Knowledge (XXG)

Queueing theory

Source 📝

3296:
responsive performance and efficient resource utilization. Beyond the technological realm, queueing theory is relevant to everyday experiences. Whether waiting in line at a supermarket or for public transportation, understanding the principles of queueing theory provides valuable insights into optimizing these systems for enhanced user satisfaction. At some point, everyone will be involved in an aspect of queuing. What some may view to be an inconvenience could possibly be the most effective method. Queueing theory, a discipline rooted in applied mathematics and computer science, is a field dedicated to the study and analysis of queues, or waiting lines, and their implications across a diverse range of applications. This theoretical framework has proven instrumental in understanding and optimizing the efficiency of systems characterized by the presence of queues. The study of queues is essential in contexts such as traffic systems, computer networks, telecommunications, and service operations. Queueing theory delves into various foundational concepts, with the arrival process and service process being central. The arrival process describes the manner in which entities join the queue over time, often modeled using stochastic processes like Poisson processes. The efficiency of queueing systems is gauged through key performance metrics. These include the average queue length, average wait time, and system throughput. These metrics provide insights into the system's functionality, guiding decisions aimed at enhancing performance and reducing wait times. References: Gross, D., & Harris, C. M. (1998). Fundamentals of Queueing Theory. John Wiley & Sons. Kleinrock, L. (1976). Queueing Systems: Volume I - Theory. Wiley. Cooper, B. F., & Mitrani, I. (1985). Queueing Networks: A Fundamental Approach. John Wiley & Sons
125:. Through management science, businesses are able to solve a variety of problems using different scientific and mathematical approaches. Queueing analysis is the probabilistic analysis of waiting lines, and thus the results, also referred to as the operating characteristics, are probabilistic rather than deterministic. The probability that n customers are in the queueing system, the average number of customers in the queueing system, the average number of customers in the waiting line, the average time spent by a customer in the total queuing system, the average time spent by a customer in the waiting line, and finally the probability that the server is busy or idle are all of the different operating characteristics that these queueing models compute. The overall goal of queueing analysis is to compute these characteristics for the current system and then test several alternatives that could lead to improvement. Computing the operating characteristics for the current system and comparing the values to the characteristics of the alternative systems allows managers to see the pros and cons of each potential option. These systems help in the final decision making process by showing ways to increase savings, reduce waiting time, improve efficiency, etc. The main queueing models that can be used are the single-server waiting line system and the multiple-server waiting line system, which are discussed further below. These models can be further differentiated depending on whether service times are constant or undefined, the queue length is finite, the calling population is finite, etc. 5616: 38: 509: 1165: 2955: 1374: 3286:
Fluid models are continuous deterministic analogs of queueing networks obtained by taking the limit when the process is scaled in time and space, allowing heterogeneous objects. This scaled trajectory converges to a deterministic equation which allows the stability of the system to be proven. It is
3209:
In discrete-time networks where there is a constraint on which service nodes can be active at any time, the max-weight scheduling algorithm chooses a service policy to give optimal throughput in the case that each job visits only a single-person service node. In the more general case where jobs can
195:
An analogy often used is that of the cashier at a supermarket. (There are other models, but this one is commonly encountered in the literature.) Customers arrive, are processed by the cashier, and depart. Each cashier processes one customer at a time, and hence this is a queueing node with only one
3295:
Queueing theory finds widespread application in computer science and information technology. In networking, for instance, queues are integral to routers and switches, where packets queue up for transmission. By applying queueing theory principles, designers can optimize these systems, ensuring
4328: 939: 1536: 44:
are systems in which single queues are connected by a routing network. In this image, servers are represented by circles, queues by a series of rectangles and the routing network by arrows. In the study of queue networks one typically tries to obtain the
1662: 1177: 3062:
Server failures occur according to a stochastic (random) process (usually Poisson) and are followed by setup periods during which the server is unavailable. The interrupted customer remains in the service area until server is fixed.
858: 405: 3241:
approaches infinity. The impact of other queues on any given queue in the network is approximated by a differential equation. The deterministic model converges to the same stationary distribution as the original model.
731: 2764: 2413: 2787:, a Danish engineer who worked for the Copenhagen Telephone Exchange, published the first paper on what would now be called queueing theory. He modeled the number of telephone calls arriving at an exchange by a 481: 1160:{\displaystyle P_{2}={\frac {\lambda _{1}}{\mu _{2}}}P_{1}+{\frac {1}{\mu _{2}}}(\mu _{1}P_{1}-\lambda _{0}P_{0})={\frac {\lambda _{1}}{\mu _{2}}}P_{1}={\frac {\lambda _{1}\lambda _{0}}{\mu _{2}\mu _{1}}}P_{0}} 2324: 2007: 2237: 3888: 928: 1383: 2013:. That is, the number of times the system leaves a state differs by at most 1 from the number of times it enters that state, since it will either return into that state at some time in the future ( 2707: 2107: 2572: 2648: 628: 2530: 2162: 2468: 1544: 1369:{\displaystyle P_{n}={\frac {\lambda _{n-1}\lambda _{n-2}\cdots \lambda _{0}}{\mu _{n}\mu _{n-1}\cdots \mu _{1}}}P_{0}=P_{0}\prod _{i=0}^{n-1}{\frac {\lambda _{i}}{\mu _{i+1}}}} 3160:(which allows average metrics such as throughput and sojourn times) can be computed. If the total number of customers in the network remains constant, the network is called a 2658:
can be defined as the proportion of arrivals that are served. This is equal to the exponential survival rate of those who do not drop out over the waiting period, giving:
278: 2051: 1723: 1809: 305: 3466: 1935: 1904: 1869: 1692: 561: 1833: 325: 172:
which can each be paired with an arriving job. When the job is completed and departs, that server will again be free to be paired with another arriving job.
168:
However, the queueing node is not quite a pure black box since some information is needed about the inside of the queueing node. The queue has one or more
737: 334: 4274: 3864:
Kendall, D.G.:Stochastic processes occurring in the theory of queues and their analysis by the method of the imbedded Markov chain, Ann. Math. Stat. 1953
5167: 3256:
In a system with high occupancy rates (utilisation near 1), a heavy traffic approximation can be used to approximate the queueing length process by a
107:
The spelling "queueing" over "queuing" is typically encountered in the academic research field. In fact, one of the flagship journals of the field is
3172:, where a network with very general service time, regimes, and customer routing is shown to also exhibit a product–form stationary distribution. The 176: 75:, who created models to describe the system of incoming calls at the Copenhagen Telephone Exchange Company. These ideas were seminal to the field of 634: 238:
denotes the number of jobs in the system (either being serviced or waiting if the queue has a buffer of waiting jobs), then an arrival increases
161: 5456: 3268:. The number of dimensions of the Brownian process is equal to the number of queueing nodes, with the diffusion restricted to the non-negative 64:. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of 4036: 2965:(FCFS), this principle states that customers are served one at a time and that the customer that has been waiting the longest is served first. 2718: 1836:: the reciprocal of the mean service time (the expected number of consecutive service completions per the same unit time, e.g. per 30 seconds) 196:
server. A setting where a customer will leave immediately if the cashier is busy when the customer arrives, is referred to as a queue with no
5106: 5085: 5064: 5036: 4976: 4954: 4902: 4747: 4714: 4208: 4172: 4136: 4109: 4046: 3985: 3544: 3503: 3415: 2893: 4435: 3728: 3153: 2335: 84: 3082:
Arriving customers not served (either due to the queue having no buffer, or due to balking or reneging by the customer) are also known as
2896:
in 1962, published in book form in 1964. His theoretical work published in the early 1970s underpinned the use of packet switching in the
410: 4224:
Dimitriou, I. (2019). "A Multiclass Retrial System With Coupled Orbits And Service Interruptions: Verification of Stability Conditions".
157:, depending on the field) arrive to the queue, possibly wait some time, take some time being processed, and then depart from the queue. 4250: 3032: 2243: 4577: 2918:
Systems with coupled orbits are an important part in queueing theory in the application to wireless networks and signal processing.
3187:, where customers of different classes experience different priority levels at different service nodes. Another type of network are 2925:
where (material) products have a spatiotemporal existence, in the sense that products have a certain volume and a certain duration.
3491:
Using queuing theory to analyse completion times in accident and emergency departments in the light of the Government 4-hour target
1944: 2168: 487: 5373: 2948: 1531:{\displaystyle \sum _{n=0}^{\infty }P_{n}=P_{0}+P_{0}\sum _{n=1}^{\infty }\prod _{i=0}^{n-1}{\frac {\lambda _{i}}{\mu _{i+1}}}=1} 869: 5232: 2840: 3662: 3261: 3489: 2664: 5444: 5160: 4462: 3828: 3819: 3326: 2056: 3458: 2538: 490:
A birth–death process. The values in the circles represent the state of the system, which evolves based on arrival rates
5668: 5653: 5648: 5643: 5525: 5414: 2612: 234:, which describes the arrivals and departures from the queue, along with the number of jobs currently in the system. If 5487: 4601: 3578:"Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of the Imbedded Markov Chain" 3251: 1812:: the arrival rate (the reciprocal of the expected time between each customer arriving, e.g. 10 customers per second) 573: 4730:
Bobbio, A.; Gribaudo, M.; Telek, M. S. (2008). "Analysis of Large Scale Interacting Systems by Mean Field Method".
68:
because the results are often used when making business decisions about the resources needed to provide a service.
5330: 3165: 327:. For a queue, these rates are generally considered not to vary with the number of jobs in the queue, so a single 5492: 5297: 3436: 3257: 3098:. When a customer is serviced at one node, it can join another node and queue for service, or leave the network. 1764: 331:
rate of arrivals/departures per unit time is assumed. Under this assumption, this process has an arrival rate of
5658: 5638: 5619: 5515: 5302: 5153: 3376: 1776: 46: 31: 4771:
Chen, H.; Whitt, W. (1993). "Diffusion approximations for open queueing networks with service interruptions".
3053:
Several parallel servers (several queues): there are many counters and customers can decide for which to queue
2480: 1657:{\displaystyle P_{0}={\frac {1}{1+\sum _{n=1}^{\infty }\prod _{i=0}^{n-1}{\frac {\lambda _{i}}{\mu _{i+1}}}}}} 231: 2121: 5603: 5398: 3341: 2912: 2904: 76: 2421: 5673: 5598: 5388: 5237: 3366: 3351: 2980: 2908: 2471: 96: 4002: 5429: 5292: 3346: 3204: 5419: 3939:
Ramaswami, V. (1988). "A stable recursion for the steady state vector in markov chains of m/g/1 type".
