(X)=\langle S_{+},S_{-},O,O(1),\ldots ,O(n-1)\rangle } 4134:), and there is a standard way to extend the spin representations of Spin( 462: 3190: + 1)/2. (Another description of the pure spinor variety is as 2092: 1529:
is even or odd. (The dimension of the empty set is taken to be −1 here.)
2119:
in the orthogonal group maps one component isomorphically to the other.
5561: 5454: 5272:(reprint ed.). Columbia University Press (1954); Springer (1996). 2877:{\displaystyle CH^{*}(X)\cong \mathbb {Z} /(h^{m+1}-2hl,l^{2}-ah^{m}l)} 1432:
of all linear subspaces of maximal dimension in a given smooth quadric
25: 2189:
of a smooth projective cellular variety is trivial, in the sense that
2537:
Using the Bruhat decomposition, it is straightforward to compute the
809:-rational point. An example of an anisotropic quadric is the quadric 5553: 151:, and so the study of quadrics can be considered as a descendant of 4284:-equivariant vector bundles associated to these representations of 1666:, but their closures in the projective plane are all isomorphic to 1588: 461: 30: 455:
defined by homogeneous polynomial equations with coefficients in
4990:{\displaystyle K_{0}(X)=\mathbb {Z} \{S,O,O(1),\ldots ,O(n-1)\}} 4740:{\displaystyle D^{b}(X)=\langle S,O,O(1),\ldots ,O(n-1)\rangle } 3654:
For example, the complex projectivized pure spinor variety OGr(
1553:
and the linear spaces it contains can be described as follows.
4468:{\displaystyle X\cong \mathbf {P} ^{1}\times \mathbf {P} ^{1}} 3057:
Isotropic Grassmannians and the projective pure spinor variety
1456:
has odd dimension, whereas it has two connected components if
1405:{\displaystyle x_{0}x_{1}+x_{2}x_{3}+\cdots +x_{2m}x_{2m+1}=0} 593:
It is a fundamental result that a smooth quadric over a field
466:
A singular quadric surface, the cone over a smooth conic curve
1428:
For many applications, it is important to describe the space
35:
The two families of lines on a smooth (split) quadric surface
2932:, the class of the other type of maximal linear subspace is 2719:{\displaystyle CH^{*}(X)\cong \mathbb {Z} /(h^{m}-2l,l^{2})} 71:
rather than affine space. An example is the quadric surface
5133:
Elman, Karpenko, & Merkurjev (2008), Proposition 7.28.
3049:) together with the class of a maximal linear subspace of 5507:
Ottaviani, Giorgio (1988), "Spinor bundles on quadrics",
5208:
Elman, Karpenko & Merkurjev (2008), Proposition 68.1.
5115:
Elman, Karpenko & Merkurjev (2008), Proposition 22.9.
4425:
For example, the two spinor bundles on a quadric surface
4086:, and therefore so does its double cover, the spin group 3361:
Over the complex numbers, the isotropic Grassmannian OGr(
3168: − 1)-planes in a smooth quadric of dimension 2 1914:
can be identified with the space LGr(2,4) of 2-planes in
891:{\displaystyle x_{0}^{2}+x_{1}^{2}+\cdots +x_{n+1}^{2}=0} 5217:
Elman, Karpenko, & Merkurjev (2008), Exercise 68.3.
4510:
involving the spinor bundles, along with the "obvious"
3426:{\displaystyle G=\operatorname {SO} (n+2,\mathbf {C} )} 3381:
is a homogeneous space for the complex algebraic group
1745:{\displaystyle \mathbf {P} ^{1}\times \mathbf {P} ^{1}} 586:
is an iterated cone over a smooth quadric of dimension
448:{\displaystyle {\mathbf {P} }^{N}(k)=(k^{N+1}-0)/k^{*}} 1839:). (This is related to the exceptional isomorphism of 5270:
The Algebraic Theory of Spinors and Clifford Algebras
5061: 5051:(of continuous complex vector bundles on the quadric 5021: 4902: 4771: 4657: 4531: 4431: 4379: 4334: 4294: 4241: 4196: 4148: 4017: 3987: 3956: 3687: 3572: 3454: 3387: 3337: 3268: 3196: 3095: 3018: 2979: 2938: 2757: 2627: 2585: 2555: 2492: 2440: 2402: 2356: 2316: 2243: 2195: 2062: 2003: 1970: 1928: 1853: 1795: 1758: 1714: 1672: 1635: 1602: 1563: 1509: 1311: 1159: 1108: 1059: 1021: 990: 959: 907: 818: 749: 685: 627: 375: 314: 238: 187: 115: 80: 4486:
To indicate the significance of the spinor bundles:
3172: − 1 may also be viewed as the variety of 162:. Another generalization of quadrics is provided by 158:
Many properties of quadrics hold more generally for
4754:is odd. Concretely, this implies the split case of 5083: 5043: 4989: 4878: 4739: 4633: 4467: 4398: 4353: 4320: 4260: 4215: 4174: 4030: 4003: 3969: 3936: 3643: 3540: 3425: 3350: 3287: 3243:{\displaystyle \operatorname {OGr} _{+}(m+1,2m+2)} 3242: 3142:{\displaystyle \operatorname {OGr} _{+}(m+1,2m+2)} 3141: 3041: 3004: 2957: 2876: 2718: 2601: 2571: 2513: 2466: 2417: 2371: 2342: 2255: 2229: 2151:has an algebraic cell decomposition, known as the 2077: 2045:{\displaystyle \operatorname {SL} (4,k)/\{\pm 1\}} 2044: 1985: 1943: 1895:{\displaystyle \operatorname {Sp} (4,k)/\{\pm 1\}} 1894: 1810: 1773: 1744: 1687: 1650: 1617: 1578: 1521: 1500:are distinguished by whether the dimension of the 1404: 1279: 1128: 1079: 1033: 1007: 976: 930: 890: 778:minus a lower-dimensional subset. For example, if 766: 723: 671: 617:. That is, if there is a solution of the equation 447: 326: 276: 208: 132: 98: 5509:Transactions of the American Mathematical Society 5344:Algebraic and geometric theory of quadratic forms 2056:has two connected components, each isomorphic to 1789:has two connected components, each isomorphic to 2143:. Like any projective homogeneous variety for a 2052:.) The space of 2-planes in the quadric 4-fold 2396:/2, both Schubert varieties are linear spaces 1902:.) Namely, given a 4-dimensional vector space 5540:(1985), "K-theory of quadric hypersurfaces", 2920:is the class of a maximal linear subspace of 2111:− 1)-planes in a split quadric of dimension 2 284:. (A homogeneous polynomial is also called a 169:Property of quadric By definition, a quadric 8: 4984: 4930: 4873: 4799: 4734: 4680: 4628: 4554: 2039: 2030: 1889: 1880: 1785:. The space of lines in the quadric surface 1123: 1109: 1074: 1060: 5304:Mimura & Toda (1991), Theorem III.6.11. 