Knowledge (XXG)

Nucleic acid structure

Source 📝

265: 564:, is a form of the DNA duplex observed under dehydrating conditions. It is shorter and wider than B-DNA. RNA adopts this double helical form, and RNA-DNA duplexes are mostly A-form, but B-form RNA-DNA duplexes have been observed. In localized single strand dinucleotide contexts, RNA can also adopt the B-form without pairing to DNA. A-DNA has a deep, narrow major groove which does not make it easily accessible to proteins. On the other hand, its wide, shallow minor groove makes it accessible to proteins but with lower information content than the major groove. Its favored conformation is at low water concentrations. A-DNAs base pairs are tilted relative to the helix axis, and are displaced from the axis. The sugar pucker occurs at the C3'-endo and in RNA 2'-OH inhibits C2'-endo conformation. Long considered little more than a laboratory artifice, 575:
favored conformation occurs when there are high salt concentrations. There are some base substitutions but they require an alternating purine-pyrimidine sequence. The N2-amino of G H-bonds to 5' PO, which explains the slow exchange of protons and the need for the G purine. Z-DNA base pairs are nearly perpendicular to the helix axis. Z-DNA does not contain single base-pairs but rather a GpC repeat with P-P distances varying for GpC and CpG. On the GpC stack there is good base overlap, whereas on the CpG stack there is less overlap. Z-DNA's zigzag backbone is due to the C sugar conformation compensating for G glycosidic bond conformation. The conformation of G is syn, C2'-endo; for C it is anti, C3'-endo.
385: 33: 244:, hence the glycosidic bonds form between their 1 nitrogen and the 1' -OH of the deoxyribose. For both the purine and pyrimidine bases, the phosphate group forms a bond with the deoxyribose sugar through an ester bond between one of its negatively charged oxygen groups and the 5' -OH of the sugar. The polarity in DNA and RNA is derived from the oxygen and nitrogen atoms in the backbone. Nucleic acids are formed when nucleotides come together through phosphodiester linkages between the 5' and 3' carbon atoms. A 590:, which is the tertiary structure of DNA. Supercoiling is characterized by the linking number, twist and writhe. The linking number (Lk) for circular DNA is defined as the number of times one strand would have to pass through the other strand to completely separate the two strands. The linking number for circular DNA can only be changed by breaking of a covalent bond in one of the two strands. Always an integer, the linking number of a cccDNA is the sum of two components: twists (Tw) and writhes (Wr). 467:. It is minimally composed of two helical segments connected by single-stranded regions or loops. H-type fold pseudoknots are best characterized. In H-type fold, nucleotides in the hairpin-loop pair with the bases outside the hairpin stem forming second stem and loop. This causes formation of pseudoknots with two stems and two loops. Pseudoknots are functional elements in RNA structure having diverse function and found in most classes of RNA. 486: 44: 494: 692: 141: 368:. Although the two strands are aligned by hydrogen bonds in base pairs, the stronger forces holding the two strands together are stacking interactions between the bases. These stacking interactions are stabilized by Van der Waals forces and hydrophobic interactions, and show a large amount of local structural variability. There are also two grooves in the double helix, which are called 264: 664:. Although some of the concepts are not exactly the same, the quaternary structure refers to a higher-level of organization of nucleic acids. Moreover, it refers to interactions of the nucleic acids with other molecules. The most commonly seen form of higher-level organization of nucleic acids is seen in the form of 388:
An example of RNA secondary structure. This image includes several structural elements, including; single-stranded and double-stranded areas, bulges, internal loops and hairpin loops. Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded
470:
Secondary structure of RNA can be predicted by experimental data on the secondary structure elements, helices, loops, and bulges. DotKnot-PW method is used for comparative pseudoknots prediction. The main points in the DotKnot-PW method is scoring the similarities found in stems, secondary elements
637:
Twists are the number of times the two strands of DNA are twisted around each other. Writhes are number of times the DNA helix crosses over itself. DNA in cells is negatively supercoiled and has the tendency to unwind. Hence the separation of strands is easier in negatively supercoiled DNA than in
578:
A linear DNA molecule having free ends can rotate, to adjust to changes of various dynamic processes in the cell, by changing how many times the two chains of its double helix twist around each other. Some DNA molecules are circular and are topologically constrained. More recently circular RNA was
557:
is the most common form of DNA in vivo and is a more narrow, elongated helix than A-DNA. Its wide major groove makes it more accessible to proteins. On the other hand, it has a narrow minor groove. B-DNA's favored conformations occur at high water concentrations; the hydration of the minor groove
574:
is a relatively rare left-handed double-helix. Given the proper sequence and superhelical tension, it can be formed in vivo but its function is unclear. It has a more narrow, more elongated helix than A or B. Z-DNA's major groove is not really a groove, and it has a narrow minor groove. The most
505:
constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3-dimensional shape. There are 4 areas in which the structural forms of DNA can differ.
