Knowledge (XXG)

Row and column spaces

Source 📝

5066: 4510: 1915: 5061:{\displaystyle {\begin{aligned}{\begin{bmatrix}1&3&2\\2&7&4\\1&5&2\end{bmatrix}}&\xrightarrow {\mathbf {r} _{2}-2\mathbf {r} _{1}\to \mathbf {r} _{2}} {\begin{bmatrix}1&3&2\\0&1&0\\1&5&2\end{bmatrix}}\xrightarrow {\mathbf {r} _{3}-\,\,\mathbf {r} _{1}\to \mathbf {r} _{3}} {\begin{bmatrix}1&3&2\\0&1&0\\0&2&0\end{bmatrix}}\\&\xrightarrow {\mathbf {r} _{3}-2\mathbf {r} _{2}\to \mathbf {r} _{3}} {\begin{bmatrix}1&3&2\\0&1&0\\0&0&0\end{bmatrix}}\xrightarrow {\mathbf {r} _{1}-3\mathbf {r} _{2}\to \mathbf {r} _{1}} {\begin{bmatrix}1&0&2\\0&1&0\\0&0&0\end{bmatrix}}.\end{aligned}}} 1356: 2906: 1910:{\displaystyle {\begin{array}{rcl}A{\begin{bmatrix}c_{1}\\\vdots \\c_{n}\end{bmatrix}}&=&{\begin{bmatrix}a_{11}&\cdots &a_{1n}\\\vdots &\ddots &\vdots \\a_{m1}&\cdots &a_{mn}\end{bmatrix}}{\begin{bmatrix}c_{1}\\\vdots \\c_{n}\end{bmatrix}}={\begin{bmatrix}c_{1}a_{11}+\cdots +c_{n}a_{1n}\\\vdots \\c_{1}a_{m1}+\cdots +c_{n}a_{mn}\end{bmatrix}}=c_{1}{\begin{bmatrix}a_{11}\\\vdots \\a_{m1}\end{bmatrix}}+\cdots +c_{n}{\begin{bmatrix}a_{1n}\\\vdots \\a_{mn}\end{bmatrix}}\\&=&c_{1}\mathbf {v} _{1}+\cdots +c_{n}\mathbf {v} _{n}\end{array}}} 2464: 6446: 2901:{\displaystyle {\begin{bmatrix}1&3&1&4\\2&7&3&9\\1&5&3&1\\1&2&0&8\end{bmatrix}}\sim {\begin{bmatrix}1&3&1&4\\0&1&1&1\\0&2&2&-3\\0&-1&-1&4\end{bmatrix}}\sim {\begin{bmatrix}1&0&-2&1\\0&1&1&1\\0&0&0&-5\\0&0&0&5\end{bmatrix}}\sim {\begin{bmatrix}1&0&-2&0\\0&1&1&0\\0&0&0&1\\0&0&0&0\end{bmatrix}}.} 6710: 43: 31: 3522: 5278: 5592: 4275: 665: 2232: 3085: 2441: 3396: 5119: 5475: 4123: 2071: 4458: 5327:
of the matrix. This is the same as the maximum number of linearly independent rows that can be chosen from the matrix, or equivalently the number of pivots. For example, the 3 × 3 matrix in the example above has rank two.
3918: 1259: 816: 958: 887: 739: 521: 5837:
Linear algebra, as discussed in this article, is a very well established mathematical discipline for which there are many sources. Almost all of the material in this article can be found in Lay 2005, Meyer 2001, and Strang
4074: 2940: 3318: 2032: 5403: 3687: 5657:
to the row space. For example, if the row space is a plane through the origin in three dimensions, then the null space will be the perpendicular line through the origin. This provides a proof of the
2320: 3101:
The above algorithm can be used in general to find the dependence relations between any set of vectors, and to pick out a basis from any spanning set. Also finding a basis for the column space of
5093:
of a matrix is equal to its rank). Since row operations can affect linear dependence relations of the row vectors, such a basis is instead found indirectly using the fact that the column space of
3203: 4515: 3517:{\displaystyle A^{\mathsf {T}}\mathbf {x} ={\begin{bmatrix}\mathbf {v} _{1}\cdot \mathbf {x} \\\mathbf {v} _{2}\cdot \mathbf {x} \\\vdots \\\mathbf {v} _{n}\cdot \mathbf {x} \end{bmatrix}},} 5089:
It is sometimes convenient to find a basis for the row space from among the rows of the original matrix instead (for example, this result is useful in giving an elementary proof that the
5273:{\displaystyle A^{\mathrm {T} }={\begin{bmatrix}1&2&1\\3&7&5\\2&4&2\end{bmatrix}}\sim {\begin{bmatrix}1&2&1\\0&1&2\\0&0&0\end{bmatrix}}.} 2911:
At this point, it is clear that the first, second, and fourth columns are linearly independent, while the third column is a linear combination of the first two. (Specifically,
5587:{\displaystyle A\mathbf {x} ={\begin{bmatrix}\mathbf {r} _{1}\cdot \mathbf {x} \\\mathbf {r} _{2}\cdot \mathbf {x} \\\vdots \\\mathbf {r} _{m}\cdot \mathbf {x} \end{bmatrix}},} 3232: 1084: 991: 349: 320: 3150:, and is the maximum number of linearly independent columns that can be chosen from the matrix. For example, the 4 × 4 matrix in the example above has rank three. 4270:{\displaystyle c_{1}{\begin{bmatrix}1&0&2\end{bmatrix}}+c_{2}{\begin{bmatrix}0&1&0\end{bmatrix}}={\begin{bmatrix}c_{1}&c_{2}&2c_{1}\end{bmatrix}}.} 195: 4374: 6272: 3825: 1166: 744: 238: 158: 124: 892: 821: 673: 660:{\displaystyle J={\begin{bmatrix}2&4&1&3&2\\-1&-2&1&0&5\\1&6&2&2&2\\3&6&2&5&1\end{bmatrix}}} 2227:{\displaystyle c_{1}{\begin{bmatrix}1\\0\\2\end{bmatrix}}+c_{2}{\begin{bmatrix}0\\1\\0\end{bmatrix}}={\begin{bmatrix}c_{1}\\c_{2}\\2c_{1}\end{bmatrix}}} 6304: 4007: 3080:{\displaystyle {\begin{bmatrix}1\\2\\1\\1\end{bmatrix}},\;\;{\begin{bmatrix}3\\7\\5\\2\end{bmatrix}},\;\;{\begin{bmatrix}4\\9\\1\\8\end{bmatrix}}.} 6695: 3263: 1966: 6199: 6158: 6129: 6085: 5859: 5349: 5760:, then the orthogonal complement to the kernel can be thought of as a generalization of the row space. This is sometimes called the 6181: 6111: 6067: 6049: 3249:, and is equal to the number of columns in the reduced row echelon form that do not have pivots. The rank and nullity of a matrix 2436:{\displaystyle A={\begin{bmatrix}1&3&1&4\\2&7&3&9\\1&5&3&1\\1&2&0&8\end{bmatrix}}.} 3632: 6685: 5082:
This algorithm can be used in general to find a basis for the span of a set of vectors. If the matrix is further simplified to
6647: 6583: 5796: 6148: 6258: 3164: 6425: 6297: 3119: 6530: 6380: 6277: 6267: 6435: 6329: 5932: 5669: 5318: 4329: 3137: 198: 6734: 6675: 6324: 4354: 2300: 165: 6550: 5658: 5417: 5071:
Once the matrix is in echelon form, the nonzero rows are a basis for the row space. In this case, the basis is
3324: 6667: 6103: 6013: 5083: 3713: 3147: 2455: 2934:.) Therefore, the first, second, and fourth columns of the original matrix are a basis for the column space: 6739: 6713: 6420: 6290: 5705: 4322: 2276: 1050: 6477: 6410: 6400: 4362: 2308: 2292: 6637: 6492: 6487: 6482: 6360: 5953: 5709: 5654: 5323: 5312: 5090: 4314: 3720: 3589: 3158: 3142: 3131: 2268: 1952: 427: 291: 202: 100: 3208: 1060: 967: 325: 296: 6502: 6467: 6454: 6345: 6041: 5919: 4464: 3773: 2447: 2296: 1114: 73: 47: 35: 6680: 6560: 6535: 6385: 5777: 5757: 4318: 3769: 3161:, the rank of a matrix is the same as the dimension of the image. For example, the transformation 3154: 2272: 1948: 1944: 1110: 1029: 431: 127: 96: 92: 67: 3094:. This makes it possible to determine which columns are linearly independent by reducing only to 2303:
do not affect the dependence relations between the column vectors. This makes it possible to use
6390: 6262: 5818: 3816: 3620: 3235: 3090:
Note that the independent columns of the reduced row echelon form are precisely the columns with
1157: 218: 84: 3603:, the column space, row space, null space, and left null space are sometimes referred to as the 6744: 6588: 6545: 6472: 6365: 6235: 6216: 6195: 6177: 6154: 6125: 6107: 6081: 6063: 6045: 5922:
row-reduction algorithm. Each of the shown steps involves multiple elementary row operations.
