Knowledge (XXG)

Raman scattering

Source 📝

403: 391: 33: 1066:, the lower state will be more populated than the upper state. Therefore, the rate of transitions from the more populated lower state to the upper state (Stokes transitions) will be higher than in the opposite direction (anti-Stokes transitions). Correspondingly, Stokes scattering peaks are stronger than anti-Stokes scattering peaks. Their ratio depends on the temperature, and can therefore be exploited to measure it: 3318: 1041: 316: 800:. A molecule can be excited to a higher vibrational mode through the direct absorption of a photon of the appropriate energy, which falls in the terahertz or infrared range. This forms the basis of infrared spectroscopy. Alternatively, the same vibrational excitation can be produced by an inelastic scattering process. This is called Stokes Raman scattering, by analogy with the 1288: 3330: 1798:
In an optically anisotropic crystal, a light ray may have two modes of propagation with different polarizations and different indices of refraction. If energy may be transferred between these modes by a quadrupolar (Raman) resonance, phases remain coherent along the whole path, transfer of energy may
1854:
In the original description of the inverse Raman effect, the authors discuss both absorption from a continuum of higher frequencies and absorption from a continuum of lower frequencies. They note that absorption from a continuum of lower frequencies will not be observed if the Raman frequency of the
836:
which corresponds to the energy of the exciting laser photons. Absorption of a photon excites the molecule to the imaginary state and re-emission leads to Raman or Rayleigh scattering. In all three cases the final state has the same electronic energy as the initial state but is higher in vibrational
1806:
Light may be pulsed, so that beats do not appear. In Impulsive Stimulated Raman Scattering (ISRS), the length of the pulses must be shorter than all relevant time constants. Interference of Raman and incident lights is too short to allow beats, so that it produces a frequency shift roughly, in best
1298:
In contrast to IR spectroscopy, where there is a requirement for a change in dipole moment for vibrational excitation to take place, Raman scattering requires a change in polarizability. A Raman transition from one state to another is allowed only if the molecular polarizability of those states is
1072: 1660:
the intensity of Raman scattering when the analyzer is aligned with the polarization of the incident laser. When polarized light interacts with a molecule, it distorts the molecule which induces an equal and opposite effect in the plane-wave, causing it to be rotated by the difference between the
1032:
A classical physics based model is able to account for Raman scattering and predicts an increase in the intensity which scales with the fourth-power of the light frequency. Light scattering by a molecule is associated with oscillations of an induced electric dipole. The oscillating electric field
1044:
The different possibilities of light scattering: Rayleigh scattering (no exchange of energy: incident and scattered photons have the same energy), Stokes Raman scattering (atom or molecule absorbs energy: scattered photon has less energy than the incident photon) and anti-Stokes Raman scattering
1061:
line. The frequency shifts are symmetric because they correspond to the energy difference between the same upper and lower resonant states. The intensities of the pairs of features will typically differ, though. They depend on the populations of the initial states of the material, which in turn
1902:
employs the Raman effect for substances analysis. The spectrum of the Raman-scattered light depends on the molecular constituents present and their state, allowing the spectrum to be used for material identification and analysis. Raman spectroscopy is used to analyze a wide range of materials,
1879:
energies. The initial Raman spectrum is built up with spontaneous emission and is amplified later on. At high pumping levels in long fibers, higher-order Raman spectra can be generated by using the Raman spectrum as a new starting point, thereby building a chain of new spectra with decreasing
327:
The elastic light scattering phenomena called Rayleigh scattering, in which light retains its energy, was described in the 19th century. The intensity of Rayleigh scattering is about 10 to 10 compared to the intensity of the exciting source. In 1908, another form of elastic scattering, called
343:
published his work on the "Molecular Diffraction of Light", the first of a series of investigations with his collaborators that ultimately led to his discovery (on 16 February 1928) of the radiation effect that bears his name. The Raman effect was first reported by Raman and his coworker
1723:
can take place when some Stokes photons have previously been generated by spontaneous Raman scattering (and somehow forced to remain in the material), or when deliberately injecting Stokes photons ("signal light") together with the original light ("pump light"). In that case, the total
257:, and therefore color) as the incident photons, but different direction. Rayleigh scattering usually has an intensity in the range 0.1% to 0.01% relative to that of a radiation source. An even smaller fraction of the scattered photons (about 1 in a million) can be scattered 1880:
amplitude. The disadvantage of intrinsic noise due to the initial spontaneous process can be overcome by seeding a spectrum at the beginning, or even using a feedback loop as in a resonator to stabilize the process. Since this technology easily fits into the fast evolving
360:
on 21 February 1928 (5 days after Raman and Krishnan). In the former Soviet Union, Raman's contribution was always disputed; thus in Russian scientific literature the effect is usually referred to as "combination scattering" or "combinatory scattering". Raman received the
1548:
and Raman activity which may assist in assigning peaks in Raman spectra. Light polarized in a single direction only gives access to some Raman–active modes, but rotating the polarization gives access to other modes. Each mode is separated according to its symmetry.
724: 1033:
component of electromagnetic radiation may bring about an induced dipole in a molecule which follows the alternating electric field which is modulated by the molecular vibrations. Oscillations at the external field frequency are therefore observed along with
1724:
Raman-scattering rate is increased beyond that of spontaneous Raman scattering: pump photons are converted more rapidly into additional Stokes photons. The more Stokes photons that are already present, the faster more of them are added. Effectively, this
566:
only have two rotations because rotations along the bond axis do not change the positions of the atoms in the molecule. The remaining degrees of freedom correspond to molecular vibrational modes. These modes include stretching and bending motions of the
502:, and vibrational motion. Three of the degrees of freedom correspond to translational motion of the molecule as a whole (along each of the three spatial dimensions). Similarly, three degrees of freedom correspond to rotations of the molecule about the 422:
to record spectra. Early spectra took hours or even days to acquire due to weak light sources, poor sensitivity of the detectors and the weak Raman scattering cross-sections of most materials. The most common modern detectors are
1283:{\displaystyle {\frac {I_{\text{Stokes}}}{I_{\text{anti-Stokes}}}}={\frac {({\tilde {\nu }}_{0}-{\tilde {\nu }}_{M})^{4}}{({\tilde {\nu }}_{0}+{\tilde {\nu }}_{M})^{4}}}\exp \left({\frac {hc\,{\tilde {\nu }}_{M}}{k_{B}T}}\right)} 1884:
field and there is demand for transversal coherent high-intensity light sources (i.e., broadband telecommunication, imaging applications), Raman amplification and spectrum generation might be widely used in the near-future.
734:
is a quantum number. Since the selection rules for Raman and infrared absorption generally dictate that only fundamental vibrations are observed, infrared excitation or Stokes Raman excitation results in an energy change of
494:. This number arises from the ability of each atom in a molecule to move in three dimensions. When dealing with molecules, it is more common to consider the movement of the molecule as a whole. Consequently, the 3 2808:
Kosloff, Ronnie; Hammerich, Audrey Dell; Tannor, David (1992). "Excitation without demolition: Radiative excitation of ground-surface vibration by impulsive stimulated Raman scattering with damage control".