2609:. (The cohomology in odd degrees is zero.) 1102:if it contains a linear space of dimension 4268:.) Then the spinor bundles on the quadric 3307:, but rather from a representation of its 2139:), viewed as linear algebraic groups over 5520: 5291: 5289: 5066: 5060: 5026: 5020: 4926: 4925: 4907: 4901: 4819: 4806: 4795: 4794: 4776: 4770: 4662: 4656: 4574: 4561: 4536: 4530: 4459: 4454: 4444: 4439: 4430: 4384: 4378: 4339: 4333: 4312: 4299: 4293: 4246: 4240: 4201: 4195: 4166: 4153: 4147: 4022: 4016: 3995: 3986: 3961: 3955: 3920: 3905: 3895: 3861: 3845: 3823: 3807: 3791: 3786: 3774: 3765: 3746: 3735: 3734: 3695: 3686: 3594: 3571: 3476: 3453: 3415: 3386: 3342: 3336: 3273: 3267: 3250:.) To explain the name: the smallest SO(2 3201: 3195: 3100: 3094: 3027: 3021: 3020: 3017: 2984: 2978: 2943: 2937: 2916:is the class of a hyperplane section and 2862: 2846: 2815: 2803: 2784: 2783: 2765: 2756: 2707: 2685: 2673: 2654: 2653: 2635: 2626: 2590: 2584: 2563: 2554: 2499: 2494: 2491: 2444: 2439: 2409: 2404: 2401: 2363: 2358: 2355: 2332: 2315: 2242: 2200: 2194: 2103:-planes in a split quadric of dimension 2 2069: 2064: 2061: 2025: 2002: 1977: 1972: 1969: 1935: 1930: 1927: 1875: 1852: 1802: 1797: 1794: 1765: 1760: 1757: 1736: 1731: 1721: 1716: 1713: 1679: 1674: 1671: 1642: 1637: 1634: 1609: 1604: 1601: 1570: 1565: 1562: 1508: 1381: 1368: 1349: 1339: 1326: 1316: 1310: 1265: 1257: 1235: 1216: 1197: 1187: 1174: 1164: 1158: 1115: 1107: 1066: 1058: 1020: 999: 993: 992: 989: 968: 962: 961: 958: 916: 910: 909: 906: 876: 865: 846: 841: 828: 823: 817: 758: 752: 751: 748: 709: 690: 684: 654: 635: 626: 582:of the Hessian matrix. A quadric of rank 439: 430: 409: 384: 378: 377: 374: 313: 300:is the product of two linear forms, then 262: 243: 237: 194: 189: 186: 124: 118: 117: 114: 79: 67:. The theory is simplified by working in 5186: 5184: 2099:As these examples suggest, the space of 1053:contains a linear subspace of dimension 147:. A quadric has a natural action of the 5099: 3262:lands in projective space of dimension 672:{\displaystyle (a_{0},\ldots ,a_{n+1})} 63:. Quadrics are fundamental examples in 4142:. (There are two spin representations 2969:is generated by the "obvious" element 2135:for the orthogonal group (and for the 3662: + 1) can be viewed as SO(2 1596:is isomorphic to the projective line 774:minus a lower-dimensional subset and 724:{\displaystyle a_{0},\ldots ,a_{n+1}} 526:, or to the associated bilinear form 353:are considered as a special class of 277:{\displaystyle x_{0},\ldots ,x_{n+1}} 7: 5055:) is given by the same formula, and 3042:{\displaystyle {\mathbf {P} }^{n+1}} 2474:, the Schubert variety of dimension 2302:has only one cell of each dimension 931:{\displaystyle {\mathbf {P} }^{n+1}} 342:, which excludes that special case. 4479:is the natural rank-2 subbundle on 1129:{\displaystyle \lfloor n/2\rfloor } 1080:{\displaystyle \lfloor n/2\rfloor } 5406:Algebraic geometry: a first course 5160:Harris (1995), Lecture 22, p. 285. 5151:Harris (1995), Lecture 22, p. 284. 4522:restricted from projective space: 4288:. So there are two spinor bundles 4074:. The special orthogonal group SO( 3602: 3484: 2514:{\displaystyle \mathbf {P} ^{n+1}} 1008:{\displaystyle {\mathbf {P} }^{a}} 977:{\displaystyle {\mathbf {P} }^{N}} 767:{\displaystyle {\mathbf {P} }^{n}} 209:{\displaystyle \mathbf {P} ^{n+1}} 133:{\displaystyle {\mathbf {P} }^{3}} 16:This article is about quadrics in 14: 5522:10.1090/S0002-9947-1988-0936818-5 5485:, American Mathematical Society, 5346:, American Mathematical Society, 4038:is understood to mean 0 for  2482:with a linear space of dimension 1444:.) A striking phenomenon is that 4455: 4440: 4066:be a split quadric of dimension 3416: 3022: 2541:of a split quadric of dimension 2495: 2418:{\displaystyle \mathbf {P} ^{r}} 2405: 2372:{\displaystyle \mathbf {P} ^{r}} 2359: 2167:, and their closures are called 2078:{\displaystyle \mathbf {P} ^{3}} 2065: 1986:{\displaystyle \mathbf {P} ^{3}} 1973: 1944:{\displaystyle \mathbf {P} ^{3}} 1931: 1811:{\displaystyle \mathbf {P} ^{1}} 1798: 1774:{\displaystyle \mathbf {P} ^{3}} 1761: 1732: 1717: 1688:{\displaystyle \mathbf {P} ^{1}} 1675: 1651:{\displaystyle \mathbf {P} ^{2}} 1638: 1618:{\displaystyle \mathbf {P} ^{1}} 1605: 1579:{\displaystyle \mathbf {P} ^{2}} 1566: 1541:be a split quadric over a field 1094:, a smooth quadric of dimension 994: 963: 911: 782:is infinite, it follows that if 753: 379: 190: 160:projective homogeneous varieties 119: 55:-dimensional space defined by a 5199:Fulton (1998), Example 19.1.11. 2549:ring of a smooth quadric, with 2275:on the set of cells, as is the 5313:Kapranov (1988), Theorem 4.10. 5078: 5072: 5038: 5032: 4981: 4969: 4954: 4948: 4919: 4913: 4870: 4858: 4843: 4837: 4788: 4782: 4731: 4719: 4704: 4698: 4674: 4668: 4625: 4613: 4598: 4592: 4548: 4542: 4223:, and one spin representation 4058:play a special role among all 3928: 3892: 3882: 3779: 3771: 3739: 3728: 3707: 3635: 3632: 3626: 3614: 3608: 3599: 3591: 3579: 3532: 3529: 3514: 3502: 3490: 3481: 3473: 3461: 3420: 3400: 3331: + 1), of dimension 3237: 3210: 3136: 3109: 2999: 2993: 2871: 2808: 2800: 2788: 2777: 2771: 2713: 2678: 2670: 2658: 2647: 2641: 2467:{\displaystyle n/2<r\leq n} 2343:{\displaystyle 0\leq r<n/2} 2263:. For a cellular variety, the 2218: 2212: 2133:projective homogeneous variety 2127:A smooth quadric over a field 2022: 2010: 1872: 1860: 666: 628: 427: 402: 396: 390: 308:. It is common to assume that 1: 5190:Harris (1995), Theorem 22.14. 