5865: 5855: 6593: 6497: 6350: 5949: 4472: 4453:{\displaystyle A={\begin{bmatrix}1&3&2\\2&7&4\\1&5&2\end{bmatrix}}.} 3095: 1032:, the row space is 4-dimensional. Moreover, in this case it can be seen that they are all 173: 6652: 6445: 6405: 6395: 6005: 5681: 3913:{\displaystyle c_{1}\mathbf {r} _{1}+c_{2}\mathbf {r} _{2}+\cdots +c_{m}\mathbf {r} _{m},} 3363: 3336: 3246: 1254:{\displaystyle c_{1}\mathbf {v} _{1}+c_{2}\mathbf {v} _{2}+\cdots +c_{n}\mathbf {v} _{n},} 811:{\displaystyle \mathbf {r} _{2}={\begin{bmatrix}-1&-2&1&0&5\end{bmatrix}}} 161: 6098:
A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields
953:{\displaystyle \mathbf {r} _{4}={\begin{bmatrix}3&6&2&5&1\end{bmatrix}}} 882:{\displaystyle \mathbf {r} _{3}={\begin{bmatrix}1&6&2&2&2\end{bmatrix}}} 734:{\displaystyle \mathbf {r} _{1}={\begin{bmatrix}2&4&1&3&2\end{bmatrix}}} 6657: 6642: 6578: 6313: 6253: 6096: 6024: 4332:, the row space consists of all linear equations that follow from those in the system. 223: 143: 109: 55: 6164: 2450:, in which case some subset of them will form a basis. To find this basis, we reduce 1361: 6728: 6690: 6613: 6573: 6540: 6520: 5749:. The kernel of a linear transformation is analogous to the null space of a matrix. 5701: 4358: 3091: 2304: 1033: 401: 88: 50:. The column space of this matrix is the vector space spanned by the column vectors. 6623: 6512: 6462: 6355: 6009: 5677: 5332: 6238: 17: 6603: 6568: 6525: 6370: 6001: 5773: 5466: 3977: 3716: 3387: 1318: 993: 287: 80: 5854:(Fifth ed.). Wellesley, MA: Wellesley-Cambridge Press. pp. 128, 168. 503:
as coefficients; that is, the columns of the matrix generate the column space.
6632: 6375: 6219: 5931:
Columns without pivots represent free variables in the associated homogeneous
5639: 5429: 5336: 3572: 3528: 38:. The row space of this matrix is the vector space spanned by the row vectors. 5869: 4069:{\displaystyle A={\begin{bmatrix}1&0&2\\0&1&0\end{bmatrix}},} 6430: 6243: 6224: 3367: 3106: 42: 5849: 4467:, in which case the rows will not be a basis. To find a basis, we reduce 6598: 3313:{\displaystyle \operatorname {rank} (A)+\operatorname {nullity} (A)=n.\,} 3118:
To find the basis in a practical setting (e.g., for large matrices), the
2027:{\displaystyle A={\begin{bmatrix}1&0\\0&1\\2&0\end{bmatrix}}} 30: 5761: 5398:{\displaystyle \operatorname {rank} (A)+\operatorname {nullity} (A)=n,} 2446:
The columns of this matrix span the column space, but they may not be
1057:), so it can be deduced that the row space consists of all vectors in 6608: 5343:
of the matrix, and is related to the rank by the following equation:
6012:. It is not necessarily correct over fields and rings with non-zero 5086:, then the resulting basis is uniquely determined by the row space. 4940: 4825: 4704: 4589: 5299:(before any row reductions) also form a basis of the row space of 41: 29: 6282: 3146:
of the matrix. The rank is equal to the number of pivots in the
2238:. In this case, the column space is precisely the set of vectors 4463:
The rows of this matrix span the row space, but they may not be
418:= the maximum number of linearly independent rows or columns of 6286: 4284:. In this case, the row space is precisely the set of vectors 6273:
Lecture on column space and nullspace by Gilbert Strang of MIT
3946:
are scalars. The set of all possible linear combinations of
1287:
are scalars. The set of all possible linear combinations of
6259:
MIT Linear Algebra Lecture on the Four Fundamental Subspaces
3682:{\displaystyle \sum \limits _{k=1}^{n}\mathbf {v} _{k}c_{k}} 5331:
The rank of a matrix is also equal to the dimension of the
3105:
is equivalent to finding a basis for the row space of the
6153:, Society for Industrial and Applied Mathematics (SIAM), 1342:
Any linear combination of the column vectors of a matrix
441:
is the set of all linear combinations of the columns in
3615:
Similarly the column space (sometimes disambiguated as
3582:
It follows that the left null space (the null space of
5495: 5209: 5143: 4993: 4878: 4756: 4642: 4523: 4389: 4216: 4184: 4142: 4022: 3425: 3039: 2994: 2949: 2797: 2688: 2576: 2473: 2335: 2172: 2136: 2090: 1981: 1792: 1723: 1576: 1526: 1426: 1372: 916: 845: 768: 697: 536: 5478: 5352: 5122: 4513: 4377: 4126: 4010: 3828: 3635: 3399: 3266: 3211: 3167: 2943: 2467: 2323: 2074: 1969: 1359: 1169: 1063: 970: 895: 824: 747: 676: 524: 328: 299: 226: 176: 146: 112: 3198:{\displaystyle \mathbb {R} ^{4}\to \mathbb {R} ^{4}} 6666: 6622: 6559: 6511: 6453: 6338: 5772:is one-to-one on its coimage, and the coimage maps 2234:The set of all such vectors is the column space of 6095: 6094:Beauregard, Raymond A.; Fraleigh, John B. (1973), 5906: 5586: 5397: 5283:The pivots indicate that the first two columns of 5272: 5060: 4452: 4269: 4068: 3912: 3681: 3516: 3312: 3226: 3197: 3079: 2900: 2435: 2226: 2026: 1909: 1253: 1078: 985: 952: 881: 810: 733: 659: 343: 314: 290:. The row and column spaces are subspaces of the 232: 189: 152: 118: 6078:Linear Algebra and Matrix Analysis for Statistics 3619:column space) can be defined for matrices over a 3575:(perpendicular) to each of the column vectors of 6076:Banerjee, Sudipto; Roy, Anindya (June 6, 2014), 4280:The set of all such vectors is the row space of 2291:span the column space, but they may not form a 493:returns a linear combination of the columns of 253:The row space and the column space of a matrix 5791:is not an inner product space, the coimage of 5642:(perpendicular) to each of the row vectors of 6298: 240: 8: 5668:The row space and null space are two of the 3743:such that it is written in an unusual order 430:, the column space of the matrix equals the 4328:For a matrix that represents a homogeneous 3819:of these vectors is any vector of the form 1160:of these vectors is any vector of the form 6305: 6291: 6283: 6150:Matrix Analysis and Applied Linear Algebra 3205:described by the matrix above maps all of 3033: 3032: 2988: 2987: 5996: 5994: 5568: 5559: 5554: 5537: 5528: 5523: 5513: 5504: 5499: 5490: 5482: 5477: 5351: 5204: 5138: 5128: 5127: 5121: 4988: 4980: 4975: 4965: 4960: 4947: 4942: 4873: 4865: 4860: 4850: 4845: 4832: 4827: 4751: 4743: 4738: 4728: 4723: 4721: 4720: 4711: 4706: 4637: 4629: 4624: 4614: 4609: 4596: 4591: 4518: 4514: 4512: 4384: 4376: 4250: 4235: 4223: 4211: 4179: 4173: 4137: 4131: 4125: 4017: 4009: 3901: 3896: 3889: 3870: 3865: 3858: 3845: 3840: 3833: 3827: 3673: 3663: 3658: 3651: 3640: 3634: 3498: 3489: 3484: 3467: 3458: 3453: 3443: 3434: 3429: 3420: 3412: 3405: 3404: 3398: 3309: 3265: 3218: 3214: 3213: 3210: 3189: 3185: 3184: 3174: 3170: 3169: 3166: 3034: 2989: 2944: 2942: 2792: 2683: 2571: 2468: 2466: 2330: 2322: 2210: 2193: 2179: 2167: 2131: 2125: 2085: 2079: 2073: 1976: 1968: 1897: 1892: 1885: 1866: 1861: 1854: 1823: 1799: 1787: 1781: 1751: 1730: 1718: 1712: 1688: 1678: 1656: 1646: 1622: 1612: 1593: 1583: 1571: 1554: 1533: 1521: 1504: 1484: 1450: 1433: 1421: 1400: 1379: 1367: 1360: 1358: 1242: 1237: 1230: 1211: 1206: 1199: 1186: 1181: 1174: 1168: 1070: 1066: 1065: 1062: 977: 973: 972: 969: 911: 902: 897: 894: 840: 831: 826: 823: 763: 754: 749: 746: 692: 683: 678: 675: 531: 523: 335: 331: 330: 327: 306: 302: 301: 298: 225: 181: 175: 145: 111: 5830: 5412:is the number of columns of the matrix 6696:Comparison of linear algebra libraries 5416:. The equation above is known as the 3406: 1028:. Since these four row vectors are 91:. The column space of a matrix is the 6174:Linear Algebra: A Modern Introduction 6142:(7th ed.), Pearson Prentice Hall 6025:Linear algebra § Further reading 5894: 5882: 3257:columns are related by the equation: 7: 6147:Meyer, Carl D. (February 15, 2001), 5289:form a basis of the column space of 3245:of a matrix is the dimension of the 27:Vector spaces associated to a matrix 6192:Linear Algebra and Its Applications 6122:Linear Algebra and Its Applications 5295:. Therefore, the first two rows of 5113:and reduce it to row echelon form: 3637: 286:This article considers matrices of 217:. A definition for matrices over a 5952:. Actually, this form is merely a 5649:It follows that the null space of 5129: 3140:of the column space is called the 1924:consists of all possible products 201:of the column space is called the 25: 6190:Strang, Gilbert (July 19, 2005), 6120:Lay, David C. (August 22, 2005), 6062:(2nd ed.), Springer-Verlag, 4368:For example, consider the matrix 4357:. This makes it possible to use 4353:The row space is not affected by 3708:, with replacement of the vector 3537:are transposes of column vectors 2314:For example, consider the matrix 1346:can be written as the product of 960:. Consequently, the row space of 6709: 6708: 6686:Basic Linear Algebra Subprograms 6444: 6140:Linear Algebra With Applications 6124:(3rd ed.), Addison Wesley, 5569: 5555: 5538: 5524: 5514: 5500: 5483: 5079:comes from a further reduction. 4976: 4961: 4943: 4861: 4846: 4828: 4739: 4724: 4707: 4625: 4610: 4592: 3897: 3866: 3841: 3659: 3499: 3485: 3468: 3454: 3444: 3430: 3413: 3227:{\displaystyle \mathbb {R} ^{4}} 3153:Because the column space is the 1893: 1862: 1313:. That is, the column space of 1238: 1207: 1182: 1079:{\displaystyle \mathbb {R} ^{5}} 986:{\displaystyle \mathbb {R} ^{5}} 898: 827: 750: 679: 344:{\displaystyle \mathbb {R} ^{m}} 315:{\displaystyle \mathbb {R} ^{n}} 6584:Seven-dimensional cross product 5985: 5907:Beauregard & Fraleigh (1973 5465:can be written in terms of the 5321:of the row space is called the 3386:can be written in terms of the 3331:Relation to the left null space 1920:Therefore, the column space of 434:of this linear transformation. 6000:The example is valid over the 5980:where the order of factors is 5851:Introduction to linear algebra 5662: 5383: 5377: 5365: 5359: 4971: 4856: 4734: 4620: 3719:", which changes the order of 3297: 3291: 3279: 3273: 3180: 2295:if the column vectors are not 2034:, then the column vectors are 1: 6194:(4th ed.), Brooks Cole, 6176:(2nd ed.), Brooks/Cole, 5455:. The product of the matrix 5099:is equal to the row space of 4339:is equal to the row space of 3972:. That is, the row space of 437:The column space of a matrix 205:of the matrix and is at most 6426:Eigenvalues and eigenvectors 3374:. The product of the matrix 3120:singular-value decomposition 1131:matrix, with column vectors 140:matrix with components from 6268:Khan Academy video tutorial 6080:(1st ed.), CRC Press, 6058:Axler, Sheldon Jay (1997), 5103:. Using the example matrix 4099:. A linear combination of 1943:. This is the same as the 483:, the action of the matrix 426:If the matrix represents a 6761: 6278:Row Space and Column Space 6040:(5th ed.), New York: 6022: 5933:system of linear equations 5918:This computation uses the 5670:four fundamental subspaces 5436:is the set of all vectors 5424:Relation to the null space 5310: 4330:system of linear equations 4117:is any vector of the form 3605:four fundamental subspaces 3343:is the set of all vectors 3234:to some three-dimensional 3129: 2068:is any vector of the form 2054:. A linear combination of 6704: 6442: 6320: 6060:Linear Algebra Done Right 6038:Elementary Linear Algebra 5676:(the other two being the 5672:associated with a matrix 5075:. Another possible basis 4355:elementary row operations 4079:then the row vectors are 3790:matrix, with row vectors 3362:. It is the same as the 2301:elementary row operations 257:are sometimes denoted as 130:. The column space of an 6138:Leon, Steven J. (2006), 6104:Houghton Mifflin Company 5848:Strang, Gilbert (2016). 