837:
energy in the case of Stokes Raman scattering, lower in the case of anti-Stokes Raman scattering or the same in the case of Rayleigh scattering. Normally this is thought of in terms of wavenumbers, where
1340: 792: 3368: 1811:
In labs, femtosecond laser pulses must be used because the ISRS becomes very weak if the pulses are too long. Thus ISRS cannot be observed using nanosecond pulses making ordinary time-incoherent light.
1712:
The Raman-scattering process as described above takes place spontaneously; i.e., in random time intervals, one of the many incoming photons is scattered by the material. This process is thus called
965: 3166: 1824:. In some circumstances, Stokes scattering can exceed anti-Stokes scattering; in these cases the continuum (on leaving the material) is observed to have an absorption line (a dip in intensity) at ν 1023: 2551:. 75th Birthday of Christian Colliex, 85th Birthday of Archie Howie, and 75th Birthday of Hannes Lichte / PICO 2019 - Fifth Conference on Frontiers of Aberration Corrected Electron Microscopy. 402: 607: 1604: 1426: 1956:: 'Rayleigh scattering of molecular nitrogen and oxygen in the atmosphere includes elastic scattering as well as the inelastic contribution from rotational Raman scattering in air'). 1692: 2600:
Itoh, Yuki; Hasegawa, Takeshi (2 May 2012). "Polarization Dependence of Raman Scattering from a Thin Film Involving Optical Anisotropy Theorized for Molecular Orientation Analysis".
907: 871: 796:
The energy range for vibrations is in the range of approximately 5 to 3500 cm. The fraction of molecules occupying a given vibrational mode at a given temperature follows a
3086: 1462: 1523:
is the rotational state. This generally is only relevant to molecules in the gas phase where the Raman linewidths are small enough for rotational transitions to be resolved.
1501: 2273: 457:
Raman scattering generally gives information about vibrations within a molecule. In the case of gases, information about rotational energy can also be gleaned. For solids,
1559:, which is the ratio of the Raman scattering with polarization orthogonal to the incident laser and the Raman scattering with the same polarization as the incident laser: 821: 1057:
to the incident photons, more commonly called a Raman shift. The locations of corresponding Stokes and anti-Stokes peaks form a symmetric pattern around the Rayleigh
2718: 1658: 1631: 1521: 1299:
different. For a vibration, this means that the derivative of the polarizability with respect to the normal coordinate associated to the vibration is non-zero:
560: 540: 520: 2736:
Weiner, A. M.; Wiederrecht, Gary P.; Nelson, Keith A.; Leaird, D. E. (1991). "Femtosecond multiple-pulse impulsive stimulated Raman scattering spectroscopy".
3128: 2543:
Krivanek, O. L.; Dellby, N.; Hachtel, J. A.; Idrobo, J. -C.; Hotz, M. T.; Plotkin-Swing, B.; Bacon, N. J.; Bleloch, A. L.; Corbin, G. J. (1 August 2019).
414:
as an exciting light source. Because lasers were not available until more than three decades after the discovery of the effect, Raman and Krishnan used a
1903:
including gases, liquids, and solids. Highly complex materials such as biological organisms and human tissue can also be analyzed by Raman spectroscopy.
1875:, in which the frequencies of the two incident photons are equal and the emitted spectra are found in two bands separated from the incident light by the 483: 474: 261:, with the scattered photons having an energy different (usually lower) from those of the incident photons—these are Raman scattered photons. Because of 2860:
Voehringer, Peter; Scherer, Norbert F. (1995). "Transient Grating Optical Heterodyne Detected Impulsive Stimulated Raman Scattering in Simple Liquids".
1526:
A selection rule relevant only to ordered solid materials states that only phonons with zero phase angle can be observed by IR and Raman, except when
2643:
Iliev, M. N.; Abrashev, M. V.; Laverdiere, J.; Jandi, S.; et al. (16 February 2006). "Distortion-dependent Raman spectra and mode mixing in RMnO
3151: 1978: 824:
rather than light. An increase in photon energy which leaves the molecule in a lower vibrational energy state is called anti-Stokes scattering.
268:
The effect is exploited by chemists and physicists to gain information about materials for a variety of purposes by performing various forms of
2702: 2068: 1984: 369: 159: 1633:
is the intensity of Raman scattering when the analyzer is rotated 90 degrees with respect to the incident light's polarization axis, and
3373: 3181: 3171: 3055: 2037: 439:
The following focuses on the theory of normal (non-resonant, spontaneous, vibrational) Raman scattering of light by discrete molecules.
281: 2281: 3232: 3101: 2415: 73: 2531: 1302: 738: 3121: 2000: 1025:
is given for anti-Stokes. When the exciting laser energy corresponds to an actual electronic excitation of the molecule then the
3191: 3186: 277: 339:
in 1923 and in older German-language literature it has been referred to as the Smekal-Raman-Effekt. In 1922, Indian physicist
2501: 2473: 2440: 2096: 1917:
is used in atmospheric physics to measure the atmospheric extinction coefficient and the water vapour vertical distribution.
1757:. Generally, as the exciting frequency is not equal to the scattered Raman frequency, the corresponding relative wavelengths 912: 809: 3295: 3176: 1800: 1707: 816:(now known to correspond to lower energy) than the absorbed incident light. Conceptually similar effects can be caused by 78: 3334: 970: 222:, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves 3161: 2026: 1026: 817: 2922:
Jones, W. J.; Stoicheff, B. P. (30 November 1964). "Inverse Raman Spectra: Induced Absorption at Optical Frequencies".
2781:
Dhar, Lisa; Rogers, John A.; Nelson, Keith A. (1994). "Time-resolved vibrational spectroscopy in the impulsive limit".
719:{\displaystyle E_{n}=h\left(n+{1 \over 2}\right)\nu =h\left(n+{1 \over 2}\right){1 \over {2\pi }}{\sqrt {k \over m}}\!} 3322: 3114: 594: 588: 1867:
For high-intensity continuous wave (CW) lasers, stimulated Raman scattering can be used to produce a broad bandwidth
1562: 1345: 3363: 2277: 1920:
Stimulated Raman transitions are also widely used for manipulating a trapped ion's energy levels, and thus basis
1856: 1063: 563: 373: 3302: 3273: 1465: 440: 241:
Light has a certain probability of being scattered by a material. When photons are scattered, most of them are
152: 68: 32: 1664: 3071: 2887:
Lamb, G. L. (1971). "Analytical Descriptions of Ultrashort Optical Pulse Propagation in a Resonant Medium".
1342:. In general, a normal mode is Raman active if it transforms with the same symmetry of the quadratic forms 3156: 2753: 797: 424: 376:
in recognition of its significance as a tool for analyzing the composition of liquids, gases, and solids.
300: 262: 113: 2356:"Raman Microspectroscopic Imaging of Binder Remnants in Historical Mortars Reveals Processing Conditions" 1544:
Monitoring the polarization of the scattered photons is useful for understanding the connections between
876: 840: 2985:"Live-Cell Bioorthogonal Chemical Imaging: Stimulated Raman Scattering Microscopy of Vibrational Probes" 1468:, which states that vibrational modes cannot be both IR and Raman active, applies to certain molecules. 462: 133: 108: 1435: 443:
is conceptually similar but involves excitation of electronic, rather than vibrational, energy levels.