5169:Harris (1995), Exercise 22.6. 5142:Harris (1995), Theorem 22.14. 5124:Harris (1995), Theorem 22.13. 574:of characteristic not 2, the 498:is not a cone if and only if 5601:Algebraic homogeneous spaces 5295:Ottaviani (1988), section 1. 5178:Harris (1995), Example 22.7. 2973:(pulled back from the class 2230:{\displaystyle h^{p,q}(X)=0} 1436:. (For clarity, assume that 949:Linear subspaces of quadrics 59:equation of degree 2 over a 5106:Harris (1995), Example 3.3. 4321:{\displaystyle S_{+},S_{-}} 4175:{\displaystyle V_{+},V_{-}} 3981:vector bundle are equal to 3152:The isotropic Grassmannian 5617: 4050:Spinor bundles on quadrics 2579:mapping isomorphically to 15: 3005:{\displaystyle c_{1}O(1)} 5435:Inventiones Mathematicae 5084:{\displaystyle K^{1}(X)} 5044:{\displaystyle K^{0}(X)} 4490:showed that the bounded 4369:, and one spinor bundle 4138:) to representations of 3435:maximal compact subgroup 3258:projective embedding of 2137:special orthogonal group 2123:The Bruhat decomposition 1704:A split quadric surface 1533:Low-dimensional quadrics 1488:. Then the two types of 792:stereographic projection 20:. For quadrics over the 5322:Swan (1985), Theorem 1. 4399:{\displaystyle 2^{m-1}} 4354:{\displaystyle 2^{m-1}} 4261:{\displaystyle 2^{m-1}} 4216:{\displaystyle 2^{m-1}} 4130:is the spin group Spin( 4102:is a homogeneous space 3288:{\displaystyle 2^{m}-1} 3175:Projective pure spinors 3075:orthogonal Grassmannian 2958:{\displaystyle h^{m}-l} 2478:is the intersection of 2267:of algebraic cycles on 2256:{\displaystyle p\neq q} 2095:for the group Spin(8).) 1956:A split quadric 4-fold 1841:linear algebraic groups 1823:A split quadric 3-fold 1522:{\displaystyle P\cap Q} 1034:{\displaystyle a\leq N} 797:A quadric over a field 578:of a quadric means the 327:{\displaystyle n\geq 1} 5483:Topology of Lie groups 5227:Cartan, Élie (1981) , 5085: 5045: 4991: 4880: 4758:'s calculation of the 4741: 4635: 4508:exceptional collection 4469: 4400: 4355: 4322: 4262: 4217: 4176: 4032: 4005: 4004:{\displaystyle 2e_{j}} 3971: 3938: 3645: 3542: 3427: 3352: 3289: 3244: 3143: 3071:isotropic Grassmannian 3043: 3006: 2959: 2878: 2720: 2603: 2602:{\displaystyle H^{2j}} 2573: 2572:{\displaystyle CH^{j}} 2515: 2468: 2419: 2373: 2344: 2257: 2231: 2079: 2046: 1987: 1945: 1896: 1829:isotropic Grassmannian 1812: 1775: 1746: 1689: 1652: 1619: 1580: 1523: 1406: 1281: 1130: 1081: 1035: 1009: 978: 932: 892: 768: 725: 673: 467: 449: 328: 278: 226:homogeneous polynomial 210: 134: 100: 36: 5542:Annals of Mathematics 5230:The theory of spinors 5086: 5046: 4992: 4881: 4742: 4636: 4470: 4401: 4356: 4323: 4263: 4218: 4177: 4033: 4031:{\displaystyle e_{j}} 4006: 3972: 3970:{\displaystyle c_{j}} 3939: 3646: 3543: 3428: 3377:-dimensional quadric 3365: + 1,  3353: 3351:{\displaystyle 2^{m}} 3323:. This is called the 3319: + 1) over 3290: 3245: 3180:simple spinor variety 3164: + 1) of ( 3144: 3081: + 1,  3044: 3007: 2960: 2879: 2721: 2604: 2574: 2516: 2469: 2420: 2374: 2345: 2258: 2232: 2145:split reductive group 2080: 2047: 1988: 1960:can be viewed as the 1946: 1910:, the quadric 3-fold 1897: 1813: 1776: 1747: 1690: 1653: 1620: 1592:. A split conic over 1581: 1524: 1407: 1282: 1131: 1082: 1036: 1010: 979: 933: 893: 769: 726: 674: 465: 450: 329: 279: 211: 135: 101: 99:{\displaystyle xy=zw} 34: 5375:, Berlin, New York: 5340:Merkurjev, Alexander 5338:; Karpenko, Nikita; 5059: 5019: 4900: 4769: 4655: 4529: 4429: 4377: 4332: 4292: 4239: 4194: 4190:, each of dimension 4146: 4015: 3985: 3977:of the natural rank- 3954: 3685: 3570: 3452: 3385: 3335: 3295:. The action of SO(2 3266: 3194: 3093: 3065:-planes in a smooth 3016: 2977: 2936: 2755: 2625: 2583: 2553: 2490: 2438: 2400: 2354: 2314: 2241: 2193: 2153:Bruhat decomposition 2060: 2001: 1968: 1926: 1851: 1827:can be viewed as an 1793: 1756: 1712: 1670: 1633: 1600: 1561: 1507: 1309: 1157: 1106: 1057: 1019: 988: 957: 905: 901:in projective space 816: 747: 683: 625: 373: 367:algebraically closed 312: 304:is the union of two 236: 185: 113: 109:in projective space 78: 49:quadric hypersurface 5596:Projective geometry 5447:1988InMat..92..479K 5408:, Springer-Verlag, 5373:Intersection Theory 5014:topological K-group 4498:on a split quadric 4280:are defined as the 3922: for all  3796: 3670:), and also as SO(2 3433:, and also for its 3369: + 2) of 3325:spin representation 3012:of a hyperplane in 1557:A quadric curve in 1270: 881: 851: 833: 486:is not a cone. For 347:algebraic varieties 181:is the subspace of 51:is the subspace of 5591:Algebraic geometry 5455:10.1007/BF01393744 5235:Dover Publications 5081: 5041: 4987: 4876: 4760:Grothendieck group 4737: 4631: 4465: 4396: 4351: 4318: 4258: 4235:− 1, of dimension 4213: 4172: 4116:parabolic subgroup 4098:. In these terms, 4028: 4001: 3967: 3934: 3782: 3666: + 1)/U( 3641: 3538: 3423: 3348: 3311:double cover, the 3285: 3240: 3139: 3039: 3002: 2955: 2874: 2716: 2599: 2569: 2511: 2464: 2415: 2369: 2340: 2273:free abelian group 2253: 2227: 2170:Schubert varieties 2147:, a split quadric 2075: 2042: 1983: 1941: 1892: 1808: 1771: 1742: 1685: 1660:Veronese embedding 1648: 1615: 1576: 1545:. (In particular, 1519: 1402: 1277: 1253: 1126: 1077: 1031: 1005: 974: 928: 888: 861: 837: 819: 764: 737:rational functions 721: 669: 570:. In general, for 468: 445: 324: 274: 206: 153:Euclidean geometry 130: 96: 65:algebraic geometry 37: 18:algebraic geometry 5431:Kapranov, Mikhail 5386:978-0-387-98549-7 5353:978-0-8218-4329-1 5279:978-3-540-57063-9 5266:Chevalley, Claude 5244:978-0-486-64070-9 3923: 3439:compact Lie