3195:
in 1993: these networks do not assume exponential time distributions like the classic Jackson network.
2855: 1734: 3009:(where a job in service can be interrupted by a higher-priority job). No work is lost in either model. 5340: 5259: 3897: 3573: 3495: 3211: 3177: 3173: 2875: 2847: 5271: 2810:
D stands for "deterministic", and means jobs arriving at the queue require a fixed amount of service
5588: 5568: 5563: 5335: 4810:"Diffusion Approximation for Open State-Dependent Queueing Networks in the Heavy Traffic Situation" 3724: 3157: 2922: 2784: 2583: 2112:
When the system arrives at a steady state, the arrival rate should be equal to the departure rate.
72: 65: 4946: 4940: 3966:
Morozov, E. (2017). "Stability analysis of a multiclass retrial system withcoupled orbit queues".
256: 5663: 5593: 5578: 5545: 5439: 4925: 4872: 4831: 4790: 4753: 4675: 4667: 4629: 4621: 4569: 4524: 4479: 4427: 4388: 4369: 4345: 4308: 4188: 4152: 4089: 3921: 3913: 3847: 3787: 3743: 3706: 3599: 3321: 3219: 3014: 2846:
After the 1940s, queueing theory became an area of research interest to mathematicians. In 1953,
2836: 2016: 122: 92: 80: 5210: 3075:
Jockeying: customers switch between queues if they think they will get served faster by doing so
5127: 5122: 4407: 1696: 175: 5583: 5482: 5393: 5383: 5323: 5102: 5081: 5060: 5046: 5032: 5016: 4972: 4950: 4898: 4743: 4710: 4268: 4204: 4168: 4132: 4105: 4042: 3981: 3640: 3540: 3499: 3411: 3265: 3234: 3215: 2988: 2976: 2885: 2881: 2867: 2859: 2807:
M stands for "Markov" or "memoryless", and means arrivals occur according to a Poisson process
1794: 283: 221: 5056: 5050: 5028: 4995: 5434: 5378: 5264: 4862: 4821: 4782: 4773: 4735: 4702: 4659: 4613: 4561: 4542: 4514: 4471: 4457: 4419: 4378: 4337: 4300: 4288: 4243: 4196: 4160: 4097: 4014: 3971: 3948: 3905: 3837: 3779: 3770: 3698: 3689: 3630: 3589: 3230: 2970: 2889: 533: 187:
is currently busy and will take some time before it can complete service of its job. Server
109: 5222: 1913: 1882: 1847: 1670: 539: 5451: 5318: 4546: 3316: 3306: 3149: 3145: 2892:
in the early 1970s. His initial contribution to this field was his doctoral thesis at the
2832: 2788: 1818: 1760: 50: 5461: 5424: 2587: 3901: 3050:
Several parallel servers (single queue): customers line up and there are several servers
160: 5520: 5077:
Quantitative System Performance: Computer System Analysis Using Queueing Network Models
4498: 3356: 3336: 2975:
This principle also serves customers one at a time, but the customer with the shortest
1768: 310: 4916: 3873:
Pollaczek, F., Problèmes Stochastiques posés par le phénomène de formation d'une queue
5632: 5573: 5558: 5535: 5347: 5075: 4966: 4679: 4423: 4018: 3184: 1739:
Single queueing nodes are usually described using Kendall's notation in the form A/S/
191:
has just completed service of a job and thus will be next to receive an arriving job.
5021: 4633: 4528: 4431: 3925: 3791: 3710: 3658: 3037:
The next job to serve is the one with the smallest remaining processing requirement.
3001:
Customers with high priority are served first. Priority queues can be of two types:
853:{\displaystyle \lambda _{n-1}P_{n-1}+\mu _{n+1}P_{n+1}=(\lambda _{n}+\mu _{n})P_{n}} 400:{\displaystyle \lambda ={\text{avg}}(\lambda _{1},\lambda _{2},\dots ,\lambda _{k})} 99:, where they are applied in the design of factories, shops, offices, and hospitals. 5530: 5357: 4794: 4757: 4647: 4392: 3883: 3765: 3381: 3192: 3169: 2863: 2824:
If the node has more jobs than servers, then jobs will queue and wait for service.
2770: 529: 5132: 5096: 4909: 4573: 4200: 4164: 4126: 4101: 4003:"Simulation and queueing network modeling of single-product production campaigns" 5553: 5510: 5477: 5254: 5249: 5244: 5227: 5217: 5205: 5200: 5195: 5190: 4547:"Computational algorithms for closed queueing networks with exponential servers" 3976: 3842: 3823: 3509: 3371: 3311: 3281: 2929: 2871: 2796: 2792: 1772: 1756: 5074:
Lazowska, Edward D.; John Zahorjan; G. Scott Graham; Kenneth C. Sevcik (1984).
4503:"Open, closed and mixed networks of queues with different classes of customers" 3804:
Pollaczek, F., Ueber eine Aufgabe der Wahrscheinlichkeitstheorie, Math. Z. 1930
1759:
is a simple model where a single server serves jobs that arrive according to a
37: 5276: 4867: 4850: 4826: 4809: 4706: 3952: 3909: 3783: 3702: 3684: 3594: 3577: 3361: 3331: 3287:
known that a queueing network can be stable but have an unstable fluid limit.
3188: 3164:
and has been shown to also have a product–form stationary distribution by the
3086:. The average rate of dropouts is a significant parameter describing a queue. 17: 5352: 4694: 3563:, Chapter 9 in A First Course in Stochastic Models, Wiley, Chichester, 2003 3078:
Reneging: customers leave the queue if they have waited too long for service
726:{\displaystyle \lambda _{0}P_{0}+\mu _{2}P_{2}=(\lambda _{1}+\mu _{1})P_{1}} 142: 88: 4341: 3644: 3635: 3618: 1747:
describes the distribution of durations between each arrival to the queue,
4565: 4519: 4502: 4475: 4383: 4364: 3432: 4739: 4732:
2008 Fifth International Conference on Quantitative Evaluation of Systems
4304: 30:"First come, first served" redirects here. For the Kool Keith album, see 2759:{\displaystyle W={\frac {1}{\mu }}\mathrm {ln} {\frac {\lambda }{\mu }}} 121:
Queueing theory is one of the major areas of study in the discipline of
4876: 4835: 4786: 4671: 4625: 4349: 3917: 3851: 3603: 3269: 2954: 2897: 1755:
the number of servers at the node. For an example of the notation, the
328: 4483: 4312: 2921:
Modern day application of queueing theory concerns among other things
508: 486: 61: 3886:; Atiyah (October 1961). "The single server queue in heavy traffic". 3094:
Queue networks are systems in which multiple queues are connected by
3027:
The next job to be served is the one with the smallest original size.
2654:
Assuming an exponential distribution for the rates, the waiting time
2408:{\displaystyle P_{n}={\frac {\lambda }{\mu }}P_{n-1},\ n=1,2,\ldots } 4663: 4617: 1842:: the parameter characterizing the number of customers in the system 1787:
Consider a queue with one server and the following characteristics:
1767:) and have exponentially distributed service times (the M denotes a 476:{\displaystyle \mu ={\text{avg}}(\mu _{1},\mu _{2},\dots ,\mu _{k})} 3970:. Lecture Notes in Computer Science. Vol. 17. pp. 85–98. 3237:(proportion of queues in different states) as the number of queues 5145: 4930: 3619:"An application of queuing theory to SIS and SEIS epidemic models" 2953: 2854:
queue and introduced the modern notation for queues, now known as
2828: 507: 485: 174: 159: 36: 4918:
Introduction to Queueing Theory and Stochastic Teletraffic Models
3072:
Balking: customers decide not to join the queue if it is too long
4604:(1975). "Networks of Queues with Customers of Different Types". 2319:{\displaystyle \lambda P_{n-1}+\mu P_{n+1}=(\lambda +\mu )P_{n}} 5149: 4326:
Jackson, James R. (Oct 1963). "Jobshop-like Queueing Systems".
4079:, Lecture Notes: S-38.145 - Introduction to Teletraffic Theory. 3889:
Mathematical Proceedings of the Cambridge Philosophical Society
2915:
inter-arrival and service time distributions to be considered.
183:
is idle, and thus an arrival is given to it to process. Server
49:
of the network, although in many applications the study of the
3433:"Performance by Design: Computer Capacity Planning by Example" 3431:
Lawrence W. Dowdy, Virgilio A.F. Almeida, Daniel A. Menasce.
3047:
Single server: customers line up and there is only one server
2002:{\displaystyle \left\vert E_{n}-L_{n}\right\vert \in \{0,1\}} 5137: 4998:, (MIT, Cambridge, May 31, 1961) Proposal for a Ph.D. Thesis 3019:
The next job to be served is the one with the smallest size.
2232:{\displaystyle \lambda P_{0}+\mu P_{2}=(\lambda +\mu )P_{1}} 4650:(Sep 1993). "G-Networks with Triggered Customer Movement". 4460:(1967). "Closed Queuing Systems with Exponential Servers". 4365:"Mean-Value Analysis of Closed Multichain Queuing Networks" 4092:(2012). "Scheduling: Non-Preemptive, Size-Based Policies". 3222:, which affects the characteristics of the larger network. 3183:
Networks of customers have also been investigated, such as
2944:
Various scheduling policies can be used at queueing nodes:
2835:
in 1930, a solution later recast in probabilistic terms by
1725:, fully describes the required steady state probabilities. 923:{\displaystyle P_{1}={\frac {\lambda _{0}}{\mu _{1}}}P_{0}} 253:
by "births" and "deaths", which occur at the arrival rates
3459:"Hershey Medical Center to open redesigned emergency room" 3729:"The theory of probabilities and telephone conversations" 1775:, the G stands for "general" and indicates an arbitrary 532:
equations for the birth-and-death process, known as the
164:
A black box. Jobs arrive to, and depart from, the queue.
5138:
LINE: a general-purpose engine to solve queueing models
4155:(2012). "Scheduling: Preemptive, Size-Based Policies". 3659:"Agner Krarup Erlang (1878-1929) | plus.maths.org" 3144:
The simplest non-trivial networks of queues are called
3105:
nodes, the state of the system can be described by an
2816:
describes the number of servers at the queueing node (
1937:
represent the number of times the system leaves state
1906:
represent the number of times the system enters state
5010:
Communication Nets: Stochastic Message Flow and Delay
4851:"A stable queueing network with unstable fluid model" 2993:
Service capacity is shared equally between customers.