5335:. The dimension of the 5084:reduced row echelon form 4303:satisfying the equation 3611:For matrices over a ring 3148:reduced row echelon form 2456:reduced row echelon form 2257:satisfying the equation 497:with the coordinates of 46:The column vectors of a 5615:are the row vectors of 4323:three-dimensional space 3592:to the column space of 2277:three-dimensional space 1951:) of the corresponding 1086:that are orthogonal to 404:in any echelon form of 6411:Row and column vectors 6261:at Google Video, from 6036:Anton, Howard (1987), 5825:References & Notes 5795:can be defined as the 5768:. The transformation 5725:is the set of vectors 5588: 5399: 5274: 5062: 4454: 4321:through the origin in 4271: 4070: 3914: 3683: 3656: 3518: 3314: 3228: 3199: 3081: 2902: 2437: 2311:for the column space. 2275:through the origin in 2228: 2028: 1911: 1350:with a column vector: 1255: 1080: 987: 954: 883: 812: 735: 661: 345: 316: 250:is defined similarly. 234: 191: 154: 120: 51: 39: 6416:Row and column spaces 6361:Scalar multiplication 6172:Poole, David (2006), 5968:to the column vector 5710:linear transformation 5655:orthogonal complement 5589: 5400: 5313:Rank (linear algebra) 5275: 5063: 4504:represents the rows. 4455: 4315:Cartesian coordinates 4272: 4071: 3915: 3721:scalar multiplication 3684: 3636: 3590:orthogonal complement 3519: 3323:This is known as the 3315: 3229: 3200: 3159:matrix transformation 3157:of the corresponding 3132:Rank (linear algebra) 3082: 2903: 2438: 2269:Cartesian coordinates 2229: 2029: 1953:matrix transformation 1912: 1256: 1081: 1049:is an element of the 988: 955: 884: 813: 736: 662: 428:linear transformation 346: 317: 235: 192: 190:{\displaystyle F^{m}} 155: 121: 101:matrix transformation 99:of the corresponding 83:(set of all possible 45: 34:The row vectors of a 33: 6551:Gram–Schmidt process 6503:Gaussian elimination 5659:rank–nullity theorem 5476: 5418:rank–nullity theorem 5350: 5120: 4511: 4465:linearly independent 4375: 4335:The column space of 4124: 4008: 3826: 3633: 3397: 3325:rank–nullity theorem 3264: 3209: 3165: 2941: 2465: 2448:linearly independent 2321: 2297:linearly independent 2072: 1967: 1357: 1167: 1061: 1030:linearly independent 968: 893: 822: 745: 674: 522: 326: 297: 224: 174: 144: 110: 6681:Numerical stability 6561:Multilinear algebra 6536:Inner product space 6386:Linear independence 5758:inner product space 5688:Relation to coimage 4986: 4871: 4749: 4635: 4365:for the row space. 3122:is typically used. 964:is the subspace of 85:linear combinations 6391:Linear combination 6263:MIT OpenCourseWare 6236:Weisstein, Eric W. 6217:Weisstein, Eric W. 5944:Important only if 5819:Euclidean subspace 5584: 5575: 5395: 5270: 5261: 5195: 5091:determinantal rank 5058: 5056: 5045: 4930: 4808: 4694: 4575: 4450: 4441: 4267: 4258: 4202: 4160: 4066: 4057: 3910: 3817:linear combination 3679: 3514: 3505: 3310: 3224: 3195: 3077: 3068: 3023: 2978: 2898: 2889: 2783: 2674: 2562: 2433: 2424: 2224: 2218: 2158: 2112: 2024: 2018: 1907: 1905: 1834: 1762: 1699: 1562: 1515: 1408: 1251: 1158:linear combination 1076: 983: 950: 944: 879: 873: 808: 802: 731: 725: 657: 651: 341: 312: 230: 187: 150: 116: 52: 40: 6722: 6721: 6589:Geometric algebra 6546:Kronecker product 6381:Linear projection 6366:Vector projection 6201:978-0-03-010567-8 6160:978-0-89871-454-8 6131:978-0-321-28713-7 6087:978-1-42-009538-8 5986:the formula above 5861:978-0-9802327-7-6 4987: 4872: 4750: 4636: 233:{\displaystyle R} 153:{\displaystyle F} 119:{\displaystyle F} 62:(also called the 18:Range of a matrix 16:(Redirected from 