group 2350:, a linear space 2277:integral homology 1922:is isomorphic to 1708:is isomorphic to 984:is isomorphic to 228:of degree 2 over 5608: 5572: 5533: 5524: 5503: 5477:Mimura, Mamoru; 5473: 5426: 5397: 5364: 5323: 5320: 5314: 5311: 5305: 5302: 5296: 5293: 5284: 5283: 5262: 5256: 5255: 5224: 5218: 5215: 5209: 5206: 5200: 5197: 5191: 5188: 5179: 5176: 5170: 5167: 5161: 5158: 5152: 5149: 5143: 5140: 5134: 5131: 5125: 5122: 5116: 5113: 5107: 5104: 5090: 5088: 5087: 5082: 5071: 5070: 5050: 5048: 5047: 5042: 5031: 5030: 4996: 4994: 4993: 4988: 4929: 4912: 4911: 4885: 4883: 4882: 4877: 4824: 4823: 4811: 4810: 4798: 4781: 4780: 4746: 4744: 4743: 4738: 4667: 4666: 4640: 4638: 4637: 4632: 4579: 4578: 4566: 4565: 4541: 4540: 4496:coherent sheaves 4492:derived category 4488:Mikhail Kapranov 4474: 4472: 4471: 4466: 4464: 4463: 4458: 4449: 4448: 4443: 4405: 4403: 4402: 4397: 4395: 4394: 4360: 4358: 4357: 4352: 4350: 4349: 4327: 4325: 4324: 4319: 4317: 4316: 4304: 4303: 4267: 4265: 4264: 4259: 4257: 4256: 4222: 4220: 4219: 4214: 4212: 4211: 4181: 4179: 4178: 4173: 4171: 4170: 4158: 4157: 4042: >  4037: 4035: 4034: 4029: 4027: 4026: 4010: 4008: 4007: 4002: 4000: 3999: 3976: 3974: 3973: 3968: 3966: 3965: 3943: 3941: 3940: 3935: 3924: 3921: 3913: 3912: 3900: 3899: 3872: 3871: 3856: 3855: 3834: 3833: 3818: 3817: 3795: 3790: 3778: 3770: 3769: 3751: 3750: 3738: 3700: 3699: 3650: 3648: 3647: 3642: 3598: 3547: 3545: 3544: 3539: 3480: 3432: 3430: 3429: 3424: 3419: 3357: 3355: 3354: 3349: 3347: 3346: 3309:simply connected 3294: 3292: 3291: 3286: 3278: 3277: 3254: + 1)- 3249: 3247: 3246: 3241: 3206: 3205: 3148: 3146: 3145: 3140: 3105: 3104: 3048: 3046: 3045: 3040: 3038: 3037: 3026: 3025: 3011: 3009: 3008: 3003: 2989: 2988: 2964: 2962: 2961: 2956: 2948: 2947: 2883: 2881: 2880: 2875: 2867: 2866: 2851: 2850: 2826: 2825: 2807: 2787: 2770: 2769: 2725: 2723: 2722: 2717: 2712: 2711: 2690: 2689: 2677: 2657: 2640: 2639: 2608: 2606: 2605: 2600: 2598: 2597: 2578: 2576: 2575: 2570: 2568: 2567: 2520: 2518: 2517: 2512: 2510: 2509: 2498: 2473: 2471: 2470: 2465: 2448: 2424: 2422: 2421: 2416: 2414: 2413: 2408: 2378: 2376: 2375: 2370: 2368: 2367: 2362: 2349: 2347: 2346: 2341: 2336: 2294:A split quadric 2262: 2260: 2259: 2254: 2236: 2234: 2233: 2228: 2211: 2210: 2084: 2082: 2081: 2076: 2074: 2073: 2068: 2051: 2049: 2048: 2043: 2029: 1992: 1990: 1989: 1984: 1982: 1981: 1976: 1950: 1948: 1947: 1942: 1940: 1939: 1934: 1901: 1899: 1898: 1893: 1879: 1833:symplectic group 1817: 1815: 1814: 1809: 1807: 1806: 1801: 1780: 1778: 1777: 1772: 1770: 1769: 1764: 1751: 1749: 1748: 1743: 1741: 1740: 1735: 1726: 1725: 1720: 1694: 1692: 1691: 1686: 1684: 1683: 1678: 1657: 1655: 1654: 1649: 1647: 1646: 1641: 1624: 1622: 1621: 1616: 1614: 1613: 1608: 1585: 1583: 1582: 1577: 1575: 1574: 1569: 1528: 1526: 1525: 1520: 1411: 1409: 1408: 1403: 1395: 1394: 1376: 1375: 1354: 1353: 1344: 1343: 1331: 1330: 1321: 1320: 1286: 1284: 1283: 1278: 1269: 1264: 1249: 1248: 1230: 1229: 1202: 1201: 1192: 1191: 1179: 1178: 1169: 1168: 1135: 1133: 1132: 1127: 1119: 1086: 1084: 1083: 1078: 1070: 1040: 1038: 1037: 1032: 1014: 1012: 1011: 1006: 1004: 1003: 998: 997: 983: 981: 980: 975: 973: 972: 967: 966: 937: 935: 934: 929: 927: 926: 915: 914: 897: 895: 894: 889: 880: 875: 850: 845: 832: 827: 773: 771: 770: 765: 763: 762: 757: 756: 730: 728: 727: 722: 720: 719: 695: 694: 678: 676: 675: 670: 665: 664: 640: 639: 621:= 0 of the form 454: 452: 451: 446: 444: 443: 434: 420: 419: 389: 388: 383: 382: 333: 331: 330: 325: 292:may be called a 283: 281: 280: 275: 273: 272: 248: 247: 215: 213: 212: 207: 205: 204: 193: 149:orthogonal group 139: 137: 136: 131: 129: 128: 123: 122: 105: 103: 102: 97: 69:projective space 5616: 5615: 5611: 5610: 5609: 5607: 5606: 5605: 5576: 5575: 5554:10.2307/1971371 5536: 5506: 5493: 5476: 5429: 5416: 5400: 5387: 5377:Springer-Verlag 5369:Fulton, William 5367: 5354: 5334: 5331: 5326: 5321: 5317: 5312: 5308: 5303: 5299: 5294: 5287: 5280: 5264: 5263: 5259: 5245: 5226: 5225: 5221: 5216: 5212: 5207: 5203: 5198: 5194: 5189: 5182: 5177: 5173: 5168: 5164: 5159: 5155: 5150: 5146: 5141: 5137: 5132: 5128: 5123: 5119: 5114: 5110: 5105: 5101: 5097: 5062: 5057: 5056: 5022: 5017: 5016: 4903: 4898: 4897: 4815: 4802: 4772: 4767: 4766: 4658: 4653: 4652: 4570: 4557: 4532: 4527: 4526: 4453: 4438: 4427: 4426: 4380: 4375: 4374: 4335: 4330: 4329: 4308: 4295: 4290: 4289: 4242: 4237: 4236: 4197: 4192: 4191: 4162: 4149: 4144: 4143: 4052: 4018: 4013: 4012: 3991: 3983: 3982: 3957: 3952: 3951: 3901: 3891: 3857: 3841: 3819: 3803: 3761: 3742: 3691: 3683: 3682: 3568: 3567: 3450: 3449: 3383: 3382: 3338: 3333: 3332: 3269: 3264: 3263: 3197: 3192: 3191: 3182:, of dimension 3096: 3091: 3090: 3059: 3019: 3014: 3013: 2980: 2975: 2974: 2939: 2934: 2933: 2858: 2842: 2811: 2761: 2753: 2752: 2703: 2681: 2631: 2623: 2622: 2586: 2581: 2580: 2559: 2551: 2550: 2493: 2488: 2487: 2436: 2435: 2403: 2398: 2397: 2357: 2352: 2351: 2312: 2311: 2239: 2238: 2196: 2191: 2190: 2125: 2063: 2058: 2057: 1999: 1998: 1971: 1966: 1965: 1929: 1924: 1923: 1908:symplectic form 1849: 1848: 1796: 1791: 1790: 1783:Segre embedding 1759: 1754: 1753: 1730: 1715: 1710: 1709: 1673: 1668: 1667: 1636: 1631: 1630: 1603: 1598: 1597: 1564: 1559: 1558: 1535: 1505: 1504: 1421:has dimension 2 1377: 1364: 1345: 1335: 1322: 1312: 1307: 1306: 1296:has dimension 2 1231: 1212: 1193: 1183: 1170: 1160: 1155: 1154: 1104: 1103: 1090:Over any field 1055: 1054: 1017: 1016: 991: 986: 985: 960: 955: 954: 951: 908: 903: 902: 814: 813: 750: 745: 744: 705: 686: 681: 680: 650: 631: 623: 622: 605:if and only if 522:having nonzero 480:projective cone 435: 405: 376: 