2721: 2702:{\displaystyle {\frac {\mu }{\lambda }}=e^{-W{\mu }}} 2667: 2615: 2541: 2483: 2424: 2338: 2246: 2171: 2124: 2059: 2019: 1947: 1916: 1885: 1850: 1821: 1797: 1699: 1673: 1547: 1386: 1180: 942: 872: 740: 637: 576: 542: 413: 337: 313: 286: 259: 4945:(revisited first ed.). Addison-Wesley. p.  2102:{\displaystyle \left\vert E_{n}-L_{n}\right\vert =1} 563:
denotes the steady state probability to be in state
5544: 5503: 5470: 5407: 5366: 5311: 5285: 5183: 5052:
Queueing Systems: Volume II – Computer Applications
4408:"On the arrival theorem for communication networks" 4193:
Performance Modeling and Design of Computer Systems
4157:
Performance Modeling and Design of Computer Systems
4094:
Performance Modeling and Design of Computer Systems
3005:(where a job in service cannot be interrupted) and 2567:{\displaystyle \rho ={\frac {\lambda }{\mu }}<1} 5123:Teknomo's Queueing theory tutorial and calculators 5020: 3148:. The first significant results in this area were 2758: 2701: 2643:{\displaystyle L={\frac {\lambda -\sigma }{\mu }}} 2642: 2566: 2524: 2462: 2407: 2318: 2231: 2156: 2101: 2045: 2001: 1929: 1898: 1863: 1827: 1803: 1717: 1686: 1656: 1530: 1368: 1159: 922: 852: 725: 622: 555: 475: 399: 319: 299: 272: 208:customers is called a queue with a buffer of size 3768:(2009). "The first Erlang century—and the next". 3406:Sundarapandian, V. (2009). "7. Queueing Theory". 3141:represents the number of customers at each node. 2858:. In 1957, Pollaczek studied the GI/G/1 using an 4038:Business Process Modeling, Simulation and Design 2884:worked on the application of queueing theory to 2582:A common basic queueing system is attributed to 1751:the distribution of service times for jobs, and 3941:Communications in Statistics. Stochastic Models 623:{\displaystyle \mu _{1}P_{1}=\lambda _{0}P_{0}} 226:The behaviour of a single queue (also called a 71:Queueing theory has its origins in research by 60:is the mathematical study of waiting lines, or 2712:The second equation is commonly rewritten as: 27:Mathematical study of waiting lines, or queues 5161: 3530: 3528: 3526: 2928:Problems such as performance metrics for the 8: 5003:Information Flow in Large Communication Nets 4996:Information Flow in Large Communication Nets 4071: 4069: 4067: 4065: 1996: 1984: 3814: 3812: 3810: 3488:Mayhew, Les; Smith, David (December 2006). 3408:Probability, Statistics and Queueing Theory 204:). A setting with a waiting zone for up to 5168: 5154: 5146: 5095:Jon Kleinberg; Éva Tardos (30 June 2013). 5005:(RLE Quarterly Progress Report, July 1961) 4968:Analysis and Synthesis of Computer Systems 3760: 3758: 3756: 5055:. New York: Wiley Interscience. pp.  5027:. New York: Wiley Interscience. pp.  4929: 4866: 4825: 4518: 4382: 4191:(2012). "Scheduling: SRPT and Fairness". 4125:Andrew S. Tanenbaum; Herbert Bos (2015). 4030: 4028: 3975: 3841: 3634: 3593: 2769:The two-stage one-box model is common in 2746: 2738: 2728: 2720: 2692: 2685: 2668: 2666: 2622: 2614: 2548: 2540: 2516: 2488: 2482: 2442: 2429: 2423: 2366: 2352: 2343: 2337: 2310: 2276: 2254: 2245: 2223: 2195: 2179: 2170: 2148: 2132: 2123: 2082: 2069: 2058: 2037: 2024: 2018: 1970: 1957: 1946: 1921: 1915: 1890: 1884: 1855: 1849: 1820: 1796: 1698: 1678: 1672: 1637: 1627: 1621: 1609: 1598: 1588: 1577: 1561: 1552: 1546: 1508: 1498: 1492: 1480: 1469: 1459: 1448: 1438: 1425: 1412: 1402: 1391: 1385: 1352: 1342: 1336: 1324: 1313: 1303: 1290: 1277: 1258: 1248: 1236: 1217: 1201: 1194: 1185: 1179: 1151: 1138: 1128: 1116: 1106: 1099: 1090: 1078: 1068: 1062: 1050: 1040: 1027: 1017: 1002: 993: 984: 972: 962: 956: 947: 941: 914: 902: 892: 886: 877: 871: 844: 831: 818: 796: 780: 761: 745: 739: 717: 704: 691: 675: 665: 652: 642: 636: 614: 604: 591: 581: 575: 547: 541: 464: 445: 432: 420: 412: 388: 369: 356: 344: 336: 312: 291: 285: 264: 258: 249:The system transitions between values of 4041:. Pearson Education India. p. 178. 2525:{\displaystyle P_{n}=(1-\rho )\rho ^{n}} 3393: 3233:consider the limiting behaviour of the 2958:First in first out (FIFO) queue example 2157:{\displaystyle \mu P_{1}=\lambda P_{0}} 1875:customers in the system in steady state 179:A queueing node with 3 servers. Server 4893:Gross, Donald; Carl M. Harris (1998). 4501:; Muntz, R.R.; Palacios, F.G. (1975). 4273:: CS1 maint: archived copy as title ( 4266: 3824:"Applied Probability in Great Britain" 3246:Heavy traffic/diffusion approximations 2979:will be served first. Also known as a 2803:model in 1920. In Kendall's notation: 1667:which, together with the equation for 41: 4363:Reiser, M.; Lavenberg, S. S. (1980). 4291:(1957). "Networks of Waiting Lines". 3968:Proceedings of 14th European Workshop 3582:The Annals of Mathematical Statistics 3401: 3399: 3397: 2894:Massachusetts Institute of Technology 2463:{\displaystyle P_{0}+P_{1}+\cdots =1} 7: 4942:An introduction to operating systems 4007:Computers & Chemical Engineering 4001:Carlson, E.C.; Felder, R.M. (1992). 3539:(13th ed.). New York: Pearson. 3154:product-form stationary distribution 512:A queue with 1 server, arrival rate 79:and have since seen applications in 5133:Myron Hlynka's Queueing Theory Page 5023:Queueing Systems: Volume I – Theory 4965:Gelenbe, Erol; Isi Mitrani (2010). 1763:(where inter-arrival durations are 4986:Newell, Gordron F. (1 June 1971). 4412:Computer Networks and ISDN Systems 4077:Chapter 8 – Queueing Systems 3687:(2009). "Editorial introduction". 3537:Introduction to management science 3469:from the original on June 29, 2016 3457:Schlechter, Kira (March 2, 2009). 3168:. This result was extended to the 3033:Shortest remaining processing time 2742: 2739: 1783:Example analysis of an M/M/1 queue 1589: 1460: 1403: 25: 4855:The Annals of Applied Probability 4814:The Annals of Applied Probability 4695:"Applications of Queueing Theory" 3661:. Pass.maths.org.uk. 1997-04-30. 3617:Hernández-Suarez, Carlos (2010). 1871:: the probability of there being 5615: 5614: 5128:Virtamo's Queueing Theory Course 4971:. World Scientific 2nd Edition. 2900:, a forerunner to the Internet. 4988:Applications of Queueing Theory 4895:Fundamentals of Queueing Theory 4583:from the original on 2016-05-13 4438:from the original on 2019-09-24 4256:from the original on 2017-03-29 3665:from the original on 2008-10-07 3439:from the original on 2016-05-06 242:by 1 and a departure decreases 4652:Journal of Applied Probability 4606:Journal of Applied Probability 3736:Nyt Tidsskrift for Matematik B 3561:Algorithmic Analysis of Queues 2509: 2497: 2303: 2291: 2216: 2204: 1712: 1700: 1056: 1010: 863:The first two equations imply 837: 811: 710: 684: 470: 425: 394: 349: 141:can be thought of as nearly a 1: 5445:Flow-equivalent server method 5012:(McGraw-Hill, New York, 1964) 3327:Project production management 3024:Preemptive shortest job first 5526:Adversarial queueing network 5415:Continuous-time Markov chain 4424:10.1016/0169-7552(93)90073-D 4201:10.1017/CBO9781139226424.041 4165:10.1017/CBO9781139226424.040 4102:10.1017/CBO9781139226424.039 4019:10.1016/0098-1354(92)80018-5 3214:gives optimal throughput. A 273:{\displaystyle \lambda _{i}} 5488:Heavy traffic approximation 5233:Pollaczek–Khinchine formula 4939:Deitel, Harvey M. (1984) . 