Knowledge

Quasidihedral group

Source 📝

39: 28: 47: 433: 259: 504: 653:. The modular maximal-cyclic group of order 2 always has nilpotency class 2. This makes the modular maximal-cyclic group less interesting, since most groups of order 621: 582: 543: 304: 128:, this group is called the "semidihedral group". Dummit and Foote refer to it as the "quasidihedral group"; we adopt that name in this article. All give the same 669: 312: 138: 38: 822: 780: 265:
The other non-abelian 2-group with cyclic subgroup of index 2 is not given a special name in either text, but referred to as just
27: 101: 626:
The generalized quaternion group, the dihedral group, and the quasidihedral group of order 2 all have nilpotency class
46: 461: 108:. One of the remaining two groups is often considered particularly important, since it is an example of a 2-group of 275:(2). When this group has order 16, Dummit and Foote refer to this group as the "modular group of order 16", as its 451:> of order 2. Such a non-abelian semidirect product is uniquely determined by an element of order 2 in the 849: 71: 97: 86: 664:
The generalized quaternion, the dihedral, and the quasidihedral group are the only 2-groups whose
456: 440: 129: 623:, corresponding to the dihedral group, the quasidihedral, and the modular maximal-cyclic group. 587: 548: 509: 818: 810: 776: 121: 82: 67: 665: 832: 802: 282: 828: 798: 790: 113: 452: 279:. In this article this group will be called the modular maximal-cyclic group of order 105: 843: 733: 630:− 1, and are the only isomorphism classes of groups of order 2 with nilpotency class 276: 109: 677: 673: 428:{\displaystyle \langle r,s\mid r^{2^{n-1}}=s^{2}=1,\ srs=r^{2^{n-2}+1}\rangle \,\!} 254:{\displaystyle \langle r,s\mid r^{2^{n-1}}=s^{2}=1,\ srs=r^{2^{n-2}-1}\rangle \,\!} 90: 31: 55: 17: 661:
have nilpotency class 2 and have proven difficult to understand directly.
93: 650: 643: 75: 45: 37: 26: 688:
The Sylow 2-subgroups of the following groups are quasidihedral:
42:
Cayley graph of the modular maximal-cyclic group of order 16
590: 551: 512: 464: 315: 285: 141: 642:− 1 were the beginning of the classification of all 81:greater than or equal to 4, there are exactly four 615: 576: 537: 498: 427: 298: 253: 120:, this group is called a "Quasidiedergruppe". In 439:Both these two groups and the dihedral group are 424: 250: 499:{\displaystyle \mathbb {Z} /2^{n-1}\mathbb {Z} } 50:Cayley graph of the dihedral group of order 16 506:and there are precisely three such elements, 8: 420: 316: 246: 142: 595: 589: 556: 550: 517: 511: 492: 491: 479: 470: 466: 465: 463: 423: 400: 395: 361: 340: 335: 314: 290: 284: 249: 226: 221: 187: 166: 161: 140: 680:, with quasidihedral Sylow 2-subgroups. 447:> of order 2 with a cyclic group < 34:of the quasidihedral group of order 16 775:(3 ed.). Wiley. pp. 71–72. 7: 74:a power of 2. For every positive 25: 771:Dummit, D. S.; Foote, R. (2004). 670:Alperin–Brauer–Gorenstein theorem 277:lattice of subgroups is modular 1: 817:. Chelsea. pp. 188–195. 797:. Springer. pp. 90–93. 102:generalized quaternion group 100:2. Two are well known, the 866: 634:− 1. The groups of order 616:{\displaystyle 2^{n-2}+1} 577:{\displaystyle 2^{n-2}-1} 538:{\displaystyle 2^{n-1}-1} 110:maximal nilpotency class 89:of order 2 which have a 306:. Its presentation is: 676:, and to a degree the 617: 578: 539: 500: 443:of a cyclic group < 429: 300: 255: 51: 43: 35: 638:and nilpotency class 618: 579: 540: 501: 430: 301: 299:{\displaystyle 2^{n}} 256: 60:quasi-dihedral groups 49: 41: 30: 588: 549: 510: 462: 313: 283: 139: 64:semi-dihedral groups 441:semidirect products 83:isomorphism classes 668:has index 4. The 613: 574: 535: 496: 425: 296: 251: 68:non-abelian groups 52: 44: 36: 378: 204: 122:Daniel Gorenstein 16:(Redirected from 857: 836: 806: 795:Endliche Gruppen 786: 773:Abstract Algebra 666:derived subgroup 622: 620: 619: 614: 606: 605: 583: 581: 580: 575: 567: 566: 544: 542: 541: 536: 528: 527: 505: 503: 502: 497: 495: 490: 489: 474: 469: 434: 432: 431: 426: 419: 418: 411: 410: 376: 366: 365: 353: 352: 351: 350: 305: 303: 302: 297: 