248:
is the order of nucleotides within a DNA (GACT) or RNA (GACU) molecule that is determined by a series of letters. Sequences are presented from the 5' to 3' end and determine the covalent structure of the entire molecule. Sequences can be
951:
Katsuyuki, Aoki; Kazutaka, Murayama; Hu, Ning-Hai (2016). "Solid State Structures of Alkali Metal Ion Complexes Formed by Low-Molecular-Weight Ligands of Biological Relevance". In Astrid, Sigel; Helmut, Sigel; Roland K.O., Sigel (eds.).
558:
appears to favor B-DNA. B-DNA base pairs are nearly perpendicular to the helix axis. The sugar pucker which determines the shape of the a-helix, whether the helix will exist in the A-form or in the B-form, occurs at the C2'-endo.
393:
The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules.
422:
The antiparallel strands form a helical shape. Bulges and internal loops are formed by separation of the double helical tract on either one strand (bulge) or on both strands (internal loops) by unpaired nucleotides.
356:. It has a single ring structure, a six-membered ring containing nitrogen. A purine base always pairs with a pyrimidine base (guanine (G) pairs with cytosine (C) and adenine (A) pairs with thymine (T) or 253:
to another sequence in that the base on each position is complementary as well as in the reverse order. An example of a complementary sequence to AGCT is TCGA. DNA is double-stranded containing both a
320:
Secondary structure is the set of interactions between bases, i.e., which parts of strands are bound to each other. In DNA double helix, the two strands of DNA are held together by
301:
There are three potential metal binding groups on nucleic acids: phosphate, sugar, and base moieties. Solid-state structure of complexes with alkali metal ions have been reviewed.
433:
is formed when the RNA chains fold back on themselves to form a double helical tract called the 'stem', the unpaired nucleotides forms single stranded region called the 'loop'. A
586:
A covalently closed, circular DNA (also known as cccDNA) is topologically constrained as the number of times the chains coiled around one other cannot change. This cccDNA can be
39: 37: 38: 1473: 632: 126:. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary. 36: 332:
with the nucleotide on the other strand. The secondary structure is responsible for the shape that the nucleic acid assumes. The bases in the DNA are classified as
969: 884: 859: 811: 1571: 1466: 746: 731: 250: 1063:
Hollyfield JG, Besharse JC, Rayborn ME (December 1976). "The effect of light on the quantity of phagosomes in the pigment epithelium".
1398: 1576: 1566: 752: 655: 1556: 310: 269: 1100:"The tRNA-like structure at the 3' terminus of turnip yellow mosaic virus RNA. Differences and similarities with canonical tRNA" 1561: 1459: 480: 384: 348:. Purines consist of a double ring structure, a six-membered and a five-membered ring containing nitrogen. The pyrimidines are 501:
Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and
272:
such as this four-arm junction. These four strands associate into this structure because it maximizes the number of correct
1295:
Chen X; Ramakrishnan B; Sundaralingam M (1995). "Crystal structures of B-form DNA-RNA chimers complexed with distamycin".
993:
Sedova A, Banavali NK (2017). "Geometric Patterns for Neighboring Bases Near the Stacked State in Nucleic Acid Strands".
1523: 1513: 661: 1586: 1503: 758: 646:. The plectonemic supercoil is found in prokaryotes, while the solenoidal supercoiling is mostly seen in eukaryotes. 1508: 464: 1252:
Dickerson RE, Drew HR, Conner BN, Wing RM, Fratini AV, Kopka ML (April 1982). "The anatomy of A-, B-, and Z-DNA".