3977:10.1007/978-3-319-66583-2_6 3843:10.1287/opre.50.1.227.17792 3535:Taylor, Bernard W. (2019). 3252:Heavy traffic approximation 3176:can be calculated with the 2841:Pollaczek–Khinchine formula 2115:Thus the balance equations 2046:{\displaystyle E_{n}=L_{n}} 1171:By mathematical induction, 5690: 3279: 3262:Ornstein–Uhlenbeck process 3249: 3210:visit more than one node, 3202: 1732: 219: 29: 5612: 5493:Reflected Brownian motion 5298:Markovian arrival process 4961:chap.15, pp. 380–412 4707:10.1007/978-94-009-5970-5 4554:Communications of the ACM 3953:10.1080/15326348808807077 3910:10.1017/S0305004100036094 3784:10.1007/s11134-009-9147-4 3703:10.1007/s11134-009-9151-8 3258:reflected Brownian motion 3152:, for which an efficient 3067:Customer waiting behavior 2911:have allowed queues with 2586:and is a modification of 2578:Simple two-equation queue 1765:exponentially distributed 1718:{\displaystyle (n\geq 1)} 5516:Layered queueing network 5303:Rational arrival process 4915:Zukerman, Moshe (2013). 4406:Van Dijk, N. M. (1993). 4128:Modern Operating Systems 3377:Traffic generation model 2963:first-come, first-served 2936:remain an open problem. 2590:. Given an arrival rate 1804:{\displaystyle \lambda } 1777:probability distribution 1728: 407:and a departure rate of 300:{\displaystyle \mu _{i}} 280:and the departure rates 230:) can be described by a 47:equilibrium distribution 32:First Come, First Served 5604:Teletraffic engineering 5399:Shortest remaining time 4868:10.1214/aoap/1029962815 4827:10.1214/aoap/1177004602 4226:Proceedings of FRUCT 24 4035:Manuel, Laguna (2011). 3742:: 33–39. Archived from 3595:10.1214/aoms/1177728975 3342:Queue management system 2909:matrix analytic methods 2905:matrix geometric method 2888:in the early 1960s and 2866:gave a formula for the 2598:, and a departure rate 536:, are as follows. Here 77:teletraffic engineering 5599:Scheduling (computing) 5238:Matrix analytic method 5080:. Prentice-Hall, Inc. 4693:Newell, G. F. (1982). 4342:10.1287/mnsc.1040.0268 3636:10.3934/mbe.2010.7.809 3367:Scheduling (computing) 3352:Random early detection 2959: 2913:phase-type distributed 2760: 2703: 2644: 2602:, length of the queue 2568: 2526: 2472:geometric distribution 2464: 2409: 2320: 2233: 2158: 2103: 2047: 2003: 1931: 1900: 1865: 1829: 1805: 1719: 1688: 1658: 1620: 1593: 1532: 1491: 1464: 1407: 1370: 1335: 1161: 924: 854: 727: 624: 557: 520: 505: 477: 401: 321: 301: 274: 192: 165: 97:industrial engineering 54: 5430:Product-form solution 5331:Gordon–Newell theorem 5293:Poisson point process 5184:Single queueing nodes 4566:10.1145/362342.362345 4520:10.1145/321879.321887 4476:10.1287/opre.15.2.254 4384:10.1145/322186.322195 3347:Queuing Rule of Thumb 3291:Queueing Applications 3205:Stochastic scheduling 3166:Gordon–Newell theorem 3109:–dimensional vector ( 2957: 2839:and now known as the 2761: 2704: 2645: 2569: 2527: 2465: 2410: 2321: 2234: 2159: 2104: 2048: 2004: 1932: 1930:{\displaystyle L_{n}} 1901: 1899:{\displaystyle E_{n}} 1866: 1864:{\displaystyle P_{n}} 1830: 1806: 1720: 1689: 1687:{\displaystyle P_{n}} 1659: 1594: 1573: 1533: 1465: 1444: 1387: 1371: 1309: 1162: 925: 855: 728: 625: 558: 556:{\displaystyle P_{n}} 511: 489: 478: 402: 322: 302: 275: 178: 163: 129:Single queueing nodes 40: 5457:Decomposition method 4849:Bramson, M. (1999). 4740:10.1109/QEST.2008.47 4305:10.1287/opre.5.4.518 4195:. pp. 518–530. 4159:. pp. 508–517. 4096:. pp. 499–507. 3725:Erlang, Agner Krarup 3512:on September 7, 2021 3496:Cass Business School 3212:backpressure routing 3191:, first proposed by 3180:, proposed in 1973. 3174:normalizing constant 2848:David George Kendall 2719: 2665: 2613: 2539: 2481: 2422: 2336: 2244: 2169: 2122: 2057: 2017: 1945: 1914: 1883: 1848: 1828:{\displaystyle \mu } 1819: 1795: 1697: 1671: 1545: 1384: 1178: 940: 870: 738: 635: 574: 540: 497:and departure rates 411: 335: 311: 284: 257: 5669:Network performance 5654:Operations research 5649:Customer experience 5644:Production planning 5589:Pipeline (software) 5569:Flow control (data) 5564:Erlang distribution 5546:Information systems 5336:Mean value analysis 5008:Leonard Kleinrock. 5001:Leonard Kleinrock. 4994:Leonard Kleinrock, 4990:. Chapman and Hall. 4808:Yamada, K. (1995). 4463:Operations Research 4293:Operations Research 3902:1961PCPS...57..902K 3829:Operations Research 3158:mean value analysis 2949:First in, first out 2940:Service disciplines 2923:product development 2785:Agner Krarup Erlang 1779:for service times. 516:and departure rate 232:birth–death process 216:Birth-death process 95:, and particularly 85:traffic engineering 73:Agner Krarup Erlang 66:operations research 5594:Quality of service 5579:Network congestion 5440:Quasireversibility 5420:Kendall's notation 5047:Kleinrock, Leonard 5019:(2 January 1975). 5017:Kleinrock, Leonard 4787:10.1007/BF01149260 4507:Journal of the ACM 4370:Journal of the ACM 4329:Management Science 4189:Harchol-Balter, M. 4153:Harchol-Balter, M. 4090:Harchol-Balter, M. 3322:Network simulation 3264:, or more general 3220:queueing algorithm 3199:Routing algorithms 3015:Shortest job first 2971:Last in, first out 2960: 2856:Kendall's notation 2837:Aleksandr Khinchin 2756: 2699: 2640: 2564: 2522: 2460: 2405: 2316: 2229: 2154: 2099: 2043: 1999: 1927: 1896: 1861: 1825: 1801: 1735:Kendall's notation 1729:Kendall's notation 1715: 1684: 1654: 1528: 1366: 1157: 920: 850: 723: 620: 553: 521: 506: 473: 397: 317: 297: 270: 193: 166: 123:management science 93:project management 81:telecommunications 55: 5626: 5625: 5584:Network scheduler 5483:Mean-field theory 5394:Shortest job next 5384:Processor sharing 5341:Buzen's algorithm 5324:Traffic equations 5312:Queueing networks 5286:Arrival processes 5260:Kingman's formula 5108:978-1-292-02394-6 5087:978-0-13-746975-8 5066:978-0-471-49111-8 5049:(22 April 1976). 5038:978-0-471-49110-1 4978:978-1-908978-42-4 4956:978-0-201-14502-1 4904:978-0-471-32812-4 4749:978-0-7695-3360-5 4716:978-94-009-5972-9 4418:(10): 1135–2013. 4210:978-1-139-22642-4 4174:978-1-139-22642-4 4138:978-0-13-359162-0 4111:978-1-139-22642-4 4048:978-81-317-6135-9 3987:978-3-319-66582-5 3884:Kingman, J. F. C. 3766:Kingman, J. F. C. 3683:Asmussen, S. R.; 3546:978-0-13-473066-0 3505:978-1-905752-06-5 3417:978-81-203-3844-9 3266:diffusion process 3235:empirical measure 3231:Mean-field models 3226:Mean-field limits 3216:network scheduler 3178:Buzen's algorithm 3090:Queueing networks 3058:Unreliable server 2989:Processor sharing 2886:message switching 2882:Leonard Kleinrock 2876:Kingman's formula 2868:mean waiting time 2860:integral equation 2754: 2736: 2676: 2638: 2594:, a dropout rate 2556: 2383: 2360: 1652: 1649: 1520: 1364: 1284: 1145: 1084: 1008: 978: 908: 534:balance equations 524:Balance equations 423: 347: 320:{\displaystyle i} 222:Survival analysis 16:(Redirected from 5681: 5618: 5617: 5435:Balance equation 5367:Service policies 5265:Lindley equation 5170: 5163: 5156: 5147: 5112: 5098:Algorithm Design 5091: 5070: 5042: 5026: 4991: 4982: 4960: 4935: 4933: 4923: 4908: 4881: 4880: 4870: 4846: 4840: 4839: 4829: 4805: 4799: 4798: 4774:Queueing Systems 4768: 4762: 4761: 4727: 4721: 4720: 4690: 4684: 4683: 4644: 4638: 4637: 4598: 4592: 4591: 4589: 4588: 4582: 4551: 4539: 4533: 4532: 4522: 4494: 4488: 4487: 4453: 4447: 4446: 4444: 4443: 4403: 4397: 4396: 4386: 4360: 4354: 4353: 4323: 4317: 4316: 4285: 4279: 4278: 4272: 4264: 4262: 4261: 4255: 4248: 4240: 4234: 4233: 4221: 4215: 4214: 4185: 4179: 4178: 4149: 4143: 4142: 4122: 4116: 4115: 4086: 4080: 4073: 4060: 4059: 4057: 4055: 4032: 4023: 4022: 3998: 3992: 3991: 3979: 3963: 3957: 3956: 3936: 3930: 3929: 3880: 3874: 3871: 3865: 3862: 3856: 3855: 3845: 3816: 3805: 3802: 3796: 3795: 3771:Queueing Systems 3762: 3751: 3750: 3748: 3733: 3721: 3715: 3714: 3690:Queueing Systems 3680: 3674: 3673: 3671: 3670: 3655: 3649: 3648: 3638: 3614: 3608: 3607: 3597: 3570: 3564: 3557: 3551: 3550: 3532: 3521: 3520: 3518: 3517: 3508:. Archived from 3485: 3479: 3478: 3476: 3474: 3463:The Patriot-News 3454: 3448: 3447: 3445: 3444: 3428: 3422: 3421: 3410:. PHI Learning. 