3081: 3248: 2931: 2896: 2818: 2745: 2656: 2609: 2312: 2239: 2121: 2005: 1990: 1973: 1553: 1539: 465:
regarding molecular vibrations apply to Raman scattering although the selection rules are different.
211: 58: 2758: 1474: 3268: 3207: 2218:
Inaugural Address delivered to the South Indian Science Association on Friday, the 16th March, 1928
1953: 1942: 1936: 1527: 1464:) are allowed according to the QHO. There are however many cases where overtones are observed. The 452: 246: 145: 103: 3137: 2842: 2672: 2336: 2255: 2182: 2137: 2021: 1899: 1894: 1843: 1821: 1545: 1050: 419: 385: 269: 242: 223: 123: 93: 88: 63: 3076: 3051: 3022: 3004: 2947: 2834: 2698: 2625: 2582: 2574: 2566: 2527: 2497: 2469: 2446: 2436: 2411: 2377: 2328: 2092: 2064: 1946: 1729: 909:
is the wavenumber of the vibrational transition. Thus Stokes scattering gives a wavenumber of
499: 390: 353: 349: 273: 3258: 3253: 3222: 3096: 3012: 2996: 2983:
Wei, Lu; Hu, Fanghao; Chen, Zhixing; Shen, Yihui; Zhang, Luyuan; Min, Wei (16 August 2016).
2939: 2904: 2869: 2826: 2790: 2763: 2664: 2617: 2556: 2519: 2403: 2367: 2320: 2247: 2209: 2172: 2129: 2011: 1906:
For solid materials, Raman scattering is used as a tool to detect high-frequency phonon and
1872: 1740: 598: 428: 187: 1636: 1609: 2965: 1995: 1429: 1053:. It shows the intensity of the scattered light as a function of its frequency difference 1045:(atom or molecule loses energy: scattered photon has more energy than the incident photon) 38: 601:
when anharmonicity is important. The vibrational energy levels according to the QHO are
2935: 2900: 2822: 2749: 2660: 2613: 2316: 2243: 2125: 1780:, the scattered amplitudes are opposite, so that the Raman scattered beam remains weak. 406:
Schematic of a dispersive Raman spectroscopy setup in a 180° backscattering arrangement.
3017: 2984: 1928: 1868: 1506: 1034: 545: 525: 505: 345: 329: 296: 118: 83: 53: 1820:
The inverse Raman effect is a form of Raman scattering first noted by W. J. Jones and
1432:
of the molecule's point group. As with IR spectroscopy, only fundamental excitations (
303:
for his discovery of Raman scattering. The effect had been predicted theoretically by
3357: 3212: 2846: 2676: 2259: 1960: 833: 568: 2141: 3341: 3278: 2561: 2340: 2186: 1952:
The Raman effect is also involved in producing the appearance of the blue sky (see
805: 801: 593:
Molecular vibrational energy is known to be quantized and can be modeled using the
415: 336: 304: 285: 3045: 3000: 3217: 2830: 2016: 1932: 1881: 1733: 1661:
orientation of the molecule and the angle of polarization of the light wave. If
813: 362: 340: 292: 128: 2943: 2668: 1471:
The specific selection rules state that the allowed rotational transitions are
2032: 1959:
Raman spectroscopy has been used to chemically image small molecules, such as
1040: 254: 24: 3008: 2951: 2908: 2570: 2381: 2332: 2303:
K. S. Krishnan; Raman, C. V. (1928). "The Negative Absorption of Radiation".
2450: 2372: 2355: 1751:
Suppose that the distance between two points A and B of an exciting beam is
571:
of the molecule. For a linear molecule, the number of vibrational modes is 3
250: 3026: 2838: 2767: 2629: 2586: 2251: 1728:
the Stokes light in the presence of the pump light, which is exploited in
575:-5, whereas for a non-linear molecule the number of vibrational modes is 3 227: 2873: 2794: 284:, in addition to other possibilities. More complex techniques involving 3227: 2407: 2230:
Singh, R. (2002). "C. V. Raman and the Discovery of the Raman Effect".
2133: 395: 173: 3050:. Graduate Texts in Physics (4 ed.). Springer. pp. 285–288. 2621: 2578: 2544: 2492:
Everall, Neil J. (2002). "Raman Spectroscopy of the Condensed Phase".
2177: 2156: 3106: 2324: 2213: 1907: 1876: 458: 431:
and photomultiplier tubes were common prior to the adoption of CCDs.
357: 219: 215: 42: 1807:
conditions, inversely proportional to the cube of the pulse length.
315: 1921: 1914: 411: 401: 389: 231: 498:
degrees of freedom are partitioned into molecular translational,
3087:
Prof. R. W. Wood Demonstrating the New "Raman Effect" in Physics
491: 3110: 1037:
resulting from the external field and normal mode vibrations.
202: 3167:
Rotating-polarization coherent anti-Stokes Raman spectroscopy
3077:
Explanation from Hyperphysics in Astronomy section of gsu.edu
295:, who discovered it in 1928 with assistance from his student 196: 41:
of scattering between two electrons by emission of a virtual
1855:
material is vibrational in origin and if the material is in
1335:{\displaystyle {\frac {\partial \alpha }{\partial Q}}\neq 0} 787:{\displaystyle E=h\nu ={h \over {2\pi }}{\sqrt {k \over m}}} 410:
Modern Raman spectroscopy nearly always involves the use of
265:, the material either gains or loses energy in the process. 2966:"Painless laser device could spot early signs of disease" 249:), such that the scattered photons have the same energy ( 2112:
Smekal, A. (1923). "Zur Quantentheorie der Dispersion".
2087:
Keresztury, Gábor (2002). "Raman Spectroscopy: Theory".
1552:
The symmetry of a vibrational mode is deduced from the
960:{\displaystyle {\tilde {\nu }}_{0}-{\tilde {\nu }}_{M}} 3369:
Scattering, absorption and radiative transfer (optics)
1840:; the application of the phenomenon is referred to as 1794:
Several tricks may be used to get a larger amplitude:
973: 2464:
Weber, Alfons (2002). "Raman Spectroscopy of Gases".