1642: 1498: 741: 254: 58: 437:
is a four-base pairs hairpin RNA structure. There are three common families of tetraloop in ribosomal RNA:
1533: 1482: 1338:
Sedova A, Banavali NK (2016). "RNA approaches the B-form in stacked single strand dinucleotide contexts".
706: 111: 1551: 827: 245: 135: 1261: 579:
described as well to be a natural pervasive class of nucleic acids, expressed in many organisms (see
240:
between their 9 nitrogen and the 1' -OH group of the deoxyribose. Cytosine, thymine, and uracil are
1612: 1581: 1434: 773: 736: 711: 540: 153: 1408: 1363: 1320: 716: 794:
Krieger M, Scott MP, Matsudaira PT, Lodish HF, Darnell JE, Lawrence Z, Kaiser C, Berk A (2004).
1518: 1490: 1394: 1355: 1312: 1277: 1229: 1180: 1129: 1080: 1045: 1010: 975: 965: 933: 880: 855: 807: 763: 672:. Also, the quaternary structure refers to the interactions between separate RNA units in the 596: 75: 1637: 1386: 1347: 1304: 1269: 1219: 1211: 1170: 1160: 1119: 1111: 1072: 1037: 1002: 957: 923: 913: 1420: 237: 225: 1265: 485: 1607: 1528: 1224: 1199: 1175: 1148: 726: 697: 639: 544: 1124: 1099: 928: 901: 1657: 1076: 800: 768: 721: 587: 548: 321: 1367: 1215: 1668: 1663: 1622: 1324: 580: 524: 493: 373: 369: 365: 361: 115: 268:
Nucleic acid design can be used to create nucleic acid complexes with complicated
156:. It is this linear sequence of nucleotides that make up the primary structure of 1165: 918: 1006: 961: 677: 214: 62: 795: 691: 1617: 687: 643: 460: 337: 325: 241: 168: 149: 140: 70: 66: 17: 1390: 1273: 1115: 665: 434: 430: 426: 329: 273: 258: 1359: 1233: 1184: 1049: 1041: 1014: 979: 937: 261:
strand. Therefore, the complementary sequence will be to the sense strand.
1316: 1281: 1133: 1098:
Rietveld K, Van Poelgeest R, Pleij CW, Van Boom JH, Bosch L (March 1982).
1084: 543:
structures have been demonstrated in repetitive polypurine:polypyrimidine
1451: 673: 349: 285: 183: 1308: 1602: 956:. Metal Ions in Life Sciences. Vol. 16. Springer. pp. 43–66. 669: 429:
or hairpin loop is the most common element of RNA secondary structure.
353: 345: 341: 289: 281: 277: 210: 188: 178: 173: 1351: 364:
of the two polynucleotide strands wrapped around each other to form a
99: 95: 91: 87: 83: 79: 502: 357: 333: 233: 218: 198: 875:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Wlater P (2002).
571: 565: 561: 554: 536: 532: 528: 492: 484: 383: 139: 850:
Anthony-Cahill SJ, Mathews CK, van Holde KE, Appling DR (2012).
660:
The quaternary structure of nucleic acids is similar to that of
43: 1455: 397:
The four basic elements in the secondary structure of RNA are:
360:(U)). DNA's secondary structure is predominantly determined by 31: 1632: 1627: 1200:"Predicting pseudoknotted structures across two RNA sequences" 202: 192: 161: 157: 123: 119: 42: 27:
Biomolecular structure of nucleic acids such as DNA and RNA
1435:"Structural Biochemistry/Nucleic Acid/DNA/DNA structure" 1028:
Tinoco I, Bustamante C (October 1999). "How RNA folds".