3403: 3150:Jackson networks 3101:For networks of 3096:customer routing 3042:Service facility 2890:packet switching 2850:solved the GI/M/ 2765: 2763: 2762: 2757: 2755: 2747: 2745: 2737: 2729: 2708: 2706: 2705: 2700: 2698: 2697: 2696: 2677: 2669: 2649: 2647: 2646: 2641: 2639: 2634: 2623: 2573: 2571: 2570: 2565: 2557: 2549: 2531: 2529: 2528: 2523: 2521: 2520: 2493: 2492: 2469: 2467: 2466: 2461: 2447: 2446: 2434: 2433: 2414: 2412: 2411: 2406: 2381: 2377: 2376: 2361: 2353: 2348: 2347: 2325: 2323: 2322: 2317: 2315: 2314: 2287: 2286: 2265: 2264: 2238: 2236: 2235: 2230: 2228: 2227: 2200: 2199: 2184: 2183: 2163: 2161: 2160: 2155: 2153: 2152: 2137: 2136: 2108: 2106: 2105: 2100: 2092: 2088: 2087: 2086: 2074: 2073: 2052: 2050: 2049: 2044: 2042: 2041: 2029: 2028: 2008: 2006: 2005: 2000: 1980: 1976: 1975: 1974: 1962: 1961: 1936: 1934: 1933: 1928: 1926: 1925: 1905: 1903: 1902: 1897: 1895: 1894: 1870: 1868: 1867: 1862: 1860: 1859: 1834: 1832: 1831: 1826: 1810: 1808: 1807: 1802: 1724: 1722: 1721: 1716: 1693: 1691: 1690: 1685: 1683: 1682: 1663: 1661: 1660: 1655: 1653: 1651: 1650: 1648: 1647: 1632: 1631: 1622: 1619: 1608: 1592: 1587: 1562: 1557: 1556: 1537: 1535: 1534: 1529: 1521: 1519: 1518: 1503: 1502: 1493: 1490: 1479: 1463: 1458: 1443: 1442: 1430: 1429: 1417: 1416: 1406: 1401: 1375: 1373: 1372: 1367: 1365: 1363: 1362: 1347: 1346: 1337: 1334: 1323: 1308: 1307: 1295: 1294: 1285: 1283: 1282: 1281: 1269: 1268: 1253: 1252: 1242: 1241: 1240: 1228: 1227: 1212: 1211: 1195: 1190: 1189: 1166: 1164: 1163: 1158: 1156: 1155: 1146: 1144: 1143: 1142: 1133: 1132: 1122: 1121: 1120: 1111: 1110: 1100: 1095: 1094: 1085: 1083: 1082: 1073: 1072: 1063: 1055: 1054: 1045: 1044: 1032: 1031: 1022: 1021: 1009: 1007: 1006: 994: 989: 988: 979: 977: 976: 967: 966: 957: 952: 951: 929: 927: 926: 921: 919: 918: 909: 907: 906: 897: 896: 887: 882: 881: 859: 857: 856: 851: 849: 848: 836: 835: 823: 822: 807: 806: 791: 790: 772: 771: 756: 755: 732: 730: 729: 724: 722: 721: 709: 708: 696: 695: 680: 679: 670: 669: 657: 656: 647: 646: 629: 627: 626: 621: 619: 618: 609: 608: 596: 595: 586: 585: 562: 560: 559: 554: 552: 551: 482: 480: 479: 474: 469: 468: 450: 449: 437: 436: 424: 421: 406: 404: 403: 398: 393: 392: 374: 373: 361: 360: 348: 345: 326: 324: 323: 318: 306: 304: 303: 298: 296: 295: 279: 277: 276: 271: 269: 268: 110:Queueing Systems 21: 5689: 5688: 5684: 5683: 5682: 5680: 5679: 5678: 5659:Formal sciences 5639:Queueing theory 5629: 5628: 5627: 5622: 5608: 5540: 5499: 5466: 5452:Arrival theorem 5403: 5362: 5319:Jackson network 5307: 5281: 5272:Fork–join queue 5211:Burke's theorem 5179: 5177:Queueing theory 5174: 5143: 5119: 5109: 5094: 5088: 5073: 5067: 5045: 5039: 5015: 4985: 4979: 4964: 4957: 4938: 4921: 4914: 4905: 4892: 4889: 4887:Further reading 4884: 4848: 4847: 4843: 4807: 4806: 4802: 4770: 4769: 4765: 4750: 4734:. p. 215. 4729: 4728: 4724: 4717: 4692: 4691: 4687: 4664:10.2307/3214781 4646: 4645: 4641: 4618:10.2307/3212869 4600: 4599: 4595: 4586: 4584: 4580: 4549: 4541: 4540: 4536: 4499:Chandy, K. Mani 4496: 4495: 4491: 4456:Gordon, W. J.; 4455: 4454: 4450: 4441: 4439: 4405: 4404: 4400: 4362: 4361: 4357: 4325: 4324: 4320: 4287: 4286: 4282: 4265: 4259: 4257: 4253: 4246: 4244:"Archived copy" 4242: 4241: 4237: 4223: 4222: 4218: 4211: 4187: 4186: 4182: 4175: 4151: 4150: 4146: 4139: 4124: 4123: 4119: 4112: 4088: 4087: 4083: 4074: 4063: 4053: 4051: 4049: 4034: 4033: 4026: 4000: 3999: 3995: 3988: 3965: 3964: 3960: 3938: 3937: 3933: 3882: 3881: 3877: 3872: 3868: 3863: 3859: 3818: 3817: 3808: 3803: 3799: 3764: 3763: 3754: 3746: 3731: 3723: 3722: 3718: 3682: 3681: 3677: 3668: 3666: 3657: 3656: 3652: 3616: 3615: 3611: 3572: 3571: 3567: 3558: 3554: 3547: 3534: 3533: 3524: 3515: 3513: 3506: 3487: 3486: 3482: 3472: 3470: 3456: 3455: 3451: 3442: 3440: 3430: 3429: 3425: 3418: 3405: 3404: 3395: 3391: 3386: 3317:Line management 3307:Ehrenfest model 3302: 3293: 3284: 3278: 3254: 3248: 3228: 3207: 3201: 3156:exists and the 3140: 3131: 3122: 3115: 3092: 2942: 2874:, now known as 2833:Felix Pollaczek 2820:= 1, 2, 3, ...) 2791:and solved the 2789:Poisson process 2779: 2717: 2716: 2681: 2663: 2662: 2624: 2611: 2610: 2606:is defined as: 2580: 2537: 2536: 2512: 2484: 2479: 2478: 2438: 2425: 2420: 2419: 2362: 2339: 2334: 2333: 2306: 2272: 2250: 2242: 2241: 2219: 2191: 2175: 2167: 2166: 2144: 2128: 2120: 2119: 2078: 2065: 2064: 2060: 2055: 2054: 2033: 2020: 2015: 2014: 1966: 1953: 1952: 1948: 1943: 1942: 1917: 1912: 1911: 1886: 1881: 1880: 1851: 1846: 1845: 1817: 1816: 1793: 1792: 1785: 1761:Poisson process 1737: 1731: 1695: 1694: 1674: 1669: 1668: 1633: 1623: 1566: 1548: 1543: 1542: 1504: 1494: 1434: 1421: 1408: 1382: 1381: 1348: 1338: 1299: 1286: 1273: 1254: 1244: 1243: 1232: 1213: 1197: 1196: 1181: 1176: 1175: 1147: 1134: 1124: 1123: 1112: 1102: 1101: 1086: 1074: 1064: 1046: 1036: 1023: 1013: 998: 980: 968: 958: 943: 938: 937: 910: 898: 888: 873: 868: 867: 840: 827: 814: 792: 776: 757: 741: 736: 735: 713: 700: 687: 671: 661: 648: 638: 633: 632: 610: 600: 587: 577: 572: 571: 543: 538: 537: 526: 502: 495: 460: 441: 428: 409: 408: 384: 365: 352: 333: 332: 309: 308: 287: 282: 281: 260: 255: 254: 224: 218: 131: 119: 105: 58:Queueing theory 53:is fundamental. 51:transient state 35: 28: 23: 22: 15: 12: 11: 5: 5687: 5685: 5677: 5676: 5671: 5666: 5661: 5656: 5651: 5646: 5641: 5631: 5630: 5624: 5623: 5613: 5610: 5609: 5607: 5606: 5601: 5596: 5591: 5586: 5581: 5576: 5571: 5566: 5561: 5556: 5550: 5548: 5542: 5541: 5539: 5538: 5533: 5528: 5523: 5521:Polling system 5518: 5513: 5507: 5505: 5501: 5500: 5498: 5497: 5496: 5495: 5485: 5480: 5474: 5472: 5471:Limit theorems 5468: 5467: 5465: 5464: 5459: 5454: 5449: 5448: 5447: 5442: 5437: 5427: 5422: 5417: 5411: 5409: 5405: 5404: 5402: 5401: 5396: 5391: 5386: 5381: 5376: 5370: 5368: 5364: 5363: 5361: 5360: 5355: 5350: 5345: 5344: 5343: 5338: 5328: 5327: 5326: 5315: 5313: 5309: 5308: 5306: 5305: 5300: 5295: 5289: 5287: 5283: 5282: 5280: 5279: 5274: 5269: 5268: 5267: 5262: 5252: 5247: 5242: 5241: 5240: 5235: 5225: 5220: 5215: 5214: 5213: 5203: 5198: 5193: 5187: 5185: 5181: 5180: 5175: 5173: 5172: 5165: 5158: 5150: 5141: 5140: 5135: 5130: 5125: 5118: 5117:External links 5115: 5114: 5113: 5107: 5092: 5086: 5071: 5065: 5043: 5037: 5013: 5006: 4999: 4992: 4983: 4977: 4962: 4955: 4936: 4912: 4903: 4888: 4885: 4883: 4882: 4861:(3): 818–853. 