1871:. This process can also be seen as a special case of 1847:, and a record of the continuum is referred to as an 1667: 1639: 1612: 1565: 1509: 1477: 1438: 1348: 1305: 1075: 915: 879: 843: 741: 610: 548: 528: 508: 1049:
The spectrum of the scattered photons is termed the
1018:{\textstyle {\tilde {\nu }}_{0}+{\tilde {\nu }}_{M}} 193: 3287: 3241: 3200: 3144: 3097:
A short description of spontaneous Raman scattering
1702:
Stimulated Raman scattering and Raman amplification
335:The inelastic scattering of light was predicted by 199: 190: 1686: 1652: 1625: 1598: 1515: 1495: 1456: 1420: 1334: 1282: 1017: 959: 901: 865: 832:Raman scattering is conceptualized as involving a 786: 718: 554: 534: 514: 272:. Many other variants of Raman spectroscopy allow 715: 365:in 1930 for his work on the scattering of light. 291:The Raman effect is named after Indian scientist 2719:"What is polarised Raman spectroscopy? - HORIBA" 1927:Raman spectroscopy can be used to determine the 2647:perovskites (R=La,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Y)". 2545:"Progress in ultrahigh energy resolution EELS" 1963:, in biological systems by a vibrational tag. 479:For any given molecule, there are a total of 3 3122: 2697:(4th ed.). McGraw–Hill. pp. 117–8. 2693:Banwell, Colin N.; McCash, Elaine M. (1994). 276:to be examined, if gas samples are used, and 153: 8: 2082: 2080: 1694:, then the vibrations at that frequency are 1599:{\displaystyle \rho ={\frac {I_{r}}{I_{u}}}} 1421:{\displaystyle (x^{2},y^{2},z^{2},xy,xz,yz)} 288:, multiple laser beams and so on are known. 234:are shifted to lower energy. This is called 2738:Journal of the Optical Society of America B 1935:for molecules that do not have an infrared 1784:A crossing of the beams may limit the path 3129: 3115: 3107: 2688: 2686: 2515: 2513: 2487: 2485: 1698:; meaning they are not totally symmetric. 475:Degrees of freedom (physics and chemistry) 461:modes may also be observed. The basics of 368:In 1998 the Raman effect was designated a 160: 146: 20: 3102:Raman Effect: fingerprinting the universe 3082:Raman Spectroscopy – Tutorial at Kosi.com 3016: 2757: 2560: 2371: 2176: 1836:. This phenomenon is referred to as the 1674: 1666: 1644: 1638: 1617: 1611: 1588: 1578: 1572: 1564: 1508: 1476: 1437: 1382: 1369: 1356: 1347: 1306: 1304: 1264: 1252: 1241: 1240: 1238: 1229: 1210: 1200: 1189: 1188: 1178: 1167: 1166: 1154: 1144: 1133: 1132: 1122: 1111: 1110: 1103: 1092: 1082: 1076: 1074: 1009: 998: 997: 987: 976: 975: 972: 951: 940: 939: 929: 918: 917: 914: 893: 882: 881: 878: 857: 846: 845: 842: 772: 762: 757: 740: 703: 693: 688: 673: 638: 615: 609: 547: 527: 507: 386:Raman spectroscopy § Instrumentation 16:Inelastic scattering of photons by matter 2433:Raman spectroscopy for chemical analysis 2200:Raman, C. V. (1928). "A new radiation". 1687:{\displaystyle \rho \geq {\frac {3}{4}}} 1039: 314: 3152:Coherent anti-Stokes Raman spectroscopy 2393: 2391: 2051: 1979:Coherent anti-Stokes Raman spectroscopy 23: 2695:Fundamentals of Molecular Spectroscopy 1895:Raman spectroscopy § Applications 7: 3329: 2494:Handbook of Vibrational Spectroscopy 2466:Handbook of Vibrational Spectroscopy 2089:Handbook of Vibrational Spectroscopy 1985:Coherent Raman Scattering Microscopy 3182:Surface-enhanced Raman spectroscopy 3172:Spatially offset Raman spectroscopy 2602:The Journal of Physical Chemistry A 2526:(Benjamin/Cummings 1982), pp.646-7 2435:. New York: John Wiley & Sons. 2354:Thomas Schmid; Petra Dariz (2019). 2038:Surface Enhanced Raman Spectroscopy 1765:are not equal. Thus, a phase-shift 902:{\displaystyle {\tilde {\nu }}_{M}} 873:is the wavenumber of the laser and 866:{\displaystyle {\tilde {\nu }}_{0}} 370:National Historic Chemical Landmark 230:as incident photons from a visible 3233:Stimulated Raman adiabatic passage 2496:. Vol. 1. Chichester: Wiley. 2468:. Vol. 1. Chichester: Wiley. 2091:. Vol. 1. Chichester: Wiley. 1478: 1439: 1317: 1309: 14: 2862:The Journal of Physical Chemistry 1739:Stimulated Raman scattering is a 1457:{\displaystyle \Delta \nu =\pm 1} 1428:, which can be verified from the 3328: 3317: 3316: 2001:List of surface analysis methods 812:in 1852, with light emission at 398:published by Raman and Krishnan. 186: 31: 3192:Transmission Raman spectroscopy 3187:Tip-enhanced Raman spectroscopy 3072:Raman Effect - Classical Theory 2274:"C. V. Raman: The Raman Effect" 1747:Requirement for space-coherence 834:virtual electronic energy level 2562:10.1016/j.ultramic.2018.12.006 2402:. John Wiley & Sons, Ltd. 2059:Harris and Bertolucci (1989). 1496:{\displaystyle \Delta J=\pm 2} 1415: 1349: 1246: 1207: 1194: 1172: 1162: 1151: 1138: 1116: 1106: 1062:depend on the temperature. In 1003: 981: 945: 923: 887: 851: 321:Molecular Diffraction of Light 236:normal Stokes-Raman scattering 1: 3296:Journal of Raman Spectroscopy 3177:Stimulated Raman spectroscopy 3044:Klingshirn, Claus F. (2012). 2989:Accounts of Chemical Research 2431:McCreery, Richard L. (2000). 1801:Optical parametric generation 1708:Stimulated Raman spectroscopy 299:. Raman was awarded the 1930 79:Light scattering by particles 3162:Resonance Raman spectroscopy 3001:10.1021/acs.accounts.6b00210 2027:Resonance Raman spectroscopy 1714:spontaneous Raman scattering 2831:10.1103/PhysRevLett.69.2172 2157:"A review of the 1931 book 2155:Nature (19 December 1931). 