668:
which leads to its interactions with the small proteins
638:
relaxed DNA. The two components of supercoiled DNA are
566:
A-DNA is now known to have several biological functions
854:(4th ed.). Englewood Cliffs, N.J: Prentice Hall. 519:
Difference in size between the major and minor grooves
845: 843: 841: 599: 57:(primary, secondary, tertiary, and quaternary) using 1149:"Pseudoknots: RNA structures with diverse functions" 1595: 1542: 1489: 1198:Sperschneider J, Datta A, Wise MJ (December 2012). 148:Primary structure consists of a linear sequence of 799: 626: 463:is an RNA secondary structure first identified in 457:is a purine). UNCG is the most stable tetraloop. 1247: 1245: 1243: 1381:Mirkin SM (2001). "DNA Topology: Fundamentals". 902:"The emergence of complexity: lessons from DNA" 35: 1467: 8: 232:The nitrogen bases adenine and guanine are 1474: 1460: 1452: 954:The Alkali Metal Ions: Their Role for Life 1223: 1174: 1164: 1123: 927: 917: 796:"Section 4.1: Structure of Nucleic Acids" 598: 263: 47:The image above contains clickable links 877:Molecular Biology of the Cell (4th ed.) 786: 164:. Nucleotides consist of 3 components: 1416: 1406: 7: 747:Nucleic acid structure determination 1147:Staple DW, Butcher SE (June 2005). 732:Non-helical models of DNA structure 453:is one of the four nucleotides and 523:The tertiary arrangement of DNA's 25: 806:. New York: W.H. Freeman and CO. 753:Nucleic acid structure prediction 656:Nucleic acid quaternary structure 879:. New York NY: Garland Science. 690: 311:Nucleic acid secondary structure 297:Complexes with alkali metal ions 481:Nucleic acid tertiary structure 376:based on their relative size. 1: 1216:10.1093/bioinformatics/bts575 516:Number of base pairs per turn 1166:10.1371/journal.pbio.0030213 1077:10.1016/0014-4835(76)90221-9 1030:Journal of Molecular Biology 919:10.1371/journal.pbio.0020431 828:"Structure of Nucleic Acids" 662:protein quaternary structure 152:that are linked together by 1007:10.1021/acs.biochem.6b01101 962:10.1007/978-3-319-21756-7_3 759:Nucleic acid thermodynamics 1685: 653: 510:Handedness – right or left 478: 465:turnip yellow mosaic virus 308: 133: 1643:Nucleic acid double helix 1297:Nature Structural Biology 1065:Experimental Eye Research 742:Nucleic acid double helix 144:Chemical structure of DNA 627:{\displaystyle Lk=Tw+Wr} 513:Length of the helix turn 471:and H-type pseudoknots. 236:in structure and form a 1391:10.1038/npg.els.0001038 1274:10.1126/science.7071593 900:Mao C (December 2004). 489:DNA structure and bases 292:. Image from Mao, 2004. 1544:Nucleic acid structure 1483:Biomolecular structure 1104:Nucleic Acids Research 1042:10.1006/jmbi.1999.3001 802:Molecular cell biology 707:Biomolecular structure 628: 498: 490: 390: 293: 145: 108:Nucleic acid structure 104: 61:and examples from the 55:nucleic acid structure 48: 1116:10.1093/nar/10.6.1929 629: 496: 488: 387: 267: 246:nucleic acid sequence 143: 136:Nucleic acid sequence 46: 41: 650:Quaternary structure 597: 270:secondary structures 1613:Protein engineering 1309:10.1038/nsb0995-733 1266:1982Sci...216..475D 774:Triple-stranded DNA 737:Nucleic acid design 712:Crosslinking of DNA 541:Triple-stranded DNA 497:A-B-Z-DNA Side View 305:Secondary structure 217:(found in DNA) and 154:phosphodiester bond 717:DNA nanotechnology 624: 527:in space includes 499: 491: 475:Tertiary structure 391: 340:. The purines are 294: 146: 105: 49: 1651: 1650: 1491:Protein structure 1352:10.1002/bip.22750 1001:(10): 1426–1443. 