4841: 4820:(4): 958–982. 4800: 4763: 4748: 4722: 4715: 4685: 4658:(3): 742–748. 4639: 4612:(3): 542–554. 4593: 4560:(9): 527–531. 4534: 4513:(2): 248–260. 4489: 4448: 4398: 4355: 4336:(1): 131–142. 4318: 4299:(4): 518–521. 4289:Jackson, J. R. 4280: 4235: 4216: 4209: 4180: 4173: 4144: 4137: 4117: 4110: 4081: 4075:Penttinen A., 4061: 4047: 4024: 4013:(7): 707–718. 3993: 3986: 3958: 3931: 3875: 3866: 3857: 3836:(1): 227–239. 3806: 3797: 3752: 3749:on 2011-10-01. 3716: 3675: 3650: 3629:(4): 809–823. 3609: 3588:(3): 338–354. 3574:Kendall, D. G. 3565: 3552: 3545: 3522: 3504: 3480: 3449: 3423: 3416: 3392: 3390: 3387: 3385: 3384: 3379: 3374: 3369: 3364: 3359: 3357:Renewal theory 3354: 3349: 3344: 3339: 3337:Queueing delay 3334: 3329: 3324: 3319: 3314: 3309: 3303: 3301: 3298: 3292: 3289: 3280:Main article: 3277: 3274: 3250:Main article: 3247: 3244: 3227: 3224: 3218:must choose a 3200: 3197: 3185:Kelly networks 3162:closed network 3136: 3127: 3120: 3113: 3091: 3088: 3080: 3079: 3076: 3073: 3069: 3068: 3060: 3059: 3055: 3054: 3051: 3048: 3044: 3043: 3039: 3038: 3035: 3029: 3028: 3025: 3021: 3020: 3017: 3011: 3010: 3003:non-preemptive 2999: 2995: 2994: 2991: 2985: 2984: 2973: 2967: 2966: 2951: 2941: 2938: 2831:was solved by 2822: 2821: 2811: 2808: 2778: 2775: 2767: 2766: 2753: 2750: 2744: 2741: 2735: 2732: 2727: 2724: 2710: 2709: 2695: 2691: 2688: 2684: 2680: 2675: 2672: 2652: 2651: 2637: 2633: 2630: 2627: 2621: 2618: 2579: 2576: 2563: 2560: 2555: 2552: 2547: 2544: 2533: 2532: 2519: 2515: 2511: 2508: 2505: 2502: 2499: 2496: 2491: 2487: 2459: 2456: 2453: 2450: 2445: 2441: 2437: 2432: 2428: 2418:The fact that 2416: 2415: 2404: 2401: 2398: 2395: 2392: 2389: 2386: 2380: 2375: 2372: 2369: 2365: 2359: 2356: 2351: 2346: 2342: 2327: 2326: 2313: 2309: 2305: 2302: 2299: 2296: 2293: 2290: 2285: 2282: 2279: 2275: 2271: 2268: 2263: 2260: 2257: 2253: 2249: 2239: 2226: 2222: 2218: 2215: 2212: 2209: 2206: 2203: 2198: 2194: 2190: 2187: 2182: 2178: 2174: 2164: 2151: 2147: 2143: 2140: 2135: 2131: 2127: 2098: 2095: 2091: 2085: 2081: 2077: 2072: 2068: 2063: 2040: 2036: 2032: 2027: 2023: 1998: 1995: 1992: 1989: 1986: 1983: 1979: 1973: 1969: 1965: 1960: 1956: 1951: 1924: 1920: 1893: 1889: 1877: 1876: 1858: 1854: 1843: 1837: 1824: 1813: 1800: 1784: 1781: 1769:Markov process 1733:Main article: 1730: 1727: 1714: 1711: 1708: 1705: 1702: 1681: 1677: 1665: 1664: 1646: 1643: 1640: 1636: 1630: 1626: 1618: 1615: 1612: 1607: 1604: 1601: 1597: 1591: 1586: 1583: 1580: 1576: 1572: 1569: 1565: 1560: 1555: 1551: 1527: 1524: 1517: 1514: 1511: 1507: 1501: 1497: 1489: 1486: 1483: 1478: 1475: 1472: 1468: 1462: 1457: 1454: 1451: 1447: 1441: 1437: 1433: 1428: 1424: 1420: 1415: 1411: 1405: 1400: 1397: 1394: 1390: 1380:The condition 1378: 1377: 1361: 1358: 1355: 1351: 1345: 1341: 1333: 1330: 1327: 1322: 1319: 1316: 1312: 1306: 1302: 1298: 1293: 1289: 1280: 1276: 1272: 1267: 1264: 1261: 1257: 1251: 1247: 1239: 1235: 1231: 1226: 1223: 1220: 1216: 1210: 1207: 1204: 1200: 1193: 1188: 1184: 1169: 1168: 1154: 1150: 1141: 1137: 1131: 1127: 1119: 1115: 1109: 1105: 1098: 1093: 1089: 1081: 1077: 1071: 1067: 1061: 1058: 1053: 1049: 1043: 1039: 1035: 1030: 1026: 1020: 1016: 1012: 1005: 1001: 997: 992: 987: 983: 975: 971: 965: 961: 955: 950: 946: 931: 930: 917: 913: 905: 901: 895: 891: 885: 880: 876: 861: 860: 847: 843: 839: 834: 830: 826: 821: 817: 813: 810: 805: 802: 799: 795: 789: 786: 783: 779: 775: 770: 767: 764: 760: 754: 751: 748: 744: 733: 720: 716: 712: 707: 703: 699: 694: 690: 686: 683: 678: 674: 668: 664: 660: 655: 651: 645: 641: 630: 617: 613: 607: 603: 599: 594: 590: 584: 580: 550: 546: 525: 522: 500: 493: 472: 467: 463: 459: 456: 453: 448: 444: 440: 435: 431: 427: 419: 416: 396: 391: 387: 383: 380: 377: 372: 368: 364: 359: 355: 351: 343: 340: 316: 294: 290: 267: 263: 217: 214: 130: 127: 118: 115: 104: 101: 42:Queue networks 26: 24: 18:Queueing model 14: 13: 10: 9: 6: 4: 3: 2: 5686: 5675: 5674:Markov models 5672: 5670: 5667: 5665: 5662: 5660: 5657: 5655: 5652: 5650: 5647: 5645: 5642: 5640: 5637: 5636: 5634: 5621: 5611: 5605: 5602: 5600: 5597: 5595: 5592: 5590: 5587: 5585: 5582: 5580: 5577: 5575: 5574:Message queue 5572: 5570: 5567: 5565: 5562: 5560: 5559:Erlang (unit) 5557: 5555: 5552: 5551: 5549: 5547: 5543: 5537: 5536:Retrial queue 5534: 5532: 5529: 5527: 5524: 5522: 5519: 5517: 5514: 5512: 5509: 5508: 5506: 5502: 5494: 5491: 5490: 5489: 5486: 5484: 5481: 5479: 5476: 5475: 5473: 5469: 5463: 5460: 5458: 5455: 5453: 5450: 5446: 5443: 5441: 5438: 5436: 5433: 5432: 5431: 5428: 5426: 5423: 5421: 5418: 5416: 5413: 5412: 5410: 5406: 5400: 5397: 5395: 5392: 5390: 5387: 5385: 5382: 5380: 5377: 5375: 5372: 5371: 5369: 5365: 5359: 5356: 5354: 5351: 5349: 5348:Kelly network 5346: 5342: 5339: 5337: 5334: 5333: 5332: 5329: 5325: 5322: 5321: 5320: 5317: 5316: 5314: 5310: 5304: 5301: 5299: 5296: 5294: 5291: 5290: 5288: 5284: 5278: 5275: 5273: 5270: 5266: 5263: 5261: 5258: 5257: 5256: 5253: 5251: 5248: 5246: 5243: 5239: 5236: 5234: 5231: 5230: 5229: 5226: 5224: 5221: 5219: 5216: 5212: 5209: 5208: 5207: 5204: 5202: 5199: 5197: 5194: 5192: 5189: 5188: 5186: 5182: 5178: 5171: 5166: 5164: 5159: 5157: 5152: 5151: 5148: 5144: 5139: 5136: 5134: 5131: 5129: 5126: 5124: 5121: 5120: 5116: 5110: 5104: 5100: 5099: 5093: 5089: 5083: 5079: 5078: 5072: 5068: 5062: 5058: 5054: 5053: 5048: 5044: 5040: 5034: 5030: 5025: 5024: 5018: 5014: 5011: 5007: 5004: 5000: 4997: 4993: 4989: 4984: 4980: 4974: 4970: 4969: 4963: 4958: 4952: 4948: 4944: 4943: 4937: 4932: 4927: 4920: 4919: 4913: 4911: 4906: 4900: 4896: 4891: 4890: 4886: 4878: 4874: 4869: 4864: 4860: 4856: 4852: 4845: 4842: 4837: 4833: 4828: 4823: 4819: 4815: 4811: 4804: 4801: 4796: 4792: 4788: 4784: 4780: 4776: 4775: 4767: 4764: 4759: 4755: 4751: 4745: 4741: 4737: 4733: 4726: 4723: 4718: 4712: 4708: 4704: 4700: 4696: 4689: 4686: 4681: 4677: 4673: 4669: 4665: 4661: 4657: 4653: 4649: 4648:Gelenbe, Erol 4643: 4640: 4635: 4631: 4627: 4623: 4619: 4615: 4611: 4607: 4603: 4597: 4594: 4579: 4575: 4571: 4567: 4563: 4559: 4555: 4548: 4544: 4538: 4535: 4530: 4526: 4521: 4516: 4512: 4508: 4504: 4500: 4497:Baskett, F.; 4493: 4490: 4485: 4481: 4477: 4473: 4469: 4465: 4464: 4459: 4458:Newell, G. F. 4452: 4449: 4437: 4433: 4429: 4425: 4421: 4417: 4413: 4409: 4402: 4399: 4394: 4390: 4385: 4380: 4376: 4372: 4371: 4366: 4359: 4356: 4351: 4347: 4343: 4339: 4335: 4331: 4330: 4322: 4319: 4314: 4310: 4306: 4302: 4298: 4294: 4290: 4284: 4281: 4276: 4270: 4252: 4245: 4239: 4236: 4231: 4227: 4220: 4217: 4212: 4206: 4202: 4198: 4194: 4190: 4184: 4181: 4176: 4170: 4166: 4162: 4158: 4154: 4148: 4145: 4140: 4134: 4130: 4129: 4121: 4118: 4113: 4107: 4103: 4099: 4095: 4091: 4085: 4082: 4078: 4072: 4070: 4068: 4066: 4062: 4050: 4044: 4040: 4039: 4031: 4029: 4025: 4020: 4016: 4012: 4008: 4004: 3997: 3994: 3989: 3983: 3978: 3973: 3969: 3962: 3959: 3954: 3950: 3946: 3942: 3935: 3932: 3927: 3923: 3919: 3915: 3911: 3907: 3903: 3899: 3895: 3891: 3890: 3885: 3879: 3876: 3870: 3867: 3861: 3858: 3853: 3849: 3844: 3839: 3835: 3831: 3830: 3825: 3821: 3815: 3813: 3811: 3807: 