6752: 6735:Abstract algebra 6712: 6711: 6594:Exterior algebra 6531:Hadamard product 6448: 6436:Linear equations 6307: 6300: 6293: 6284: 6256: 6249: 6248: 6230: 6229: 6204: 6186: 6168: 6167:on March 1, 2001 6163:, archived from 6143: 6134: 6116: 6101: 6090: 6072: 6054: 6017: 6006:rational numbers 5998: 5989: 5979: 5973: 5967: 5963: 5947: 5942: 5936: 5929: 5923: 5916: 5910: 5904: 5898: 5892: 5886: 5880: 5874: 5873: 5845: 5839: 5835: 5808: 5794: 5790: 5783: 5771: 5767: 5755: 5748: 5734: 5724: 5699: 5695: 5675: 5652: 5645: 5637: 5631: 5618: 5614: 5593: 5591: 5590: 5585: 5580: 5579: 5572: 5564: 5563: 5558: 5541: 5533: 5532: 5527: 5517: 5509: 5508: 5503: 5486: 5464: 5458: 5454: 5441: 5435: 5415: 5411: 5404: 5402: 5401: 5396: 5302: 5298: 5294: 5288: 5279: 5277: 5276: 5271: 5266: 5265: 5200: 5199: 5134: 5133: 5132: 5112: 5106: 5102: 5098: 5078: 5074: 5067: 5065: 5064: 5059: 5057: 5050: 5049: 4985: 4984: 4979: 4970: 4969: 4964: 4952: 4951: 4946: 4936: 4935: 4934: 4870: 4869: 4864: 4855: 4854: 4849: 4837: 4836: 4831: 4821: 4817: 4813: 4812: 4748: 4747: 4742: 4733: 4732: 4727: 4716: 4715: 4710: 4700: 4699: 4698: 4634: 4633: 4628: 4619: 4618: 4613: 4601: 4600: 4595: 4585: 4580: 4579: 4503: 4494: 4485: 4473:row echelon form 4470: 4459: 4457: 4456: 4451: 4446: 4445: 4344: 4338: 4317:, this set is a 4312: 4302: 4283: 4276: 4274: 4273: 4268: 4263: 4262: 4255: 4254: 4240: 4239: 4228: 4227: 4207: 4206: 4178: 4177: 4165: 4164: 4136: 4135: 4116: 4107: 4098: 4088: 4075: 4073: 4072: 4067: 4062: 4061: 4001:For example, if 3997: 3975: 3971: 3963: 3945: 3919: 3917: 3916: 3911: 3906: 3905: 3900: 3894: 3893: 3875: 3874: 3869: 3863: 3862: 3850: 3849: 3844: 3838: 3837: 3814: 3789: 3779: 3767: 3742: 3733: 3711: 3707: 3688: 3686: 3685: 3680: 3678: 3677: 3668: 3667: 3662: 3655: 3650: 3625: 3602: 3595: 3587: 3578: 3570: 3564: 3551: 3547: 3536: 3523: 3521: 3520: 3515: 3510: 3509: 3502: 3494: 3493: 3488: 3471: 3463: 3462: 3457: 3447: 3439: 3438: 3433: 3416: 3411: 3410: 3409: 3385: 3379: 3373: 3361: 3348: 3342: 3319: 3317: 3316: 3311: 3256: 3252: 3233: 3231: 3230: 3225: 3223: 3222: 3217: 3204: 3202: 3201: 3196: 3194: 3193: 3188: 3179: 3178: 3173: 3114: 3104: 3086: 3084: 3083: 3078: 3073: 3072: 3028: 3027: 2983: 2982: 2933: 2907: 2905: 2904: 2899: 2894: 2893: 2788: 2787: 2679: 2678: 2567: 2566: 2453: 2442: 2440: 2439: 2434: 2429: 2428: 2299:. Fortunately, 2290: 2271:, this set is a 2266: 2256: 2237: 2233: 2231: 2230: 2225: 2223: 2222: 2215: 2214: 2198: 2197: 2184: 2183: 2163: 2162: 2130: 2129: 2117: 2116: 2084: 2083: 2053: 2043: 2033: 2031: 2030: 2025: 2023: 2022: 1942: 1932: 1923: 1916: 1914: 1913: 1908: 1906: 1902: 1901: 1896: 1890: 1889: 1871: 1870: 1865: 1859: 1858: 1843: 1839: 1838: 1831: 1830: 1807: 1806: 1786: 1785: 1767: 1766: 1759: 1758: 1735: 1734: 1717: 1716: 1704: 1703: 1696: 1695: 1683: 1682: 1664: 1663: 1651: 1650: 1630: 1629: 1617: 1616: 1598: 1597: 1588: 1587: 1567: 1566: 1559: 1558: 1538: 1537: 1520: 1519: 1512: 1511: 1492: 1491: 1458: 1457: 1438: 1437: 1413: 1412: 1405: 1404: 1384: 1383: 1349: 1345: 1338: 1316: 1312: 1304: 1286: 1260: 1258: 1257: 1252: 1247: 1246: 1241: 1235: 1234: 1216: 1215: 1210: 1204: 1203: 1191: 1190: 1185: 1179: 1178: 1155: 1130: 1120: 1108: 1091: 1085: 1083: 1082: 1077: 1075: 1074: 1069: 1056: 1048: 1042: 1027: 992: 990: 989: 984: 982: 981: 976: 963: 959: 957: 956: 951: 949: 948: 907: 906: 901: 888: 886: 885: 880: 878: 877: 836: 835: 830: 817: 815: 814: 809: 807: 806: 759: 758: 753: 740: 738: 737: 732: 730: 729: 688: 687: 682: 666: 664: 663: 658: 656: 655: 514: 502: 496: 492: 486: 482: 475: 451: 444: 440: 421: 417: 407: 399: 389: 370: 366: 362: 350: 348: 347: 342: 340: 339: 334: 321: 319: 318: 313: 311: 310: 305: 282: 269: 256: 241:is also possible 239: 237: 236: 231: 216: 