371: 370: 310: 309: 258: 239: 234: 233: 188: 183: 182: 142:complex numbers 116: 111: 110: 76: 75: 29: 12: 11: 5: 5614: 5612: 5604: 5603: 5598: 5593: 5588: 5578: 5577: 5574: 5573: 5548:(1): 113–153, 5534: 5504: 5492:978-0821813423 5491: 5474: 5441:(3): 479–508, 5427: 5414: 5398: 5385: 5365: 5352: 5336:Elman, Richard 5330: 5327: 5325: 5324: 5315: 5306: 5297: 5285: 5278: 5257: 5243: 5219: 5210: 5201: 5192: 5180: 5171: 5162: 5153: 5144: 5135: 5126: 5117: 5108: 5098: 5096: 5093: 5080: 5077: 5074: 5069: 5065: 5040: 5037: 5034: 5029: 5025: 4998: 4997: 4986: 4983: 4980: 4977: 4974: 4971: 4968: 4965: 4962: 4959: 4956: 4953: 4950: 4947: 4944: 4941: 4938: 4935: 4932: 4928: 4924: 4921: 4918: 4915: 4910: 4906: 4887: 4886: 4875: 4872: 4869: 4866: 4863: 4860: 4857: 4854: 4851: 4848: 4845: 4842: 4839: 4836: 4833: 4830: 4827: 4822: 4818: 4814: 4809: 4805: 4801: 4797: 4793: 4790: 4787: 4784: 4779: 4775: 4748: 4747: 4736: 4733: 4730: 4727: 4724: 4721: 4718: 4715: 4712: 4709: 4706: 4703: 4700: 4697: 4694: 4691: 4688: 4685: 4682: 4679: 4676: 4673: 4670: 4665: 4661: 4642: 4641: 4630: 4627: 4624: 4621: 4618: 4615: 4612: 4609: 4606: 4603: 4600: 4597: 4594: 4591: 4588: 4585: 4582: 4577: 4573: 4569: 4564: 4560: 4556: 4553: 4550: 4547: 4544: 4539: 4535: 4462: 4457: 4452: 4447: 4442: 4437: 4434: 4393: 4390: 4387: 4383: 4348: 4345: 4342: 4338: 4315: 4311: 4307: 4302: 4298: 4255: 4252: 4249: 4245: 4210: 4207: 4204: 4200: 4169: 4165: 4161: 4156: 4152: 4060:vector bundles 4056:spinor bundles 4051: 4048: 4025: 4021: 3998: 3994: 3990: 3964: 3960: 3945: 3944: 3933: 3930: 3927: 3919: 3916: 3911: 3908: 3904: 3898: 3894: 3890: 3887: 3884: 3881: 3878: 3875: 3870: 3867: 3864: 3860: 3854: 3851: 3848: 3844: 3840: 3837: 3832: 3829: 3826: 3822: 3816: 3813: 3810: 3806: 3802: 3799: 3794: 3789: 3785: 3781: 3777: 3773: 3768: 3764: 3760: 3757: 3754: 3749: 3745: 3741: 3737: 3733: 3730: 3727: 3724: 3721: 3718: 3715: 3712: 3709: 3706: 3703: 3698: 3694: 3690: 3652: 3651: 3640: 3637: 3634: 3631: 3628: 3625: 3622: 3619: 3616: 3613: 3610: 3607: 3604: 3601: 3597: 3593: 3590: 3587: 3584: 3581: 3578: 3575: 3549: 3548: 3537: 3534: 3531: 3528: 3525: 3522: 3519: 3516: 3513: 3510: 3507: 3504: 3501: 3498: 3495: 3492: 3489: 3486: 3483: 3479: 3475: 3472: 3469: 3466: 3463: 3460: 3457: 3422: 3418: 3414: 3411: 3408: 3405: 3402: 3399: 3396: 3393: 3390: 3373:-planes in an 3345: 3341: 3284: 3281: 3276: 3272: 3239: 3236: 3233: 3230: 3227: 3224: 3221: 3218: 3215: 3212: 3209: 3204: 3200: 3138: 3135: 3132: 3129: 3126: 3123: 3120: 3117: 3114: 3111: 3108: 3103: 3099: 3058: 3055: 3036: 3033: 3030: 3024: 3001: 2998: 2995: 2992: 2987: 2983: 2954: 2951: 2946: 2942: 2928: = 2 2910: 2909: 2904:odd and 1 for 2892:| =  2873: 2870: 2865: 2861: 2857: 2854: 2849: 2845: 2841: 2838: 2835: 2832: 2829: 2824: 2821: 2818: 2814: 2810: 2806: 2802: 2799: 2796: 2793: 2790: 2786: 2782: 2779: 2776: 2773: 2768: 2764: 2760: 2740: 2739: 2734:| =  2715: 2710: 2706: 2702: 2699: 2696: 2693: 2688: 2684: 2680: 2676: 2672: 2669: 2666: 2663: 2660: 2656: 2652: 2649: 2646: 2643: 2638: 2634: 2630: 2596: 2593: 2589: 2566: 2562: 2558: 2535: 2534: 2521:; so it is an 2508: 2505: 2502: 2497: 2463: 2460: 2457: 2454: 2451: 2447: 2443: 2431: 2430: 2412: 2407: 2385: 2384: 2366: 2361: 2339: 2335: 2331: 2328: 2325: 2322: 2319: 2252: 2249: 2246: 2226: 2223: 2220: 2217: 2214: 2209: 2206: 2203: 2199: 2165:Schubert cells 2124: 2121: 2097: 2096: 2087: 2086: 2072: 2067: 2041: 2038: 2035: 2032: 2028: 2024: 2021: 2018: 2015: 2012: 2009: 2006: 1980: 1975: 1953: 1952: 1938: 1933: 1891: 1888: 1885: 1882: 1878: 1874: 1871: 1868: 1865: 1862: 1859: 1856: 1820: 1819: 1805: 1800: 1768: 1763: 1752:, embedded in 1739: 1734: 1729: 1724: 1719: 1701: 1700: 1682: 1677: 1645: 1640: 1629:, embedded in 1612: 1607: 1573: 1568: 1534: 1531: 1518: 1515: 1512: 1472:of dimension 2 1440:is split over 1415: 1414: 1413: 1412: 1401: 1398: 1393: 1390: 1387: 1384: 1380: 1374: 1371: 1367: 1363: 1360: 1357: 1352: 1348: 1342: 1338: 1334: 1329: 1325: 1319: 1315: 1290: 1289: 1288: 1287: 1276: 1273: 1268: 1263: 1260: 1256: 1252: 1247: 1244: 1241: 1238: 1234: 1228: 1225: 1222: 1219: 1215: 1211: 1208: 1205: 1200: 1196: 1190: 1186: 1182: 1177: 1173: 1167: 1163: 1125: 1122: 1118: 1114: 1111: 1076: 1073: 1069: 1065: 1062: 1030: 1027: 1024: 1002: 996: 971: 965: 950: 947: 925: 922: 919: 913: 899: 898: 887: 884: 879: 874: 871: 868: 864: 860: 857: 854: 849: 844: 840: 836: 831: 826: 822: 761: 755: 718: 715: 712: 708: 704: 701: 698: 693: 689: 668: 663: 660: 657: 653: 649: 646: 643: 638: 634: 630: 615:rational point 516:Hessian matrix 492:characteristic 442: 438: 433: 429: 426: 423: 418: 415: 412: 408: 404: 401: 398: 395: 392: 387: 381: 323: 320: 317: 294:quadratic form 271: 268: 265: 261: 257: 254: 251: 246: 242: 203: 200: 197: 192: 164:Fano varieties 127: 121: 107: 106: 95: 92: 89: 86: 83: 13: 10: 9: 6: 4: 3: 2: 5613: 5602: 5599: 5597: 5594: 5592: 5589: 5587: 5584: 5583: 5581: 5571: 5567: 5563: 5559: 5555: 5551: 5547: 5543: 5539: 5538:Swan, Richard 5535: 5532: 5528: 5523: 5518: 5514: 5510: 5505: 5502: 5498: 5494: 5488: 5484: 5480: 5475: 5472: 5468: 5464: 5460: 5456: 5452: 5448: 5444: 5440: 5436: 5432: 5428: 5425: 5421: 5417: 5415:0-387-97716-3 5411: 5407: 5403: 5399: 5396: 5392: 5388: 5382: 5378: 5374: 5370: 5366: 5363: 5359: 5355: 5349: 5345: 5341: 5337: 5333: 5332: 5328: 5319: 5316: 5310: 5307: 5301: 5298: 5292: 5290: 5286: 5281: 5275: 5271: 5267: 5261: 5258: 5254: 5250: 5246: 5240: 5236: 5232: 5231: 5223: 5220: 5214: 5211: 5205: 5202: 5196: 5193: 5187: 5185: 5181: 5175: 5172: 5166: 5163: 5157: 5154: 5148: 5145: 5139: 5136: 5130: 5127: 5121: 5118: 5112: 5109: 5103: 5100: 5094: 