971:978-3-319-21755-0 886:978-0-8153-3218-3 861:978-0-13-800464-4 813:978-0-7167-4366-8 764:Protein structure 130:Primary structure 51:Interactive image 16:(Redirected from 1676: 1638:Structural motif 1476: 1469: 1462: 1453: 1446: 1445: 1443: 1441: 1431: 1425: 1424: 1418: 1414: 1412: 1404: 1378: 1372: 1371: 1335: 1329: 1328: 1292: 1286: 1285: 1260:(4545): 475–85. 1249: 1238: 1237: 1227: 1195: 1189: 1188: 1178: 1168: 1144: 1138: 1137: 1127: 1095: 1089: 1088: 1060: 1054: 1053: 1025: 1019: 1018: 990: 984: 983: 948: 942: 941: 931: 921: 897: 891: 890: 872: 866: 865: 847: 836: 835: 824: 818: 817: 805: 791: 700: 695: 694: 633: 631: 630: 625: 226:phosphate groups 213:which is called 169:Nitrogenous base 102: 45: 34: 21: 1684: 1683: 1679: 1678: 1677: 1675: 1674: 1673: 1654: 1653: 1652: 1647: 1591: 1538: 1485: 1480: 1450: 1449: 1439: 1437: 1433: 1432: 1428: 1415: 1405: 1401: 1380: 1379: 1375: 1337: 1336: 1332: 1294: 1293: 1289: 1251: 1250: 1241: 1210:(23): 3058–65. 1197: 1196: 1192: 1146: 1145: 1141: 1097: 1096: 1092: 1062: 1061: 1057: 1027: 1026: 1022: 992: 991: 987: 972: 950: 949: 945: 899: 898: 894: 887: 874: 873: 869: 862: 849: 848: 839: 826: 825: 821: 814: 793: 792: 788: 783: 778: 755:(computational) 696: 689: 686: 658: 652: 595: 594: 483: 477: 382: 318: 313: 307: 299: 238:glycosidic bond 221:(found in RNA). 138: 132: 74: 40: 32: 28: 23: 22: 15: 12: 11: 5: 1682: 1680: 1672: 1671: 1666: 1656: 1655: 1649: 1648: 1646: 1645: 1640: 1635: 1630: 1625: 1620: 1615: 1610: 1608:Protein domain 1605: 1599: 1597: 1593: 1592: 1590: 1589: 1587:Thermodynamics 1584: 1579: 1574: 1569: 1564: 1559: 1554: 1548: 1546: 1540: 1539: 1537: 1536: 1534:Thermodynamics 1531: 1526: 1521: 1516: 1511: 1506: 1501: 1495: 1493: 1487: 1486: 1481: 1479: 1478: 1471: 1464: 1456: 1448: 1447: 1426: 1417:|journal= 1400:978-0470016176 1399: 1373: 1330: 1303:(9): 733–735. 1287: 1239: 1204:Bioinformatics 1190: 1139: 1110:(6): 1929–46. 1090: 1055: 1020: 985: 970: 943: 892: 885: 867: 860: 837: 819: 812: 785: 784: 782: 779: 777: 776: 771: 766: 761: 756: 750: 749:(experimental) 744: 739: 734: 729: 727:Gene structure 724: 719: 714: 709: 703: 702: 701: 698:Biology portal 685: 682: 654:Main article: 651: 648: 635: 634: 623: 620: 617: 614: 611: 608: 605: 602: 547:sequences and 545:Microsatellite 521: 520: 517: 514: 511: 479:Main article: 476: 473: 420: 419: 414: 409: 404: 389:DNA molecules. 