3801: 3798: 3793: 3789: 3785: 3781: 3777: 3773: 3772: 3767: 3761: 3759: 3757: 3753: 3745: 3741: 3737: 3730: 3726: 3720: 3717: 3712: 3708: 3704: 3700: 3696: 3692: 3691: 3686: 3679: 3676: 3664: 3660: 3654: 3651: 3646: 3642: 3637: 3632: 3628: 3624: 3620: 3613: 3610: 3605: 3601: 3596: 3591: 3587: 3583: 3579: 3575: 3569: 3566: 3562: 3556: 3553: 3548: 3542: 3538: 3531: 3529: 3527: 3523: 3511: 3507: 3501: 3497: 3493: 3492: 3484: 3481: 3468: 3464: 3460: 3453: 3450: 3438: 3434: 3427: 3424: 3419: 3413: 3409: 3402: 3400: 3398: 3394: 3388: 3383: 3380: 3378: 3375: 3373: 3370: 3368: 3365: 3363: 3360: 3358: 3355: 3353: 3350: 3348: 3345: 3343: 3340: 3338: 3335: 3333: 3330: 3328: 3325: 3323: 3320: 3318: 3315: 3313: 3310: 3308: 3305: 3304: 3299: 3297: 3290: 3288: 3283: 3275: 3273: 3271: 3267: 3263: 3259: 3253: 3245: 3243: 3240: 3236: 3232: 3225: 3223: 3221: 3217: 3213: 3206: 3198: 3196: 3194: 3190: 3186: 3181: 3179: 3175: 3171: 3167: 3163: 3159: 3155: 3151: 3147: 3146:tandem queues 3142: 3139: 3135: 3130: 3126: 3119: 3112: 3108: 3104: 3099: 3097: 3089: 3087: 3085: 3077: 3074: 3071: 3070: 3066: 3065: 3064: 3057: 3056: 3052: 3049: 3046: 3045: 3041: 3040: 3036: 3034: 3031: 3030: 3026: 3023: 3022: 3018: 3016: 3013: 3012: 3008: 3004: 3000: 2997: 2996: 2992: 2990: 2987: 2986: 2982: 2978: 2974: 2972: 2969: 2968: 2964: 2956: 2952: 2950: 2947: 2946: 2945: 2939: 2937: 2935: 2933: 2926: 2924: 2919: 2916: 2914: 2910: 2906: 2901: 2899: 2895: 2891: 2887: 2883: 2879: 2877: 2873: 2869: 2865: 2861: 2857: 2853: 2849: 2844: 2842: 2838: 2834: 2830: 2825: 2819: 2815: 2812: 2809: 2806: 2805: 2804: 2802: 2800: 2794: 2790: 2786: 2781: 2776: 2774: 2772: 2751: 2748: 2733: 2730: 2725: 2722: 2715: 2714: 2713: 2693: 2689: 2686: 2682: 2678: 2673: 2670: 2661: 2660: 2659: 2657: 2635: 2631: 2628: 2625: 2619: 2616: 2609: 2608: 2607: 2605: 2601: 2597: 2593: 2589: 2585: 2577: 2575: 2561: 2558: 2553: 2550: 2545: 2542: 2517: 2513: 2506: 2503: 2500: 2494: 2489: 2485: 2477: 2476: 2475: 2473: 2470:leads to the 2457: 2454: 2451: 2448: 2443: 2439: 2435: 2430: 2426: 2402: 2399: 2396: 2393: 2390: 2387: 2384: 2378: 2373: 2370: 2367: 2363: 2357: 2354: 2349: 2344: 2340: 2332: 2331: 2330: 2311: 2307: 2300: 2297: 2294: 2288: 2283: 2280: 2277: 2273: 2269: 2266: 2261: 2258: 2255: 2251: 2247: 2240: 2224: 2220: 2213: 2210: 2207: 2201: 2196: 2192: 2188: 2185: 2180: 2176: 2172: 2165: 2149: 2145: 2141: 2138: 2133: 2129: 2125: 2118: 2117: 2116: 2113: 2110: 2096: 2093: 2089: 2083: 2079: 2075: 2070: 2066: 2061: 2038: 2034: 2030: 2025: 2021: 2012: 1993: 1990: 1987: 1981: 1977: 1971: 1967: 1963: 1958: 1954: 1949: 1940: 1922: 1918: 1909: 1891: 1887: 1879:Further, let 1874: 1856: 1852: 1844: 1841: 1838: 1835: 1822: 1814: 1811: 1798: 1790: 1789: 1788: 1782: 1780: 1778: 1774: 1770: 1766: 1762: 1758: 1754: 1750: 1746: 1742: 1736: 1726: 1709: 1706: 1703: 1679: 1675: 1644: 1641: 1638: 1634: 1628: 1624: 1616: 1613: 1610: 1605: 1602: 1599: 1595: 1584: 1581: 1578: 1574: 1570: 1567: 1563: 1558: 1553: 1549: 1541: 1540: 1539: 1525: 1522: 1515: 1512: 1509: 1505: 1499: 1495: 1487: 1484: 1481: 1476: 1473: 1470: 1466: 1455: 1452: 1449: 1445: 1439: 1435: 1431: 1426: 1422: 1418: 1413: 1409: 1398: 1395: 1392: 1388: 1359: 1356: 1353: 1349: 1343: 1339: 1331: 1328: 1325: 1320: 1317: 1314: 1310: 1304: 1300: 1296: 1291: 1287: 1278: 1274: 1270: 1265: 1262: 1259: 1255: 1249: 1245: 1237: 1233: 1229: 1224: 1221: 1218: 1214: 1208: 1205: 1202: 1198: 1191: 1186: 1182: 1174: 1173: 1172: 1152: 1148: 1139: 1135: 1129: 1125: 1117: 1113: 1107: 1103: 1096: 1091: 1087: 1079: 1075: 1069: 1065: 1059: 1051: 1047: 1041: 1037: 1033: 1028: 1024: 1018: 1014: 1003: 999: 995: 990: 985: 981: 973: 969: 963: 959: 953: 948: 944: 936: 935: 934: 915: 911: 903: 899: 893: 889: 883: 878: 874: 866: 865: 864: 845: 841: 832: 828: 824: 819: 815: 808: 803: 800: 797: 793: 787: 784: 781: 777: 773: 768: 765: 762: 758: 752: 749: 746: 742: 734: 718: 714: 705: 701: 697: 692: 688: 681: 676: 672: 666: 662: 658: 653: 649: 643: 639: 631: 615: 611: 605: 601: 597: 592: 588: 582: 578: 570: 569: 568: 566: 548: 544: 535: 531: 523: 519: 515: 510: 503: 496: 488: 484: 465: 461: 457: 454: 451: 446: 442: 438: 433: 429: 417: 414: 389: 385: 381: 378: 375: 370: 366: 362: 357: 353: 341: 338: 330: 314: 307:for each job 292: 288: 265: 261: 252: 247: 245: 241: 237: 233: 229: 228:queueing node 223: 215: 213: 211: 207: 203: 199: 190: 186: 182: 177: 173: 171: 162: 158: 156: 152: 149:(also called 148: 144: 140: 139:queueing node 136: 128: 126: 124: 116: 114: 112: 111: 102: 100: 98: 94: 90: 86: 82: 78: 74: 69: 67: 63: 59: 52: 48: 43: 39: 33: 19: 5531:Loss network 5462:Beneš method 5425:Little's law 5408:Key concepts 5358:BCMP network 5176: 5142: 5097: 5076: 5051: 5022: 5009: 5002: 4987: 4967: 4941: 4917: 4894: 4858: 4854: 4844: 4817: 4813: 4803: 4778: 4772: 4766: 4731: 4725: 4699:SpringerLink 4698: 4688: 4655: 4651: 4642: 4609: 4605: 4602:Kelly, F. P. 4596: 4585:. Retrieved 4557: 4553: 4543:Buzen, J. P. 4537: 4510: 4506: 4492: 4467: 4461: 4451: 4440:. Retrieved 4415: 4411: 4401: 4374: 4368: 4358: 4333: 4327: 4321: 4296: 4292: 4283: 4258:. Retrieved 4238: 4229: 4225: 4219: 4192: 4183: 4156: 4147: 4127: 4120: 4093: 4084: 4076: 4052:. Retrieved 4037: 4010: 4006: 3996: 3967: 3961: 3944: 3940: 3934: 3893: 3887: 3878: 3869: 3860: 3833: 3827: 3800: 3778:(1–4): 3–4. 3775: 3769: 3744:the original 3739: 3735: 3719: 3697:(1–4): 1–2. 3694: 3688: 3685:Boxma, O. J. 3678: 3667:. Retrieved 3653: 3626: 3623:Math. Biosci 3622: 3612: 3585: 3581: 3568: 3560: 3559:Tijms, H.C, 3555: 3536: 3514:. Retrieved 3510:the original 3490: 3483: 3471:. Retrieved 3462: 3452: 3441:. Retrieved 3426: 3407: 3382:Flow network 3294: 3285: 3276:Fluid limits 3255: 3238: 3229: 3208: 3193:Erol Gelenbe 3182: 3170:BCMP network 3161: 3143: 3137: 3133: 3128: 3124: 3117: 3110: 3106: 3102: 3100: 3095: 3093: 3083: 3081: 3061: 3006: 3002: 2977:waiting time 2962: 2961:Also called 2943: 2931: 2927: 2920: 2917: 2902: 2880: 2864:John Kingman 2851: 2845: 2826: 2823: 2817: 2813: 2798: 2795:in 1917 and 2782: 2780: 2771:epidemiology 2768: 2711: 2655: 2653: 2603: 2599: 2595: 2591: 2588:Little's Law 2581: 2534: 2417: 2328: 2114: 2111: 2010: 1938: 1907: 1878: 1872: 1839: 1815: 1791: 1786: 1752: 1748: 1744: 1740: 1738: 1666: 1379: 1170: 932: 862: 564: 530:steady state 527: 517: 513: 498: 491: 250: 248: 243: 239: 235: 227: 225: 209: 205: 202:waiting area 201: 197: 194: 188: 184: 180: 169: 167: 154: 150: 146: 138: 134: 132: 120: 108: 106: 70: 57: 56: 5554:Data buffer 5511:Fluid queue 5478:Fluid limit 5389:Round-robin 5255:G/G/1 queue 5250:G/M/1 queue 5245:M/G/k queue 5228:M/G/1 queue 5223:M/M/∞ queue 5218:M/M/c queue 5206:M/M/1 queue 5201:M/D/c queue 5196:M/D/1 queue 5191:D/M/1 queue 5101:. Pearson. 4131:. Pearson. 3947:: 183–188. 3820:Whittle, P. 3372:Traffic jam 3312:Erlang unit 3282:Fluid limit 2872:G/G/1 queue 2829:M/G/1 queue 2793:M/D/1 queue 1773:M/G/1 queue 1757:M/M/1 queue 117:Description 5633:Categories 5504:Extensions 5277:Bulk queue 4781:(4): 335. 4587:2015-09-01 4470:(2): 254. 4442:2019-09-24 4377:(2): 313. 4260:2018-08-02 3896:(4): 902. 