5092: 5075: 5067: 5063: 5054: 5035: 5027: 5023: 5015: 5011: 5007: 5003: 4978: 4975: 4972: 4966: 4963: 4960: 4957: 4951: 4945: 4942: 4939: 4936: 4933: 4922: 4916: 4908: 4904: 4896: 4895: 4894: 4892: 4867: 4864: 4861: 4855: 4852: 4849: 4846: 4840: 4834: 4831: 4828: 4825: 4820: 4816: 4812: 4807: 4803: 4791: 4785: 4777: 4773: 4765: 4764: 4763: 4761: 4757: 4753: 4728: 4725: 4722: 4716: 4713: 4710: 4707: 4701: 4695: 4692: 4689: 4686: 4683: 4677: 4671: 4663: 4659: 4651: 4650: 4649: 4648:is even, and 4647: 4622: 4619: 4616: 4610: 4607: 4604: 4601: 4595: 4589: 4586: 4583: 4580: 4575: 4571: 4567: 4562: 4558: 4551: 4545: 4537: 4533: 4525: 4524: 4523: 4521: 4519: 4515: 4512:line bundles 4509: 4505: 4502:over a field 4501: 4497: 4493: 4489: 4484: 4482: 4478: 4460: 4450: 4445: 4435: 4432: 4423: 4421: 4417: 4413: 4409: 4391: 4388: 4385: 4381: 4372: 4368: 4364: 4346: 4343: 4340: 4336: 4313: 4309: 4305: 4300: 4296: 4287: 4283: 4279: 4275: 4271: 4253: 4250: 4247: 4243: 4234: 4230: 4226: 4208: 4205: 4202: 4198: 4189: 4185: 4167: 4163: 4159: 4154: 4150: 4141: 4137: 4133: 4129: 4125: 4121: 4117: 4114:is a maximal 4113: 4109: 4105: 4101: 4097: 4093: 4089: 4085: 4081: 4077: 4073: 4070:over a field 4069: 4065: 4061: 4057: 4049: 4047: 4045: 4041: 4023: 4019: 3996: 3992: 3988: 3980: 3962: 3958: 3950: 3949:Chern classes 3931: 3925: 3917: 3914: 3909: 3906: 3902: 3896: 3888: 3885: 3879: 3876: 3873: 3868: 3865: 3862: 3858: 3852: 3849: 3846: 3842: 3838: 3835: 3830: 3827: 3824: 3820: 3814: 3811: 3808: 3804: 3800: 3797: 3792: 3787: 3783: 3775: 3766: 3762: 3758: 3755: 3752: 3747: 3743: 3731: 3725: 3722: 3719: 3716: 3713: 3710: 3704: 3701: 3696: 3692: 3688: 3681: 3680: 3679: 3677: 3673: 3669: 3665: 3661: 3657: 3638: 3629: 3623: 3620: 3617: 3611: 3605: 3595: 3588: 3585: 3582: 3576: 3573: 3566: 3565: 3564: 3562: 3558: 3557:unitary group 3554: 3535: 3526: 3523: 3520: 3517: 3511: 3508: 3505: 3499: 3496: 3493: 3487: 3477: 3470: 3467: 3464: 3458: 3455: 3448: 3447: 3446: 3444: 3440: 3436: 3412: 3409: 3406: 3403: 3397: 3394: 3391: 3388: 3380: 3376: 3372: 3368: 3364: 3359: 3343: 3339: 3330: 3326: 3322: 3318: 3314: 3310: 3306: 3302: 3298: 3282: 3279: 3274: 3270: 3261: 3257: 3253: 3234: 3231: 3228: 3225: 3222: 3219: 3216: 3213: 3207: 3202: 3198: 3189: 3185: 3181: 3177: 3176: 3171: 3167: 3163: 3159: 3155: 3150: 3133: 3130: 3127: 3124: 3121: 3118: 3115: 3112: 3106: 3101: 3097: 3089:, one writes 3088: 3084: 3080: 3076: 3072: 3068: 3064: 3061:The space of 3056: 3054: 3052: 3034: 3031: 3028: 2996: 2990: 2985: 2981: 2972: 2968: 2952: 2949: 2944: 2940: 2931: 2927: 2923: 2919: 2915: 2907: 2903: 2899: 2895: 2891: 2887: 2868: 2863: 2859: 2855: 2852: 2847: 2843: 2839: 2836: 2833: 2830: 2827: 2822: 2819: 2816: 2812: 2804: 2797: 2794: 2791: 2780: 2774: 2766: 2762: 2758: 2750: 2746: 2742: 2741: 2737: 2733: 2729: 2708: 2704: 2700: 2697: 2694: 2691: 2686: 2682: 2674: 2667: 2664: 2661: 2650: 2644: 2636: 2632: 2628: 2620: 2616: 2612: 2611: 2610: 2594: 2591: 2587: 2564: 2560: 2556: 2548: 2544: 2540: 2532: 2528: 2524: 2506: 2503: 2500: 2485: 2481: 2477: 2461: 2458: 2455: 2452: 2449: 2445: 2441: 2433: 2432: 2428: 2425:contained in 2410: 2395: 2391: 2387: 2386: 2382: 2379:contained in 2364: 2337: 2333: 2329: 2326: 2323: 2320: 2317: 2309: 2308: 2307: 2305: 2301: 2298:of dimension 2297: 2292: 2290: 2286: 2282: 2278: 2274: 2270: 2266: 2250: 2247: 2244: 2224: 2221: 2215: 2207: 2204: 2201: 2197: 2188: 2184: 2180: 2176: 2172: 2171: 2166: 2162: 2158: 2154: 2150: 2146: 2142: 2138: 2134: 2130: 2122: 2120: 2118: 2114: 2110: 2106: 2102: 2094: 2089: 2088: 2070: 2055: 2036: 2033: 2026: 2019: 2016: 2013: 2007: 2004: 1996: 1978: 1963: 1959: 1955: 1954: 1936: 1921: 1917: 1913: 1909: 1905: 1886: 1883: 1876: 1869: 1866: 1863: 1857: 1854: 1846: 1843:between SO(5, 1842: 1838: 1834: 1830: 1826: 1822: 1821: 1803: 1788: 1784: 1766: 1737: 1727: 1722: 1707: 1703: 1702: 1698: 1680: 1665: 1661: 1643: 1628: 1610: 1595: 1591: 1590: 1571: 1556: 1555: 1554: 1552: 1548: 1544: 1540: 1532: 1530: 1516: 1513: 1510: 1503: 1499: 1496:contained in 1495: 1491: 1487: 1484:contained in 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1426: 1424: 1420: 1399: 1396: 1391: 1388: 1385: 1382: 1378: 1372: 1369: 1365: 1361: 1358: 1355: 1350: 1346: 1340: 1336: 1332: 1327: 1323: 1317: 1313: 1305: 1304: 1303: 1302: 1301: 1299: 1295: 1274: 1271: 1266: 1261: 1258: 1254: 1250: 1245: 1242: 1239: 1236: 1232: 1226: 1223: 1220: 1217: 1213: 1209: 1206: 1203: 1198: 1194: 1188: 1184: 1180: 1175: 1171: 1165: 1161: 1153: 1152: 1151: 1150: 1149: 1147: 1144:over a field 1143: 1139: 1120: 1116: 1112: 1101: 1097: 1093: 1088: 1071: 1067: 1063: 1052: 1048: 1044: 1028: 1025: 1022: 1000: 969: 948: 946: 944: 941: 923: 920: 917: 885: 882: 877: 872: 869: 866: 862: 858: 855: 852: 847: 842: 838: 834: 829: 824: 820: 812: 811: 810: 808: 804: 800: 795: 793: 789: 785: 781: 777: 759: 742: 738: 734: 716: 713: 710: 706: 702: 699: 696: 691: 687: 661: 658: 655: 651: 647: 644: 641: 636: 632: 620: 616: 612: 608: 604: 600: 596: 591: 589: 585: 581: 577: 573: 569: 568:nondegenerate 565: 561: 557: 553: 549: 545: 541: 537: 533: 529: 525: 521: 517: 513: 509: 505: 501: 497: 493: 489: 485: 481: 477: 473: 464: 460: 458: 440: 436: 431: 424: 421: 416: 413: 410: 406: 399: 393: 385: 368: 364: 360: 356: 352: 349:over a field 348: 343: 341: 337: 321: 318: 315: 307: 303: 299: 295: 291: 287: 269: 266: 263: 259: 255: 252: 249: 244: 240: 232:in variables 231: 227: 224:is a nonzero 223: 219: 201: 198: 195: 180: 177:over a field 176: 173:of dimension 172: 167: 165: 161: 156: 154: 150: 146: 143: 125: 93: 90: 87: 84: 81: 74: 73: 72: 70: 66: 62: 58: 54: 50: 46: 42: 33: 