381: 378: 328:on one strand 322:hydrogen bonds 317: 314: 309:Main article: 306: 303: 298: 295: 257:strand and an 230: 229: 222: 211:5-carbon sugar 208: 207: 206: 196: 186: 181: 176: 134:Main article: 131: 128: 110:refers to the 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1681: 1670: 1667: 1665: 1662: 1661: 1659: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1611: 1609: 1606: 1604: 1601: 1600: 1598: 1594: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1572:Determination 1570: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1549: 1547: 1545: 1541: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1519:Determination 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1496: 1494: 1492: 1488: 1484: 1477: 1472: 1470: 1465: 1463: 1458: 1457: 1454: 1436: 1430: 1427: 1422: 1410: 1402: 1396: 1392: 1388: 1384: 1377: 1374: 1369: 1365: 1361: 1357: 1353: 1349: 1345: 1341: 1334: 1331: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1291: 1288: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1248: 1246: 1244: 1240: 1235: 1231: 1226: 1221: 1217: 1213: 1209: 1205: 1201: 1194: 1191: 1186: 1182: 1177: 1172: 1167: 1162: 1158: 1154: 1150: 1143: 1140: 1135: 1131: 1126: 1121: 1117: 1113: 1109: 1105: 1101: 1094: 1091: 1086: 1082: 1078: 1074: 1071:(6): 623–35. 1070: 1066: 1059: 1056: 1051: 1047: 1043: 1039: 1036:(2): 271–81. 1035: 1031: 1024: 1021: 1016: 1012: 1008: 1004: 1000: 996: 989: 986: 981: 977: 973: 967: 963: 959: 955: 947: 944: 939: 935: 930: 925: 920: 915: 911: 907: 903: 896: 893: 888: 882: 878: 871: 868: 863: 857: 853: 846: 844: 842: 838: 833: 829: 823: 820: 815: 809: 804: 803: 797: 790: 787: 780: 775: 772: 770: 769:Satellite DNA 767: 765: 762: 760: 757: 754: 751: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 722:DNA supercoil 720: 718: 715: 713: 710: 708: 705: 704: 699: 693: 688: 683: 681: 679: 675: 671: 667: 663: 657: 649: 647: 645: 641: 621: 618: 615: 612: 609: 606: 603: 600: 593: 592: 591: 589: 584: 582: 576: 573: 569: 567: 563: 559: 556: 552: 550: 549:Satellite DNA 546: 542: 538: 534: 530: 526: 518: 515: 512: 509: 508: 507: 504: 495: 487: 482: 474: 472: 468: 466: 462: 458: 456: 452: 448: 444: 440: 436: 432: 428: 424: 418: 415: 413: 410: 408: 405: 403: 400: 399: 398: 395: 386: 379: 377: 375: 371: 367: 363: 359: 355: 351: 347: 343: 339: 335: 331: 327: 323: 315: 312: 304: 302: 296: 291: 287: 283: 279: 275: 271: 266: 262: 260: 256: 252: 251:complementary 247: 243: 239: 235: 227: 223: 220: 216: 212: 209: 204: 200: 197: 194: 190: 187: 185: 182: 180: 177: 175: 172: 171: 170: 167: 166: 165: 163: 159: 155: 151: 142: 137: 129: 127: 125: 121: 117: 116:nucleic acids 113: 109: 101: 97: 93: 89: 85: 81: 77: 72: 68: 64: 60: 56: 52: 30: 19: 18:RNA structure 1623:Nucleic acid 1543: 1438:. Retrieved 1429: 1382: 1376: 1346:(2): 65–82. 1343: 1339: 1333: 1300: 1296: 1290: 1257: 1253: 1207: 1203: 1193: 1156: 1153:PLOS Biology 1152: 1142: 1107: 1103: 1093: 1068: 1064: 1058: 1033: 1029: 1023: 998: 995:Biochemistry 994: 988: 953: 946: 912:(12): e431. 909: 906:PLOS Biology 905: 895: 876: 870: 852:Biochemistry 851: 831: 822: 801: 789: 659: 636: 585: 577: 570: 560: 553: 525:double helix 522: 500: 469: 459: 454: 450: 446: 442: 438: 425: 421: 416: 411: 406: 401: 396: 392: 374:minor groove 370:major groove 366:double helix 362:base-pairing 319: 300: 231: 224:One or more 201:(present in 191:(present in 147: 107: 106: 54: 50: 29: 1440:11 December 1340:Biopolymers 1159:(6): e213. 