1721:stimulated Raman scattering 595:quantum harmonic oscillator 589:Quantum harmonic oscillator 394:An early Raman spectrum of 3390: 3374:Fiber-optic communications 2944:10.1103/PhysRevLett.13.657 2669:10.1103/physrevb.73.064302 1892: 1705: 1537: 586: 472: 450: 383: 282:if an X-ray source is used 3312: 2889:Reviews of Modern Physics 2278:American Chemical Society 2202:Indian Journal of Physics 2061:Symmetry and Spectroscopy 1863:Supercontinuum generation 1534:Symmetry and polarization 1064:thermodynamic equilibrium 597:(QHO) approximation or a 374:American Chemical Society 3303:Vibrational Spectroscopy 3274:Rule of mutual exclusion 2909:10.1103/RevModPhys.43.99 1466:rule of mutual exclusion 441:X-ray Raman spectroscopy 278:electronic energy levels 2924:Physical Review Letters 2811:Physical Review Letters 2398:Long, Derek A. (2002). 2373:10.3390/heritage2020102 2159:Der Smekal-Raman-Effekt 348:, and independently by 3157:Raman optical activity 2768:10.1364/JOSAB.8.001264 2232:Physics in Perspective 2063:. Dover Publications. 1849:inverse Raman spectrum 1771:(1/λ − 1/λ') 1688: 1654: 1627: 1600: 1517: 1497: 1458: 1422: 1336: 1284: 1046: 1019: 961: 903: 867: 798:Boltzmann distribution 788: 720: 556: 536: 516: 425:charge-coupled devices 407: 399: 324: 301:Nobel Prize in Physics 263:conservation of energy 2252:10.1007/s000160200002 1689: 1655: 1653:{\displaystyle I_{u}} 1628: 1626:{\displaystyle I_{r}} 1601: 1518: 1498: 1459: 1423: 1337: 1285: 1043: 1020: 962: 904: 868: 789: 721: 557: 537: 517: 405: 393: 318: 243:elastically scattered 134:X-ray crystallography 3249:Depolarization ratio 3091:Scientific American, 3047:Semiconductor Optics 2972:. 27 September 2010. 2522:and John H. Meiser, 2006:National Science Day 1991:Depolarization ratio 1974:Brillouin scattering 1838:inverse Raman effect 1816:Inverse Raman effect 1665: 1637: 1610: 1563: 1554:depolarization ratio 1540:Depolarization ratio 1507: 1475: 1436: 1346: 1303: 1073: 971: 913: 877: 841: 739: 608: 546: 526: 506: 447:Molecular vibrations 212:inelastic scattering 3269:Rayleigh scattering 3208:Raman amplification 2936:1964PhRvL..13..657J 2901:1971RvMP...43...99L 2874:10.1021/j100009a027 2823:1992PhRvL..69.2172K 2795:10.1021/cr00025a006 2750:1991JOSAB...8.1264W 2661:2006PhRvB..73f4302I 2614:2012JPCA..116.5560I 2317:1928Natur.122...12R 2244:2002PhP.....4..399S 2126:1923NW.....11..873S 2114:Naturwissenschaften 1954:Rayleigh Scattering 1943:Raman amplification 1937:absorption spectrum 1857:thermal equilibrium 1799:be large. It is an 1719:On the other hand, 463:infrared absorption 453:Molecular vibration 420:photographic plates 247:Rayleigh scattering 3138:Raman spectroscopy 2524:Physical Chemistry 2408:10.1002/0470845767 2284:on 12 January 2013 2134:10.1007/BF01576902 2022:Raman spectroscopy 1947:optical amplifiers 1900:Raman spectroscopy 1844:Raman spectroscopy 1822:Boris P. Stoicheff 1684: 1650: 1623: 1596: 1546:molecular symmetry 1528:phonon confinement 1513: 1493: 1454: 1418: 1332: 1280: 1047: 1015: 957: 899: 863: 784: 716: 583:Vibrational energy 552: 532: 512: 484:degrees of freedom 469:Degrees of freedom 408: 400: 325: 270:Raman spectroscopy 226:being gained by a 224:vibrational energy 94:Powder diffraction 3351: 3350: 2817:(15): 2172–2175. 2704:978-0-07-707976-5 2649:Physical Review B 2622:10.1021/jp301070a 2608:(23): 5560–5570. 2178:10.1038/1281026c0 2070:978-0-486-66144-5 1741:nonlinear optical 1682: 1594: 1516:{\displaystyle J} 1324: 1274: 1249: 1217: 1197: 1175: 1141: 1119: 1098: 1095: 1085: 1006: 984: 948: 926: 890: 854: 814:longer wavelength 782: 781: 770: 713: 712: 701: 681: 646: 555:{\displaystyle z} 535:{\displaystyle y} 515:{\displaystyle x} 490:is the number of 429:Photodiode arrays 354:Leonid Mandelstam 350:Grigory Landsberg 274:rotational energy 170: 169: 54:Bragg diffraction 3381: 3364:Raman scattering 3332: 3331: 3320: 3319: 3264:Raman scattering 3259:Nonlinear optics 3254:Four-wave mixing 3223:Raman microscope 3131: 3124: 3117: 3108: 3061: 3031: 3030: 3020: 2995:(8): 1494–1502. 2980: 2974: 2973: 2962: 2956: 2955: 2919: 2913: 2912: 2884: 2878: 2877: 2868:(9): 2684–2695. 2857: 2851: 2850: 2805: 2799: 2798: 2783:Chemical Reviews 2778: 2772: 2771: 2761: 2733: 2727: 2726: 2715: 2709: 2708: 2690: 2681: 2680: 2640: 2634: 2633: 2597: 2591: 2590: 2564: 2540: 2534: 2520:Keith J. Laidler 2517: 2508: 2507: 2489: 2480: 2479: 2461: 2455: 2454: 2428: 2422: 2421: 2400:The Raman Effect 2395: 2386: 2385: 2375: 2366:(2): 1662–1683. 