27: 23: 19: 5545: 5541: 5512: 5508: 5482: 5479:Toda, Hirosi 5438: 5434: 5405: 5372: 5343: 5318: 5309: 5300: 5269: 5260: 5233:, New York: 5229: 5222: 5213: 5204: 5195: 5174: 5165: 5156: 5147: 5138: 5129: 5120: 5111: 5102: 5052: 5009: 5005: 5001: 4999: 4890: 4888: 4756:Richard Swan 4751: 4749: 4645: 4643: 4517: 4513: 4503: 4499: 4485: 4480: 4476: 4424: 4419: 4415: 4411: 4407: 4370: 4366: 4362: 4285: 4281: 4277: 4273: 4269: 4232: 4228: 4224: 4187: 4183: 4139: 4135: 4131: 4127: 4119: 4111: 4107: 4103: 4099: 4095: 4091: 4087: 4083: 4079: 4075: 4071: 4067: 4063: 4055: 4053: 4043: 4039: 3978: 3946: 3675: 3671: 3667: 3663: 3659: 3655: 3653: 3560: 3552: 3550: 3442: 3378: 3374: 3370: 3366: 3362: 3360: 3328: 3320: 3316: 3304: 3300: 3296: 3259: 3251: 3187: 3183: 3179: 3173: 3169: 3165: 3161: 3157: 3153: 3151: 3086: 3082: 3078: 3074: 3070: 3066: 3062: 3060: 3050: 2970: 2966: 2929: 2925: 2921: 2917: 2913: 2911: 2905: 2901: 2897: 2893: 2889: 2885: 2748: 2744: 2735: 2731: 2727: 2618: 2614: 2542: 2536: 2530: 2526: 2522: 2483: 2479: 2475: 2426: 2393: 2389: 2380: 2303: 2299: 2295: 2293: 2288: 2284: 2280: 2268: 2187:Hodge theory 2182: 2178: 2168: 2164: 2160: 2156: 2148: 2140: 2128: 2126: 2112: 2108: 2104: 2100: 2098: 2053: 1994: 1962:Grassmannian 1957: 1919: 1915: 1911: 1903: 1844: 1836: 1824: 1786: 1705: 1696: 1663: 1626: 1593: 1587: 1586:is called a 1550: 1546: 1542: 1538: 1536: 1502:intersection 1497: 1493: 1489: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1445: 1441: 1437: 1433: 1429: 1427: 1422: 1418: 1416: 1297: 1293: 1291: 1145: 1141: 1137: 1099: 1095: 1091: 1089: 1050: 1046: 1042: 952: 942: 940:real numbers 900: 806: 805:if it has a 802: 798: 796: 787: 783: 779: 775: 740: 732: 618: 610: 606: 602: 594: 592: 587: 583: 575: 571: 563: 559: 555: 551: 547: 543: 539: 535: 531: 527: 519: 511: 507: 499: 495: 487: 483: 475: 471: 469: 456: 362: 358: 350: 344: 335: 301: 297: 289: 285: 229: 221: 217: 178: 174: 170: 168: 157: 144: 108: 52: 48: 44: 38: 22:real numbers 5515:: 301–316, 5402:Harris, Joe 4506:has a full 3555:+1) is the 3256:equivariant 3156:= OGr( 2888:| = 1 and | 2730:| = 1 and | 2177:, and (for 1658:by the 2nd 524:determinant 340:irreducible 306:hyperplanes 220:= 0, where 216:defined by 41:mathematics 5580:Categories 5329:References 5004:odd. When 4893:even, and 4124:semisimple 3947:where the 3313:spin group 2547:cohomology 2265:Chow group 2117:reflection 1476:, fix one 1098:is called 801:is called 57:polynomial 5471:119584668 5268:(1996) . 5091:is zero. 4976:− 4961:… 4865:− 4850:… 4821:− 4735:⟩ 4726:− 4711:… 4681:⟨ 4629:⟩ 4620:− 4605:… 4576:− 4555:⟨ 4451:× 4436:≅ 4414:− 1. For 4389:− 4344:− 4314:− 4251:− 4206:− 4168:− 4094:+2) over 4078:+2) over 3886:− 3877:⋯ 3874:− 3850:− 3812:− 3798:− 3756:… 3732:≅ 3705:⁡ 3697:∗ 3624:⁡ 3618:× 3606:⁡ 3577:⁡ 3521:− 3512:⁡ 3506:× 3488:⁡ 3459:⁡ 3398:⁡ 3327:of Spin(2 3303:+1) over 3280:− 3208:⁡ 3107:⁡ 2950:− 2900:is 0 for 2884:, where | 2853:− 2828:− 2781:≅ 2767:∗ 2726:, where | 2692:− 2651:≅ 2637:∗ 2539:Chow ring 2459:≤ 2321:≤ 2248:≠ 2115:− 1. Any 2034:± 2008:⁡ 1884:± 1858:⁡ 1728:× 1514:∩ 1450:connected 1359:⋯ 1243:− 1224:− 1207:⋯ 1124:⌋ 1110:⌊ 1075:⌋ 1061:⌊ 1026:≤ 1015:for some 938:over the 856:⋯ 803:isotropic 700:… 645:… 441:∗ 422:− 319:≥ 288:, and so 253:… 140:over the 5586:Quadrics 5481:(1992), 5404:(1995), 5371:(1998), 5342:(2008), 4373:of rank 4328:of rank 4126:part of 4110:, where 4082:acts on 3658:, 2 3551:where U( 2175:rational 2093:triality 1831:for the 1492:-planes 1300:− 1, or 786:has one 743:between 599:rational 566:) being 5570:0799254 5562:1971371 5531:0936818 5501:1122592 5463:0939472 5443:Bibcode 5424:1416564 5395:1644323 5362:2427530 5253:0631850 4090:= Spin( 4011:. Here 2924:. (For 2486:+ 1 in 2271:is the 1906:with a 1781:by the 1480:-plane 510:. When 494:not 2, 478:is the 361:. When 355:schemes 45:quadric 26:quadric 5568:  5560:  5529:  5499:  5489:  5469:  5461:  5422:  5412:  5393:  5383:  5360:  5350:  5276:  5251:  5241:  5012:, the 4122:. The 3674:+2)/U( 3559:. For 3437:, the 3315:Spin(2 2896:, and 2185:) the 1997:) and 1847:) and 609:has a 504:smooth 296:.) If 24:, see 5558:JSTOR 5467:S2CID 5095:Notes 3178:, or 2912:Here 2908:even. 2621:− 1, 2131:is a 1835:Sp(4, 1695:over 1625:over 1589:conic 1464:when 1136:over 1100:split 1049:over 739:over 679:with 601:over 590:− 2. 506:over 357:over 345:Here 61:field 5487:ISBN 5410:ISBN 5381:ISBN 5348:ISBN 5274:ISBN 5239:ISBN 5000:for 4889:for 4406:for 4361:for 4227:for 4182:for 4054:The 3077:OGr( 2743:For 2613:For 2453:< 2434:For 2388:For 2327:< 2310:For 2283:(if 2237:for 1537:Let 580:rank 576:rank 558:) – 550:) – 538:) = 334:and 286:form 43:, a 5550:doi 5546:122 5517:doi 5513:307 5451:doi 4750:if 4644:if 4494:of 4410:= 2 4365:= 2 4231:= 2 4186:= 2 4118:of 3702:OGr 3441:SO( 3199:OGr 3098:OGr 3073:or 2747:= 2 2617:= 2 2291:). 2279:of 1452:if 1448:is 1417:if 1292:if 731:in 597:is 518:of 502:is 490:of 470:If 365:is 338:is 47:or 39:In 5582:: 5566:MR 5564:, 5556:, 5544:, 5527:MR 5525:, 5511:, 5497:MR 5495:, 5465:, 5459:MR 5457:, 5449:, 5439:92 5437:, 5420:MR 5418:, 5391:MR 5389:, 5379:, 5358:MR 5356:, 5288:^ 5249:MR 5247:, 5237:, 5183:^ 5008:= 4422:. 4272:= 4046:. 3621:SO 3574:SO 3509:SO 3456:SO 3395:SO 3358:. 3160:,2 3053:. 2751:, 2529:− 2392:= 2287:= 2181:= 2005:SL 1855:Sp 1699:.) 1087:. 945:. 459:. 166:. 155:. 5552:: 5519:: 5453:: 5445:: 5282:. 