3669:2013-04-22 3516:2008-05-20 3443:2009-07-08 3389:References 3362:Throughput 3332:Queue area 3203:See also: 3189:G-networks 3007:preemptive 2053:) or not ( 220:See also: 5664:Rationing 5353:G-network 4931:1307.2968 4897:. Wiley. 4680:121673725 4054:6 October 3473:March 12, 2783:In 1909, 2752:μ 2749:λ 2734:μ 2694:μ 2687:− 2674:λ 2671:μ 2636:μ 2632:σ 2629:− 2626:λ 2554:μ 2551:λ 2543:ρ 2514:ρ 2507:ρ 2504:− 2452:⋯ 2403:… 2371:− 2358:μ 2355:λ 2301:μ 2295:λ 2270:μ 2259:− 2248:λ 2214:μ 2208:λ 2189:μ 2173:λ 2142:λ 2126:μ 2076:− 1982:∈ 1964:− 1823:μ 1799:λ 1771:). In an 1707:≥ 1635:μ 1625:λ 1614:− 1596:∏ 1590:∞ 1575:∑ 1538:leads to 1506:μ 1496:λ 1485:− 1467:∏ 1461:∞ 1446:∑ 1404:∞ 1389:∑ 1350:μ 1340:λ 1329:− 1311:∏ 1275:μ 1271:⋯ 1263:− 1256:μ 1246:μ 1234:λ 1230:⋯ 1222:− 1215:λ 1206:− 1199:λ 1136:μ 1126:μ 1114:λ 1104:λ 1076:μ 1066:λ 1038:λ 1034:− 1015:μ 1000:μ 970:μ 960:λ 900:μ 890:λ 829:μ 816:λ 778:μ 766:− 750:− 743:λ 702:μ 689:λ 663:μ 640:λ 602:λ 579:μ 462:μ 455:… 443:μ 430:μ 415:μ 386:λ 379:… 367:λ 354:λ 339:λ 289:μ 262:λ 151:customers 143:black box 89:computing 5620:Category 4634:51917794 4578:Archived 4545:(1973). 4529:15204199 4436:Archived 4432:45218280 4269:cite web 4251:Archived 4232:: 75–82. 3926:62590290 3822:(2002). 3792:38588726 3727:(1909). 3711:45664707 3663:Archived 3645:21077709 3576:(1953). 3467:Archived 3437:Archived 3300:See also 3132:) where 3084:dropouts 2998:Priority 2801:queueing 2474:formula 2009:for all 155:requests 103:Spelling 4877:2667284 4836:2245101 4795:1180930 4758:2714909 4672:3214781 4626:3212869 4393:8694947 4350:2627213 3918:2984229 3898:Bibcode 3852:3088474 3604:2236285 3270:orthant 3123:, ..., 2898:ARPANET 2777:History 1941:. Then 329:average 200:(or no 170:servers 5105:  5084:  5063:  5035:  4975:  4953:  4910:Online 4901:  4875:  4834:  4793:  4756:  4746:  4713:  4678:  4670:  4632:  4624:  4572:  4527:  4484:168557 4482:  4430:  4391:  4348:  4313:167249 4311:  4207:  4171:  4135:  4108:  4045:  3984:  3924:  3916:  3850:  3790:  3709:  3643:  3602:  3543:  3502:  3414:  2584:Erlang 2535:where 2382:  2329:imply 1910:, and 1743:where 246:by 1. 198:buffer 62:queues 4926:arXiv 4922:(PDF) 4873:JSTOR 4832:JSTOR 4791:S2CID 4754:S2CID 4676:S2CID 4668:JSTOR 4630:S2CID 4622:JSTOR 4581:(PDF) 4574:10702 4570:S2CID 4550:(PDF) 4525:S2CID 4480:JSTOR 4428:S2CID 4389:S2CID 4346:JSTOR 4309:JSTOR 4254:(PDF) 4247:(PDF) 3922:S2CID 3914:JSTOR 3848:JSTOR 3788:S2CID 3747:(PDF) 3732:(PDF) 3707:S2CID 3600:JSTOR 2981:stack 2934:queue 2870:in a 135:queue 5379:LIFO 5374:FIFO 5103:ISBN 5082:ISBN 5061:ISBN 5033:ISBN 4973:ISBN 4951:ISBN 4899:ISBN 4744:ISBN 4711:ISBN 4275:link 4205:ISBN 4169:ISBN 4133:ISBN 4106:ISBN 4056:2017 4043:ISBN 3982:ISBN 3641:PMID 3541:ISBN 3500:ISBN 3475:2009 3412:ISBN 2930:M/G/ 2907:and 2903:The 2827:The 2797:M/D/ 2559:< 933:and 528:The 147:Jobs 5057:576 5029:417 4947:673 4863:doi 4822:doi 4783:doi 4736:doi 4703:doi 4660:doi 4614:doi 4562:doi 4515:doi 4472:doi 4420:doi 4379:doi 4338:doi 4301:doi 4197:doi 4161:doi 4098:doi 4015:doi 3972:doi 3949:doi 3906:doi 3838:doi 3780:doi 3699:doi 3631:doi 3590:doi 2109:). 422:avg 346:avg 153:or 137:or 5635:: 5059:. 5031:. 4949:. 4924:. 4871:. 4857:. 4853:. 4830:. 4816:. 4812:. 4789:. 4779:13 4777:. 4752:. 4742:. 4709:. 4701:. 4697:. 4674:. 4666:. 4656:30 4654:. 4628:. 4620:. 4610:12 4608:. 4576:. 4568:. 4558:16 4556:. 4552:. 4523:. 4511:22 4509:. 4505:. 4478:. 4468:15 4466:. 4434:. 4426:. 4416:25 4414:. 4410:. 4387:. 4375:27 4373:. 4367:. 4344:. 4334:10 4332:. 4307:. 4295:. 4271:}} 4267:{{ 4249:. 4228:. 4203:. 4167:. 4104:. 4064:^ 4027:^ 4011:16 4009:. 4005:. 3980:. 3943:. 3920:. 3912:. 3904:. 3894:57 3892:. 3846:. 3834:50 3832:. 3826:. 3809:^ 3786:. 3776:63 3774:. 3755:^ 3740:20 3738:. 3734:. 3705:. 3695:63 3693:. 3639:. 3625:. 3621:. 3598:. 3586:24 3584:. 3580:. 3525:^ 3498:. 3494:. 3465:. 3461:. 3435:. 3396:^ 3272:. 3260:, 3116:, 2878:. 2862:. 2843:. 2773:. 2574:. 567:. 483:. 212:. 145:. 133:A 113:. 91:, 87:, 83:, 5169:e 5162:t 5155:v 5111:. 5090:. 5069:. 5041:. 4981:. 4959:. 4934:. 4928:: 4907:. 4879:. 4865:: 4859:9 4838:. 4824:: 4818:5 4797:. 4785:: 4760:. 4738:: 4719:. 4705:: 4682:. 4662:: 4636:. 4616:: 4590:. 4564:: 4531:. 4517:: 4486:. 4474:: 4445:. 4422:: 4395:. 4381:: 4352:. 4340:: 4315:. 4303:: 4297:5 4277:) 4263:. 4230:7 4213:. 4199:: 4177:. 4163:: 4141:. 4114:. 4100:: 4058:. 4021:. 4017:: 3990:. 3974:: 3955:. 3951:: 3945:4 3928:. 3908:: 3900:: 3854:. 3840:: 3794:. 3782:: 3713:. 3701:: 3672:. 3647:. 3633:: 3627:7 3606:. 3592:: 3549:. 3519:. 3477:. 3446:. 3420:. 3239:m 3138:i 3134:x 3129:m 3125:x 3121:2 3118:x 3114:1 3111:x 3107:m 3103:m 2983:. 2932:k 2852:k 2818:k 2814:k 2799:k 2743:n 2740:l 2731:1 2726:= 2723:W 2690:W 2683:e 2679:= 2656:W 2650:. 2620:= 2617:L 2604:L 2600:μ 2596:σ 2592:λ 2562:1 2546:= 2518:n 2510:) 2501:1 2498:( 2495:= 2490:n 2486:P 2458:1 2455:= 2449:+ 2444:1 2440:P 2436:+ 2431:0 2427:P 2400:, 2397:2 2394:, 2391:1 2388:= 2385:n 2379:, 2374:1 2368:n 2364:P 2350:= 2345:n 2341:P 2312:n 2308:P 2304:) 2298:+ 2292:( 2289:= 2284:1 2281:+ 2278:n 2274:P 2267:+ 2262:1 2256:n 2252:P 2225:1 2221:P 2217:) 2211:+ 2205:( 2202:= 2197:2 2193:P 2186:+ 2181:0 2177:P 2150:0 2146:P 2139:= 2134:1 2130:P 2097:1 2094:= 2090:| 2084:n 2080:L 2071:n 2067:E 2062:| 2039:n 2035:L 2031:= 2026:n 2022:E 2011:n 1997:} 1994:1 1991:, 1988:0 1985:{ 1978:| 1972:n 1968:L 1959:n 1955:E 1950:| 1939:n 1923:n 1919:L 1908:n 1892:n 1888:E 1873:n 1857:n 1853:P 1840:n 1753:c 1749:S 1745:A 1741:c 1713:) 1710:1 1704:n 1701:( 1680:n 1676:P 1645:1 1642:+ 1639:i 1629:i 1617:1 1611:n 1606:0 1603:= 1600:i 1585:1 1582:= 1579:n 1571:+ 1568:1 1564:1 1559:= 1554:0 1550:P 1526:1 1523:= 1516:1 1513:+ 1510:i 1500:i 1488:1 1482:n 1477:0 1474:= 1471:i 1456:1 1453:= 1450:n 1440:0 1436:P 1432:+ 1427:0 1423:P 1419:= 1414:n 1410:P 1399:0 1396:= 1393:n 1376:. 1360:1 1357:+ 1354:i 1344:i 1332:1 1326:n 1321:0 1318:= 1315:i 1305:0 1301:P 1297:= 1292:0 1288:P 1279:1 1266:1 1260:n 1250:n 1238:0 1225:2 1219:n 1209:1 1203:n 1192:= 1187:n 1183:P 1167:. 1153:0 1149:P 1140:1 1130:2 1118:0 1108:1 1097:= 1092:1 1088:P 1080:2 1070:1 1060:= 1057:) 1052:0 1048:P 1042:0 1029:1 1025:P 1019:1 1011:( 1004:2 996:1 991:+ 986:1 982:P 974:2 964:1 954:= 949:2 945:P 916:0 912:P 904:1 894:0 884:= 879:1 875:P 846:n 842:P 838:) 833:n 825:+ 820:n 812:( 809:= 804:1 801:+ 798:n 794:P 788:1 785:+ 782:n 774:+ 769:1 763:n 759:P 753:1 747:n 719:1 715:P 711:) 706:1 698:+ 693:1 685:( 682:= 677:2 673:P 667:2 659:+ 654:0 650:P 644:0 616:0 612:P 606:0 598:= 593:1 589:P 583:1 565:n 549:n 545:P 518:μ 514:λ 504:. 501:i 499:μ 494:i 492:λ 471:) 466:k 458:, 452:, 447:2 439:, 434:1 426:( 418:= 395:) 390:k 382:, 376:, 371:2 363:, 358:1 350:( 342:= 315:i 293:i 266:i 251:k 244:k 240:k 236:k 210:n 206:n 189:c 185:b 181:a 34:. 20:)

Index

Queueing model
First Come, First Served

Queue networks
equilibrium distribution
transient state
queues
operations research
Agner Krarup Erlang
teletraffic engineering
telecommunications
traffic engineering
computing
project management
industrial engineering
Queueing Systems
management science
black box


Survival analysis
birth–death process
average


steady state
balance equations
Kendall's notation
M/M/1 queue
Poisson process

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.