2351: 2345: 2344: 2325:10.1038/122012b0 2300: 2294: 2293: 2291: 2289: 2280:. Archived from 2270: 2264: 2263: 2227: 2221: 2220: 2197: 2191: 2190: 2180: 2152: 2146: 2145: 2109: 2103: 2102: 2084: 2075: 2074: 2056: 2012:Nonlinear optics 1873:four-wave mixing 1789: 1779: 1772: 1767:Θ = 2π 1764: 1760: 1756: 1730:Raman amplifiers 1693: 1691: 1690: 1685: 1683: 1675: 1659: 1657: 1656: 1651: 1649: 1648: 1632: 1630: 1629: 1624: 1622: 1621: 1605: 1603: 1602: 1597: 1595: 1593: 1592: 1583: 1582: 1573: 1558: 1522: 1520: 1519: 1514: 1502: 1500: 1499: 1494: 1463: 1461: 1460: 1455: 1427: 1425: 1424: 1419: 1387: 1386: 1374: 1373: 1361: 1360: 1341: 1339: 1338: 1333: 1325: 1323: 1315: 1307: 1289: 1287: 1286: 1281: 1279: 1275: 1273: 1269: 1268: 1258: 1257: 1256: 1251: 1250: 1242: 1230: 1218: 1216: 1215: 1214: 1205: 1204: 1199: 1198: 1190: 1183: 1182: 1177: 1176: 1168: 1160: 1159: 1158: 1149: 1148: 1143: 1142: 1134: 1127: 1126: 1121: 1120: 1112: 1104: 1099: 1097: 1096: 1093: 1087: 1086: 1083: 1077: 1035:beat frequencies 1024: 1022: 1021: 1016: 1014: 1013: 1008: 1007: 999: 992: 991: 986: 985: 977: 966: 964: 963: 958: 956: 955: 950: 949: 941: 934: 933: 928: 927: 919: 908: 906: 905: 900: 898: 897: 892: 891: 883: 872: 870: 869: 864: 862: 861: 856: 855: 847: 828:Raman scattering 793: 791: 790: 785: 783: 774: 773: 771: 769: 758: 725: 723: 722: 717: 714: 705: 704: 702: 700: 689: 687: 683: 682: 674: 652: 648: 647: 639: 620: 619: 599:Dunham expansion 578: 574: 564:Linear molecules 561: 559: 558: 553: 541: 539: 538: 533: 521: 519: 518: 513: 497: 489: 482: 332:was discovered. 280:may be examined 209: 208: 205: 204: 201: 198: 195: 192: 178:Raman scattering 162: 155: 148: 35: 21: 3389: 3388: 3384: 3383: 3382: 3380: 3379: 3378: 3354: 3353: 3352: 3347: 3308: 3283: 3237: 3196: 3140: 3135: 3068: 3058: 3057:978-364228362-8 3043: 3040: 3038:Further reading 3035: 3034: 2982: 2981: 2977: 2964: 2963: 2959: 2930:(22): 657–659. 2921: 2920: 2916: 2886: 2885: 2881: 2859: 2858: 2854: 2807: 2806: 2802: 2780: 2779: 2775: 2759:10.1.1.474.7172 2735: 2734: 2730: 2717: 2716: 2712: 2705: 2692: 2691: 2684: 2646: 2642: 2641: 2637: 2599: 2598: 2594: 2549:Ultramicroscopy 2542: 2541: 2537: 2518: 2511: 2504: 2491: 2490: 2483: 2476: 2463: 2462: 2458: 2443: 2430: 2429: 2425: 2418: 2397: 2396: 2389: 2353: 2352: 2348: 2311:(3062): 12–13. 2302: 2301: 2297: 2287: 2285: 2272: 2271: 2267: 2229: 2228: 2224: 2199: 2198: 2194: 2154: 2153: 2149: 2120:(43): 873–875. 2111: 2110: 2106: 2099: 2086: 2085: 2078: 2071: 2058: 2057: 2053: 2048: 2043: 1996:Fiber amplifier 1969: 1897: 1891: 1865: 1835: 1829: 1818: 1785: 1774: 1766: 1762: 1758: 1752: 1749: 1710: 1704: 1663: 1662: 1640: 1635: 1634: 1613: 1608: 1607: 1584: 1574: 1561: 1560: 1556: 1542: 1536: 1505: 1504: 1473: 1472: 1434: 1433: 1430:character table 1378: 1365: 1352: 1344: 1343: 1316: 1308: 1301: 1300: 1296: 1294:Selection rules 1260: 1259: 1239: 1231: 1225: 1206: 1187: 1165: 1161: 1150: 1131: 1109: 1105: 1088: 1078: 1071: 1070: 1029:effect occurs. 1027:resonance Raman 996: 974: 969: 968: 938: 916: 911: 910: 880: 875: 874: 844: 839: 838: 830: 737: 736: 666: 662: 631: 627: 611: 606: 605: 591: 585: 576: 572: 544: 543: 524: 523: 504: 503: 495: 487: 480: 477: 471: 455: 449: 437: 388: 382: 380:Instrumentation 313: 189: 185: 166: 46: 45: 39:Feynman diagram 17: 12: 11: 5: 3387: 3385: 3377: 3376: 3371: 3366: 3356: 3355: 3349: 3348: 3346: 3345: 3338: 3326: 3313: 3310: 3309: 3307: 3306: 3299: 3291: 3289: 3285: 3284: 3282: 3281: 3276: 3271: 3266: 3261: 3256: 3251: 3245: 3243: 3239: 3238: 3236: 3235: 3230: 3225: 3220: 3215: 3210: 3204: 3202: 3198: 3197: 3195: 3194: 3189: 3184: 3179: 3174: 3169: 3164: 3159: 3154: 3148: 3146: 3142: 3141: 3136: 3134: 3133: 3126: 3119: 3111: 3105: 3104: 3099: 3094: 3093:December 1930) 3084: 3079: 3074: 3067: 3066:External links 3064: 3063: 3062: 3056: 3039: 3036: 3033: 3032: 2975: 2957: 2914: 2879: 2852: 2800: 2789:(1): 157–193. 2773: 2728: 2723:www.horiba.com 2710: 2703: 2682: 2644: 2635: 2592: 2535: 2509: 2502: 2481: 2474: 2456: 2441: 2423: 2417:978-0471490289 2416: 2387: 2346: 2295: 2265: 2238:(4): 399–420. 2222: 2192: 2171:(3242): 1026. 2147: 2104: 2097: 2076: 2069: 2050: 2049: 2047: 2044: 2042: 2041: 2035: 2030: 2024: 2019: 2014: 2009: 2003: 1998: 1993: 1988: 1982: 1976: 1970: 1968: 1965: 1929:force constant 1893:Main article: 1890: 1887: 1869:supercontinuum 1864: 1861: 1831: 1825: 1817: 1814: 1809: 1808: 1804: 1792: 1791: 1748: 1745: 1706:Main article: 1703: 1700: 1681: 1678: 1673: 1670: 1647: 1643: 1620: 1616: 1591: 1587: 1581: 1577: 1571: 1568: 1538:Main article: 1535: 1532: 1512: 1492: 1489: 1486: 1483: 1480: 1453: 1450: 1447: 1444: 1441: 1417: 1414: 1411: 1408: 1405: 1402: 1399: 1396: 1393: 1390: 1385: 1381: 1377: 1372: 1368: 1364: 1359: 1355: 1351: 1331: 1328: 1322: 1319: 1314: 1311: 1295: 1292: 1291: 1290: 1278: 1272: 1267: 1263: 1255: 1248: 1245: 1237: 1234: 1228: 1224: 1221: 1213: 1209: 1203: 1196: 1193: 1186: 1181: 1174: 1171: 1164: 1157: 1153: 1147: 1140: 1137: 1130: 1125: 1118: 1115: 1108: 1102: 1091: 1081: 1051:Raman spectrum 1012: 1005: 1002: 995: 990: 983: 980: 954: 947: 944: 937: 932: 925: 922: 896: 889: 886: 860: 853: 850: 829: 826: 808:discovered by 780: 777: 768: 765: 761: 756: 753: 750: 747: 744: 728: 727: 711: 708: 699: 696: 692: 686: 680: 677: 672: 669: 665: 661: 658: 655: 651: 645: 642: 637: 634: 630: 626: 623: 618: 614: 587:Main article: 584: 581: 569:chemical bonds 551: 531: 511: 473:Main article: 470: 467: 451:Main article: 448: 445: 436: 433: 384:Main article: 381: 378: 346:K. S. Krishnan 330:Mie scattering 319:First page of 312: 309: 297:K. S. Krishnan 168: 167: 165: 164: 157: 150: 142: 139: 138: 137: 136: 131: 126: 121: 116: 