678:spliceosome 644:plectonemic 588:supercoiled 338:pyrimidines 326:nucleotides 288:matched to 280:matched to 242:pyrimidines 215:deoxyribose 150:nucleotides 63:VS ribozyme 59:DNA helices 1658:Categories 1618:Proteasome 1577:Prediction 1567:Quaternary 1524:Prediction 1514:Quaternary 832:SparkNotes 781:References 461:Pseudoknot 330:base pairs 274:base pairs 71:nucleosome 67:telomerase 1557:Secondary 1504:Secondary 1419:ignored ( 1409:cite book 666:chromatin 435:tetraloop 431:Stem-loop 427:Stem-loop 417:Junctions 259:antisense 112:structure 1596:See also 1562:Tertiary 1509:Tertiary 1368:35949700 1360:26443416 1234:23044552 1185:15941360 1050:10550208 1015:28187685 980:26860299 938:15597116 684:See also 674:ribosome 670:histones 640:solenoid 350:cytosine 184:Cytosine 118:such as 1603:Protein 1552:Primary 1499:Primary 1325:6886088 1317:7552741 1282:7071593 1262:Bibcode 1254:Science 1225:3516145 1176:1149493 1134:7079175 1085:1087245 581:CircRNA 402:Helices 354:thymine 346:guanine 342:adenine 334:purines 276:, with 189:Thymine 179:Guanine 174:Adenine 1582:Design 1529:Design 1397:  1366:  1358:  1323:  1315:  1280:  1232:  1222:  1183:  1173:  1132:  1125:320581 1122:  1083:  1048:  1013:  978:  968:  936:  929:535573 926:  883:  858:  810:  535:, and 503:steric 445:, and 407:Bulges 358:uracil 324:. The 234:purine 219:ribose 199:Uracil 1364:S2CID 1321:S2CID 572:Z-DNA 562:A-DNA 555:B-DNA 537:Z-DNA 533:A-DNA 529:B-DNA 412:Loops 255:sense 205:only) 195:only) 1442:2012 1421:help 1395:ISBN 1356:PMID 1313:PMID 1278:PMID 1230:PMID 1181:PMID 1130:PMID 1081:PMID 1046:PMID 1011:PMID 976:PMID 966:ISBN 934:PMID 881:ISBN 856:ISBN 808:ISBN 642:and 447:CUUG 443:GNRA 439:UNCG 372:and 352:and 344:and 336:and 284:and 122:and 100:1EQZ 96:1YMO 92:4R4V 88:4OCB 84:1BNA 80:ADNA 69:and 65:and 1669:RNA 1664:DNA 1633:RNA 1628:DNA 1387:doi 1383:eLS 1348:doi 1344:105 1305:doi 1270:doi 1258:216 1220:PMC 1212:doi 1171:PMC 1161:doi 1120:PMC 1112:doi 1073:doi 1038:doi 1034:293 1003:doi 958:doi 924:PMC 914:doi 676:or 583:). 539:. 380:RNA 316:DNA 203:RNA 193:DNA 162:RNA 160:or 158:DNA 124:RNA 120:DNA 114:of 76:PDB 73:. ( 53:of 1660:: 1413:: 1411:}} 1407:{{ 1393:. 1385:. 1362:. 1354:. 1342:. 1319:. 1311:. 1299:. 1276:. 1268:. 1256:. 1242:^ 1228:. 1218:. 1208:28 1206:. 1202:. 1179:. 1169:. 1155:. 1151:. 1128:. 1118:. 1108:10 1106:. 1102:. 1079:. 1069:23 1067:. 1044:. 1032:. 1009:. 999:56 997:. 974:. 964:. 932:. 922:. 908:. 904:. 840:^ 830:. 798:. 680:. 568:. 551:. 531:, 441:, 290:Gs 286:Cs 282:Ts 278:As 103:​) 98:, 94:, 90:, 86:, 82:, 78:: 1475:e 1468:t 1461:v 1444:. 1423:) 1403:. 1389:: 1370:. 1350:: 1327:. 1307:: 1301:2 1284:. 1272:: 1264:: 1236:. 1214:: 1187:. 1163:: 1157:3 1136:. 1114:: 1087:. 1075:: 1052:. 1040:: 1017:. 1005:: 982:. 960:: 940:. 916:: 910:2 889:. 864:. 834:. 816:. 622:r 619:W 616:+ 613:w 610:T 607:= 604:k 601:L 455:R 451:N 449:( 228:. 20:)

Index

RNA structure
nucleic acid structure
DNA helices
VS ribozyme
telomerase
nucleosome
PDB
ADNA
1BNA
4OCB
4R4V
1YMO
1EQZ
structure
nucleic acids
DNA
RNA
Nucleic acid sequence

nucleotides
phosphodiester bond
DNA
RNA
Nitrogenous base
Adenine
Guanine
Cytosine
Thymine
DNA
Uracil

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.