5079:) 5076:X 5073:( 5068:1 5064:K 5053:X 5039:) 5036:X 5033:( 5028:0 5024:K 5010:C 5006:k 5002:n 4985:} 4982:) 4979:1 4973:n 4970:( 4967:O 4964:, 4958:, 4955:) 4952:1 4949:( 4946:O 4943:, 4940:O 4937:, 4934:S 4931:{ 4927:Z 4923:= 4920:) 4917:X 4914:( 4909:0 4905:K 4891:n 4874:} 4871:) 4868:1 4862:n 4859:( 4856:O 4853:, 4847:, 4844:) 4841:1 4838:( 4835:O 4832:, 4829:O 4826:, 4817:S 4813:, 4808:+ 4804:S 4800:{ 4796:Z 4792:= 4789:) 4786:X 4783:( 4778:0 4774:K 4752:n 4732:) 4729:1 4723:n 4720:( 4717:O 4714:, 4708:, 4705:) 4702:1 4699:( 4696:O 4693:, 4690:O 4687:, 4684:S 4678:= 4675:) 4672:X 4669:( 4664:b 4660:D 4646:n 4626:) 4623:1 4617:n 4614:( 4611:O 4608:, 4602:, 4599:) 4596:1 4593:( 4590:O 4587:, 4584:O 4581:, 4572:S 4568:, 4563:+ 4559:S 4552:= 4549:) 4546:X 4543:( 4538:b 4534:D 4520:) 4518:j 4516:( 4514:O 4504:k 4500:X 4481:X 4477:X 4461:1 4456:P 4446:1 4441:P 4433:X 4420:X 4416:n 4412:m 4408:n 4392:1 4386:m 4382:2 4371:S 4367:m 4363:n 4347:1 4341:m 4337:2 4310:S 4306:, 4301:+ 4297:S 4286:P 4282:G 4278:P 4276:/ 4274:G 4270:X 4254:1 4248:m 4244:2 4233:m 4229:n 4225:V 4209:1 4203:m 4199:2 4188:m 4184:n 4164:V 4160:, 4155:+ 4151:V 4140:P 4136:n 4132:n 4128:P 4120:G 4112:P 4108:P 4106:/ 4104:G 4100:X 4096:k 4092:n 4088:G 4084:X 4080:k 4076:n 4072:k 4068:n 4064:X 4044:m 4040:j 4024:j 4020:e 3997:j 3993:e 3989:2 3979:m 3963:j 3959:c 3932:, 3929:) 3926:j 3918:0 3915:= 3910:j 3907:2 3903:e 3897:j 3893:) 3889:1 3883:( 3880:+ 3869:2 3866:+ 3863:j 3859:e 3853:2 3847:j 3843:e 3839:2 3836:+ 3831:1 3828:+ 3825:j 3821:e 3815:1 3809:j 3805:e 3801:2 3793:2 3788:j 3784:e 3780:( 3776:/ 3772:] 3767:m 3763:e 3759:, 3753:, 3748:1 3744:e 3740:[ 3736:Z 3729:) 3726:1 3723:+ 3720:m 3717:2 3714:, 3711:m 3708:( 3693:H 3689:C 3676:m 3672:m 3668:m 3664:m 3660:m 3656:m 3639:. 3636:) 3633:) 3630:n 3627:( 3615:) 3612:1 3609:( 3603:U 3600:( 3596:/ 3592:) 3589:2 3586:+ 3583:n 3580:( 3561:r 3553:r 3536:, 3533:) 3530:) 3527:r 3524:2 3518:n 3515:( 3503:) 3500:1 3497:+ 3494:r 3491:( 3485:U 3482:( 3478:/ 3474:) 3471:2 3468:+ 3465:n 3462:( 3443:n 3421:) 3417:C 3413:, 3410:2 3407:+ 3404:n 3401:( 3392:= 3389:G 3379:X 3375:n 3371:r 3367:n 3363:r 3344:m 3340:2 3329:m 3321:k 3317:m 3305:k 3301:m 3297:m 3283:1 3275:m 3271:2 3260:W 3252:m 3238:) 3235:2 3232:+ 3229:m 3226:2 3223:, 3220:1 3217:+ 3214:m 3211:( 3203:+ 3188:m 3186:( 3184:m 3170:m 3166:m 3162:m 3158:m 3154:W 3137:) 3134:2 3131:+ 3128:m 3125:2 3122:, 3119:1 3116:+ 3113:m 3110:( 3102:+ 3087:m 3083:n 3079:r 3067:n 3063:r 3051:X 3035:1 3032:+ 3029:n 3023:P 3000:) 2997:1 2994:( 2991:O 2986:1 2982:c 2971:h 2967:X 2953:l 2945:m 2941:h 2930:m 2926:n 2922:X 2918:l 2914:h 2906:m 2902:m 2898:a 2894:m 2890:l 2886:h 2872:) 2869:l 2864:m 2860:h 2856:a 2848:2 2844:l 2840:, 2837:l 2834:h 2831:2 2823:1 2820:+ 2817:m 2813:h 2809:( 2805:/ 2801:] 2798:l 2795:, 2792:h 2789:[ 2785:Z 2778:) 2775:X 2772:( 2763:H 2759:C 2749:m 2745:n 2738:. 2736:m 2732:l 2728:h 2714:) 2709:2 2705:l 2701:, 2698:l 2695:2 2687:m 2683:h 2679:( 2675:/ 2671:] 2668:l 2665:, 2662:h 2659:[ 2655:Z 2648:) 2645:X 2642:( 2633:H 2629:C 2619:m 2615:n 2595:j 2592:2 2588:H 2565:j 2561:H 2557:C 2543:n 2533:. 2531:n 2527:r 2523:r 2507:1 2504:+ 2501:n 2496:P 2484:r 2480:X 2476:r 2462:n 2456:r 2450:2 2446:/ 2442:n 2427:X 2411:r 2406:P 2394:n 2390:r 2383:. 2381:X 2365:r 2360:P 2338:2 2334:/ 2330:n 2324:r 2318:0 2304:r 2300:n 2296:X 2289:C 2285:k 2281:X 2269:X 2251:q 2245:p 2225:0 2222:= 2219:) 2216:X 2213:( 2208:q 2205:, 2202:p 2198:h 2183:C 2179:k 2161:k 2157:X 2149:X 2141:k 2129:k 2113:m 2109:m 2105:m 2101:m 2085:. 2071:3 2066:P 2054:X 2040:} 2037:1 2031:{ 2027:/ 2023:) 2020:k 2017:, 2014:4 2011:( 1995:k 1979:3 1974:P 1958:X 1951:. 1937:3 1932:P 1920:X 1916:V 1912:X 1904:V 1890:} 1887:1 1881:{ 1877:/ 1873:) 1870:k 1867:, 1864:4 1861:( 1845:k 1837:k 1825:X 1818:. 1804:1 1799:P 1787:X 1767:3 1762:P 1738:1 1733:P 1723:1 1718:P 1706:X 1697:R 1681:1 1676:P 1664:R 1644:2 1639:P 1627:k 1611:1 1606:P 1594:k 1572:2 1567:P 1551:X 1547:X 1543:k 1539:X 1517:Q 1511:P 1498:X 1494:P 1490:m 1486:X 1482:Q 1478:m 1474:m 1470:X 1466:X 1462:X 1458:X 1454:X 1446:Y 1442:k 1438:X 1434:X 1430:Y 1423:m 1419:X 1400:0 1397:= 1392:1 1389:+ 1386:m 1383:2 1379:x 1373:m 1370:2 1366:x 1362:+ 1356:+ 1351:3 1347:x 1341:2 1337:x 1333:+ 1328:1 1324:x 1318:0 1314:x 1298:m 1294:X 1275:0 1272:= 1267:2 1262:m 1259:2 1255:x 1251:+ 1246:1 1240:m 1237:2 1233:x 1227:2 1221:m 1218:2 1214:x 1210:+ 1204:+ 1199:3 1195:x 1189:2 1185:x 1181:+ 1176:1 1172:x 1166:0 1162:x 1146:k 1142:X 1138:k 1121:2 1117:/ 1113:n 1096:n 1092:k 1072:2 1068:/ 1064:n 1051:k 1047:n 1043:k 1029:N 1023:a 1001:a 995:P 970:N 964:P 943:R 924:1 921:+ 918:n 912:P 886:0 883:= 878:2 873:1 870:+ 867:n 863:x 859:+ 853:+ 848:2 843:1 839:x 835:+ 830:2 825:0 821:x 807:k 799:k 788:k 784:X 780:k 776:X 760:n 754:P 741:k 733:k 717:1 714:+ 711:n 707:a 703:, 697:, 692:0 688:a 667:) 662:1 659:+ 656:n 652:a 648:, 642:, 637:0 633:a 629:( 619:q 613:- 611:k 607:X 603:k 595:k 588:r 584:r 572:k 564:y 562:( 560:q 556:x 554:( 552:q 548:y 546:+ 544:x 542:( 540:q 536:y 534:, 532:x 530:( 528:b 520:q 512:k 508:k 500:X 496:X 488:k 484:X 476:X 472:q 457:k 437:k 432:/ 428:) 425:0 417:1 414:+ 411:N 407:k 403:( 400:= 397:) 394:k 391:( 386:N 380:P 363:k 359:k 351:k 336:q 322:1 316:n 302:X 298:q 290:q 270:1 267:+ 264:n 260:x 256:, 250:, 245:0 241:x 230:k 222:q 218:q 202:1 199:+ 196:n 191:P 179:k 175:n 171:X 145:C 126:3 120:P 94:w 91:z 88:= 85:y 82:x 53:N 28:.

Index

algebraic geometry
real numbers
quadric

mathematics
polynomial
field
algebraic geometry
projective space
complex numbers
orthogonal group
Euclidean geometry
projective homogeneous varieties
Fano varieties
homogeneous polynomial
quadratic form
hyperplanes
irreducible
algebraic varieties
schemes
algebraically closed

projective cone
characteristic
smooth
Hessian matrix
determinant
nondegenerate
rank
rational

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.