111: 106: 101: 96: 91: 86: 81: 76: 71: 66: 61: 56: 48: 47: 37: 36: 28: 27: 15: 13: 10: 9: 6: 4: 3: 2: 3386: 3375: 3372: 3370: 3367: 3365: 3362: 3361: 3359: 3344: 3343: 3339: 3337: 3336: 3327: 3325: 3324: 3315: 3314: 3311: 3305: 3304: 3300: 3298: 3297: 3293: 3292: 3290: 3286: 3280: 3277: 3275: 3272: 3270: 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3246: 3244: 3240: 3234: 3231: 3229: 3226: 3224: 3221: 3219: 3216: 3214: 3213:Raman cooling 3211: 3209: 3206: 3205: 3203: 3199: 3193: 3190: 3188: 3185: 3183: 3180: 3178: 3175: 3173: 3170: 3168: 3165: 3163: 3160: 3158: 3155: 3153: 3150: 3149: 3147: 3143: 3139: 3132: 3127: 3125: 3120: 3118: 3113: 3112: 3109: 3103: 3100: 3098: 3095: 3092: 3088: 3085: 3083: 3080: 3078: 3075: 3073: 3070: 3069: 3065: 3059: 3053: 3049: 3048: 3042: 3041: 3037: 3028: 3024: 3019: 3014: 3010: 3006: 3002: 2998: 2994: 2990: 2986: 2979: 2976: 2971: 2967: 2961: 2958: 2953: 2949: 2945: 2941: 2937: 2933: 2929: 2925: 2918: 2915: 2910: 2906: 2902: 2898: 2895:(2): 99–124. 2894: 2890: 2883: 2880: 2875: 2871: 2867: 2863: 2856: 2853: 2848: 2844: 2840: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2804: 2801: 2796: 2792: 2788: 2784: 2777: 2774: 2769: 2765: 2760: 2755: 2751: 2747: 2743: 2739: 2732: 2729: 2724: 2720: 2714: 2711: 2706: 2700: 2696: 2689: 2687: 2683: 2678: 2674: 2670: 2666: 2662: 2658: 2655:(6): 064302. 2654: 2650: 2639: 2636: 2631: 2627: 2623: 2619: 2615: 2611: 2607: 2603: 2596: 2593: 2588: 2584: 2580: 2576: 2572: 2568: 2563: 2558: 2554: 2550: 2546: 2539: 2536: 2533: 2532:0-8053-5682-7 2529: 2525: 2521: 2516: 2514: 2510: 2505: 2499: 2495: 2488: 2486: 2482: 2477: 2471: 2467: 2460: 2457: 2452: 2448: 2444: 2438: 2434: 2427: 2424: 2419: 2413: 2409: 2405: 2401: 2394: 2392: 2388: 2383: 2379: 2374: 2369: 2365: 2361: 2357: 2350: 2347: 2342: 2338: 2334: 2330: 2326: 2322: 2318: 2314: 2310: 2306: 2299: 2296: 2283: 2279: 2275: 2269: 2266: 2261: 2257: 2253: 2249: 2245: 2241: 2237: 2233: 2226: 2223: 2219: 2215: 2211: 2207: 2203: 2196: 2193: 2188: 2184: 2179: 2174: 2170: 2166: 2162: 2160: 2151: 2148: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2115: 2108: 2105: 2100: 2094: 2090: 2083: 2081: 2077: 2072: 2066: 2062: 2055: 2052: 2045: 2039: 2036: 2034: 2031: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1986: 1983: 1980: 1977: 1975: 1972: 1971: 1966: 1964: 1962: 1961:nucleic acids 1957: 1955: 1950: 1948: 1944: 1940: 1938: 1934: 1930: 1925: 1923: 1918: 1916: 1911: 1910:excitations. 1909: 1904: 1901: 1896: 1888: 1886: 1883: 1878: 1874: 1870: 1862: 1860: 1858: 1852: 1850: 1846: 1845: 1839: 1834: 1828: 1823: 1815: 1813: 1805: 1802: 1797: 1796: 1795: 1788: 1783: 1782: 1781: 1778: 1773:appears. For 1770: 1755: 1746: 1744: 1742: 1737: 1735: 1731: 1727: 1722: 1717: 1715: 1709: 1701: 1699: 1697: 1679: 1676: 1671: 1668: 1645: 1641: 1618: 1614: 1589: 1585: 1579: 1575: 1569: 1566: 1555: 1550: 1547: 1541: 1533: 1531: 1530:is manifest. 1529: 1524: 1510: 1490: 1487: 1484: 1481: 1469: 1467: 1451: 1448: 1445: 1442: 1431: 1412: 1409: 1406: 1403: 1400: 1397: 1394: 1391: 1388: 1383: 1379: 1375: 1370: 1366: 1362: 1357: 1353: 1329: 1326: 1320: 1312: 1293: 1276: 1270: 1265: 1261: 1253: 1243: 1235: 1232: 1226: 1222: 1219: 1211: 1201: 1191: 1184: 1179: 1169: 1155: 1145: 1135: 1128: 1123: 1113: 1100: 1089: 1079: 1069: 1068: 1067: 1065: 1060: 1056: 1052: 1042: 1038: 1036: 1030: 1028: 1010: 1000: 993: 988: 978: 952: 942: 935: 930: 920: 894: 884: 858: 848: 835: 827: 825: 823: 819: 815: 811: 810:George Stokes 807: 803: 799: 794: 778: 775: 766: 763: 759: 754: 751: 748: 745: 742: 733: 709: 706: 697: 694: 690: 684: 678: 675: 670: 667: 663: 659: 656: 653: 649: 643: 640: 635: 632: 628: 624: 621: 616: 612: 604: 603: 602: 600: 596: 590: 582: 580: 570: 565: 549: 529: 509: 501: 493: 485: 476: 468: 466: 464: 460: 454: 446: 444: 442: 434: 432: 430: 426: 421: 417: 413: 404: 397: 392: 387: 379: 377: 375: 371: 366: 364: 359: 355: 351: 347: 342: 338: 333: 331: 322: 317: 310: 308: 306: 302: 298: 294: 289: 287: 286:pulsed lasers 283: 279: 275: 271: 266: 264: 260: 259:inelastically 256: 252: 248: 244: 239: 237: 233: 229: 225: 221: 217: 213: 207: 183: 179: 175: 163: 158: 156: 151: 149: 144: 143: 141: 140: 135: 132: 130: 127: 125: 122: 120: 117: 115: 112: 110: 107: 105: 102: 100: 97: 95: 92: 90: 87: 85: 82: 80: 77: 75: 74:Kikuchi lines 72: 70: 69:Dynamic light 67: 65: 62: 60: 57: 55: 52: 51: 50: 49: 44: 40: 34: 30: 29: 26: 22: 19: 3342:Spectroscopy 3340: 3333: 3321: 3301: 3294: 3279:Stokes shift 3263: 3201:Applications 3090: 3046: 2992: 2988: 2978: 2969: 2960: 2927: 2923: 2917: 2892: 2888: 2882: 2865: 2861: 2855: 2814: 2810: 2803: 2786: 2782: 2776: 2741: 2737: 2731: 2722: 2713: 2694: 2652: 2648: 2638: 2605: 2601: 2595: 2552: 2548: 2538: 2523: 2493: 2465: 2459: 2432: 2426: 2399: 2363: 2359: 2349: 2308: 2304: 2298: 2286:. Retrieved 2282:the original 2268: 2235: 2231: 2225: 2217: 2205: 2201: 2195: 2168: 2164: 2158: 2150: 2117: 2113: 2107: 2088: 2060: 2054: 1958: 1951: 1941: 1926: 1919: 1912: 1905: 1898: 1889:Applications 1866: 1853: 1848: 1841: 1837: 1832: 1826: 1819: 1810: 1793: 1786: 1776: 1768: 1753: 1750: 1738: 1734:Raman lasers 1725: 1720: 1718: 1713: 1711: 1695: 1551: 1543: 1525: 1470: 1297: 1058: 1054: 1048: 1031: 831: 806:fluorescence 802:Stokes shift 795: 731: 729: 592: 478: 456: 438: 416:mercury lamp 409: 367: 337:Adolf Smekal 334: 326: 320: 305:Adolf Smekal 290: 267: 258: 240: 235: 182:Raman effect 181: 177: 171: 98: 18: 3218:Raman laser 2744:(6): 1264. 