295: 294: 260: 258: 257: 252: 245: 244: 237: 236: 202: 192: 191: 179: 178: 177: 176: 132:for this group: 118:Endliche Gruppen 21: 865: 864: 860: 859: 858: 856: 855: 854: 840: 839: 825: 809: 789: 783: 770: 767: 755: 746: 739: 724: 715: 704: 695: 686: 672:classifies the 591: 586: 585: 552: 547: 546: 513: 508: 507: 475: 460: 459: 396: 391: 357: 336: 331: 311: 310: 286: 281: 280: 274: 222: 217: 183: 162: 157: 137: 136: 114:Bertram Huppert 85:of non-abelian 62:, also called 23: 22: 15: 12: 11: 5: 863: 861: 853: 852: 842: 841: 838: 837: 823: 811:Gorenstein, D. 807: 787: 781: 766: 763: 762: 761: 751: 744: 741: 737: 730: 720: 713: 710: 700: 693: 685: 682: 612: 609: 604: 601: 598: 594: 573: 570: 565: 562: 559: 555: 534: 531: 526: 523: 520: 516: 494: 488: 485: 482: 478: 473: 468: 453:group of units 437: 436: 422: 417: 414: 409: 406: 403: 399: 394: 390: 387: 384: 381: 375: 372: 369: 364: 360: 356: 349: 346: 343: 339: 334: 330: 327: 324: 321: 318: 293: 289: 270: 263: 262: 248: 243: 240: 235: 232: 229: 225: 220: 216: 213: 210: 207: 201: 198: 195: 190: 186: 182: 175: 172: 169: 165: 160: 156: 153: 150: 147: 144: 106:dihedral group 66:, are certain 24: 14: 13: 10: 9: 6: 4: 3: 2: 862: 851: 850:Finite groups 848: 847: 845: 834: 830: 826: 824:0-8284-0301-5 820: 816: 815:Finite Groups 812: 808: 804: 800: 796: 792: 788: 784: 782:9780471433347 778: 774: 769: 768: 764: 759: 754: 750: 742: 735: 734:Mathieu group 731: 728: 723: 719: 711: 708: 703: 699: 691: 690: 689: 683: 681: 679: 678:finite groups 675: 674:simple groups 671: 667: 662: 660: 656: 652: 648: 646: 641: 637: 633: 629: 624: 610: 607: 602: 599: 596: 592: 571: 568: 563: 560: 557: 553: 532: 529: 524: 521: 518: 514: 486: 483: 480: 476: 471: 458: 454: 450: 446: 442: 415: 412: 407: 404: 401: 397: 392: 388: 385: 382: 379: 373: 370: 367: 362: 358: 354: 347: 344: 341: 337: 332: 328: 325: 322: 319: 309: 308: 307: 291: 287: 278: 273: 268: 241: 238: 233: 230: 227: 223: 218: 214: 211: 208: 205: 199: 196: 193: 188: 184: 180: 173: 170: 167: 163: 158: 154: 151: 148: 145: 135: 134: 133: 131: 127: 126:Finite Groups 123: 119: 115: 111: 107: 103: 99: 95: 92: 88: 84: 80: 77: 73: 69: 65: 61: 57: 48: 40: 33: 29: 19: 18:Quasidihedral 814: 794: 772: 757: 752: 748: 726: 721: 717: 706: 701: 697: 687: 663: 658: 654: 644: 639: 635: 631: 627: 625: 448: 444: 438: 271: 266: 264: 130:presentation 125: 117: 78: 63: 59: 53: 32:Cayley graph 791:Huppert, B. 56:mathematics 765:References 760:≡ 3 mod 4. 729:≡ 1 mod 4, 709:≡ 3 mod 4, 657:for large 600:− 569:− 561:− 530:− 522:− 484:− 421:⟩ 405:− 345:− 329:∣ 317:⟨ 247:⟩ 239:− 231:− 171:− 155:∣ 143:⟨ 124:'s text, 844:Category 813:(1980). 793:(1967). 684:Examples 116:'s text 104:and the 94:subgroup 833:0569209 803:0224703 651:coclass 647:-groups 455:of the 76:integer 831:  821:  801:  779:  756:) for 725:) for 705:) for 584:, and 377:  203:  112:. In 91:cyclic 87:groups 58:, the 98:index 72:order 819:ISBN 777:ISBN 732:the 649:via 457:ring 269:or M 712:PSU 692:PSL 96:of 70:of 54:In 846:: 829:MR 827:. 799:MR 743:GL 738:11 545:, 835:. 805:. 785:. 758:q 753:q 749:F 747:( 745:2 740:, 736:M 727:q 722:q 718:F 716:( 714:3 707:q 702:q 698:F 696:( 694:3 659:n 655:p 645:p 640:n 636:p 632:n 628:n 611:1 608:+ 603:2 597:n 593:2 572:1 564:2 558:n 554:2 533:1 525:1 519:n 515:2 493:Z 487:1 481:n 477:2 472:/ 467:Z 449:s 445:r 435:. 416:1 413:+ 408:2 402:n 398:2 393:r 389:= 386:s 383:r 380:s 374:, 371:1 368:= 363:2 359:s 355:= 348:1 342:n 338:2 333:r 326:s 323:, 320:r 292:n 288:2 272:m 267:G 261:. 242:1 234:2 228:n 224:2 219:r 215:= 212:s 209:r 206:s 200:, 197:1 194:= 189:2 185:s 181:= 174:1 168:n 164:2 159:r 152:s 149:, 146:r 79:n 20:)

Index

Quasidihedral

Cayley graph


mathematics
non-abelian groups
order
integer
isomorphism classes
groups
cyclic
subgroup
index
generalized quaternion group
dihedral group
maximal nilpotency class
Bertram Huppert
Daniel Gorenstein
presentation
lattice of subgroups is modular
semidirect products
group of units
ring
p-groups
coclass
derived subgroup
Alperin–Brauer–Gorenstein theorem
simple groups
finite groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