2208:: 387–398. 2017:Raman laser 1945:is used in 1933:bond length 1882:fiber laser 1696:depolarized 1094:anti-Stokes 363:Nobel Prize 341:C. V. Raman 293:C. V. Raman 129:Wolf effect 114:Small-angle 3358:Categories 3145:Techniques 2503:0471988472 2475:0471988472 2442:0471231878 2098:0471988472 2046:References 2033:Scattering 500:rotational 255:wavelength 109:Rutherford 25:Scattering 3009:0001-4842 2952:0031-9007 2847:206323493 2754:CiteSeerX 2677:117290748 2571:0304-3991 2555:: 60–67. 2382:2571-9408 2333:1476-4687 2260:121785335 2214:10821/377 1775:Θ = 1726:amplifies 1672:≥ 1669:ρ 1567:ρ 1488:± 1479:Δ 1449:± 1443:ν 1440:Δ 1327:≠ 1318:∂ 1313:α 1310:∂ 1247:~ 1244:ν 1223:⁡ 1195:~ 1192:ν 1173:~ 1170:ν 1139:~ 1136:ν 1129:− 1117:~ 1114:ν 1004:~ 1001:ν 982:~ 979:ν 946:~ 943:ν 936:− 924:~ 921:ν 888:~ 885:ν 852:~ 849:ν 822:electrons 767:π 752:ν 698:π 654:ν 307:in 1923. 251:frequency 210:) is the 59:Brillouin 3323:Category 3288:Journals 3027:27486796 2970:BBC News 2839:10046417 2630:22551093 2587:30577954 2451:58463983 2360:Heritage 2142:20086350 1967:See also 1924:states. 1842:inverse 1743:effect. 1503:, where 818:neutrons 486:, where 427:(CCDs). 228:molecule 104:Rayleigh 3335:Commons 3228:SHERLOC 3018:5704954 2932:Bibcode 2897:Bibcode 2819:Bibcode 2746:Bibcode 2657:Bibcode 2610:Bibcode 2579:1530104 2341:4071281 2313:Bibcode 2240:Bibcode 2187:4125108 2122:Bibcode 2008:(India) 1763:λ' 562:-axes. 396:benzene 372:by the 311:History 216:photons 180:or the 174:physics 124:Thomson 119:Tyndall 89:Neutron 64:Compton 3242:Theory 3054:  3025:  3015:  3007:  2950:  2845:  2837:  2756:  2701:  2675:  2628:  2585:  2577:  2569:  2530:  2500:  2472:  2449:  2439:  2414:  2380:  2339:  2331:  2305:Nature 2288:6 June 2258:  2185:  2165:Nature 2140:  2095:  2067:  2040:(SERS) 1981:(CARS) 1913:Raman 1908:magnon 1877:phonon 1777:π 1759:λ 1084:Stokes 967:while 730:where 542:, and 459:phonon 435:Theory 412:lasers 358:Moscow 323:(1922) 220:matter 43:photon 2843:S2CID 2673:S2CID 2337:S2CID 2256:S2CID 2183:S2CID 2138:S2CID 1987:(CRS) 1922:qubit 1915:lidar 1606:Here 492:atoms 356:, in 232:laser 99:Raman 3052:ISBN 3023:PMID 3005:ISSN 2948:ISSN 2835:PMID 2699:ISBN 2626:PMID 2583:PMID 2575:OSTI 2567:ISSN 2528:ISBN 2498:ISBN 2470:ISBN 2447:OCLC 2437:ISBN 2412:ISBN 2378:ISSN 2329:ISSN 2290:2012 2093:ISBN 2065:ISBN 2029:(RR) 1931:and 1761:and 1732:and 1059:Δν=0 579:-6. 418:and 352:and 3013:PMC 2997:doi 2940:doi 2905:doi 2870:doi 2827:doi 2791:doi 2764:doi 2665:doi 2618:doi 2606:116 2557:doi 2553:203 2404:doi 2368:doi 2321:doi 2309:122 2248:doi 2210:hdl 2173:doi 2169:128 2130:doi 1220:exp 820:or 804:in 238:. 218:by 214:of 172:In 84:Mie 3360:: 3021:. 3011:. 3003:. 2993:49 2991:. 2987:. 2968:. 2946:. 2938:. 2928:13 2926:. 2903:. 2893:43 2891:. 2866:99 2864:. 2841:. 2833:. 2825:. 2815:69 2813:. 2787:94 2785:. 2762:. 2752:. 2740:. 2721:. 2685:^ 2671:. 2663:. 2653:73 2651:. 2624:. 2616:. 2604:. 2581:. 2573:. 2565:. 2547:. 2512:^ 2484:^ 2445:. 2410:. 2390:^ 2376:. 2362:. 2358:. 2335:. 2327:. 2319:. 2307:. 2276:. 2254:. 2246:. 2234:. 2216:. 2204:. 2181:. 2167:. 2163:. 2136:. 2128:. 2118:11 2116:. 2079:^ 1949:. 1939:. 1859:. 1851:. 1830:+ν 1736:. 1716:. 1055:Δν 522:, 253:, 203:ən 197:ɑː 176:, 3130:e 3123:t 3116:v 3089:( 3060:. 3029:. 2999:: 2954:. 2942:: 2934:: 2911:. 2907:: 2899:: 2876:. 2872:: 2849:. 2829:: 2821:: 2797:. 2793:: 2770:. 2766:: 2748:: 2742:8 2725:. 2707:. 2679:. 2667:: 2659:: 2645:3 2632:. 2620:: 2612:: 2589:. 2559:: 2506:. 2478:. 2453:. 2420:. 2406:: 2384:. 2370:: 2364:2 2343:. 2323:: 2315:: 2292:. 2262:. 2250:: 2242:: 2236:4 2212:: 2206:2 2189:. 2175:: 2161:" 2144:. 2132:: 2124:: 2101:. 2073:. 1833:M 1827:L 1803:. 1790:. 1787:x 1769:x 1754:x 1680:4 1677:3 1646:u 1642:I 1619:r 1615:I 1590:u 1586:I 1580:r 1576:I 1570:= 1557:ρ 1511:J 1491:2 1485:= 1482:J 1452:1 1446:= 1416:) 1413:z 1410:y 1407:, 1404:z 1401:x 1398:, 1395:y 1392:x 1389:, 1384:2 1380:z 1376:, 1371:2 1367:y 1363:, 1358:2 1354:x 1350:( 1330:0 1321:Q 1277:) 1271:T 1266:B 1262:k 1254:M 1236:c 1233:h 1227:( 1212:4 1208:) 1202:M 1185:+ 1180:0 1163:( 1156:4 1152:) 1146:M 1124:0 1107:( 1101:= 1090:I 1080:I 1011:M 994:+ 989:0 953:M 931:0 895:M 859:0 779:m 776:k 764:2 760:h 755:= 749:h 746:= 743:E 732:n 726:, 710:m 707:k 695:2 691:1 685:) 679:2 676:1 671:+ 668:n 664:( 660:h 657:= 650:) 644:2 641:1 636:+ 633:n 629:( 625:h 622:= 617:n 613:E 577:N 573:N 550:z 530:y 510:x 496:N 488:N 481:N 245:( 206:/ 200:m 194:r 191:ˈ 188:/ 184:( 161:e 154:t 147:v

Index

Scattering
Electron scattering
Feynman diagram
photon
Bragg diffraction
Brillouin
Compton
Dynamic light
Kikuchi lines
Light scattering by particles
Mie
Neutron
Powder diffraction
Raman
Rayleigh
Rutherford
Small-angle
Tyndall
Thomson
Wolf effect
X-ray crystallography
v
t
e
physics
/ˈrɑːmən/
inelastic scattering
photons
matter
vibrational energy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.