196: 194: 193: 188: 186: 185: 159: 157: 156: 151: 139: 125: 123: 122: 117: 21: 6760: 6759: 6755: 6754: 6753: 6751: 6750: 6749: 6725: 6724: 6723: 6718: 6700: 6662: 6618: 6555: 6507: 6449: 6440: 6406:Change of basis 6396:Multilinear map 6334: 6316: 6311: 6252: 6234: 6233: 6215: 6214: 6211: 6202: 6189: 6184: 6171: 6161: 6146: 6137: 6132: 6119: 6114: 6093: 6088: 6075: 6070: 6057: 6052: 6035: 6032: 6030:Further reading 6027: 6021: 6020: 5999: 5992: 5975: 5969: 5965: 5956: 5945: 5943: 5939: 5930: 5926: 5917: 5913: 5905: 5901: 5893: 5889: 5881: 5877: 5862: 5847: 5846: 5842: 5836: 5832: 5827: 5815: 5799: 5792: 5788: 5781: 5769: 5765: 5753: 5736: 5726: 5712: 5697: 5693: 5690: 5682:left null space 5673: 5650: 5643: 5633: 5632:if and only if 5620: 5616: 5613: 5604: 5598: 5574: 5573: 5553: 5550: 5549: 5543: 5542: 5522: 5519: 5518: 5498: 5491: 5474: 5473: 5460: 5459:and the vector 5456: 5443: 5437: 5433: 5426: 5413: 5409: 5348: 5347: 5315: 5309: 5300: 5296: 5290: 5284: 5260: 5259: 5254: 5249: 5243: 5242: 5237: 5232: 5226: 5225: 5220: 5215: 5205: 5194: 5193: 5188: 5183: 5177: 5176: 5171: 5166: 5160: 5159: 5154: 5149: 5139: 5123: 5118: 5117: 5108: 5104: 5100: 5094: 5076: 5072: 5055: 5054: 5044: 5043: 5038: 5033: 5027: 5026: 5021: 5016: 5010: 5009: 5004: 4999: 4989: 4974: 4959: 4941: 4929: 4928: 4923: 4918: 4912: 4911: 4906: 4901: 4895: 4894: 4889: 4884: 4874: 4859: 4844: 4826: 4815: 4814: 4807: 4806: 4801: 4796: 4790: 4789: 4784: 4779: 4773: 4772: 4767: 4762: 4752: 4737: 4722: 4705: 4693: 4692: 4687: 4682: 4676: 4675: 4670: 4665: 4659: 4658: 4653: 4648: 4638: 4623: 4608: 4590: 4581: 4574: 4573: 4568: 4563: 4557: 4556: 4551: 4546: 4540: 4539: 4534: 4529: 4519: 4509: 4508: 4502: 4496: 4493: 4487: 4484: 4478: 4468: 4440: 4439: 4434: 4429: 4423: 4422: 4417: 4412: 4406: 4405: 4400: 4395: 4385: 4373: 4372: 4351: 4340: 4336: 4304: 4285: 4281: 4257: 4256: 4246: 4241: 4231: 4229: 4219: 4212: 4201: 4200: 4195: 4190: 4180: 4169: 4159: 4158: 4153: 4148: 4138: 4127: 4122: 4121: 4115: 4109: 4106: 4100: 4096: 4090: 4086: 4080: 4056: 4055: 4050: 4045: 4039: 4038: 4033: 4028: 4018: 4006: 4005: 3996: 3987: 3981: 3980:of the vectors 3973: 3969: 3962: 3953: 3947: 3943: 3937: 3930: 3924: 3895: 3885: 3864: 3854: 3839: 3829: 3824: 3823: 3813: 3804: 3797: 3791: 3781: 3777: 3765: 3762: 3757: 3740: 3735: 3732: 3724: 3709: 3705: 3699: 3693: 3669: 3657: 3631: 3630: 3623: 3613: 3600: 3593: 3583: 3576: 3566: 3565:if and only if 3553: 3549: 3546: 3538: 3532: 3504: 3503: 3483: 3480: 3479: 3473: 3472: 3452: 3449: 3448: 3428: 3421: 3400: 3395: 3394: 3381: 3380:and the vector 3375: 3371: 3350: 3344: 3340: 3337:left null space 3333: 3262: 3261: 3254: 3250: 3212: 3207: 3206: 3183: 3168: 3163: 3162: 3134: 3128: 3110: 3102: 3067: 3066: 3060: 3059: 3053: 3052: 3046: 3045: 3035: 3022: 3021: 3015: 3014: 3008: 3007: 3001: 3000: 2990: 2977: 2976: 2970: 2969: 2963: 2962: 2956: 2955: 2945: 2939: 2938: 2932: 2925: 2918: 2912: 2888: 2887: 2882: 2877: 2872: 2866: 2865: 2860: 2855: 2850: 2844: 2843: 2838: 2833: 2828: 2822: 2821: 2816: 2808: 2803: 2793: 2782: 2781: 2776: 2771: 2766: 2760: 2759: 2751: 2746: 2741: 2735: 2734: 2729: 2724: 2719: 2713: 2712: 2707: 2699: 2694: 2684: 2673: 2672: 2667: 2659: 2651: 2645: 2644: 2636: 2631: 2626: 2620: 2619: 2614: 2609: 2604: 2598: 2597: 2592: 2587: 2582: 2572: 2561: 2560: 2555: 2550: 2545: 2539: 2538: 2533: 2528: 2523: 2517: 2516: 2511: 2506: 2501: 2495: 2494: 2489: 2484: 2479: 2469: 2463: 2462: 2451: 2423: 2422: 2417: 2412: 2407: 2401: 2400: 2395: 2390: 2385: 2379: 2378: 2373: 2368: 2363: 2357: 2356: 2351: 2346: 2341: 2331: 2319: 2318: 2288: 2287:The columns of 2285: 2258: 2239: 2235: 2217: 2216: 2206: 2200: 2199: 2189: 2186: 2185: 2175: 2168: 2157: 2156: 2150: 2149: 2143: 2142: 2132: 2121: 2111: 2110: 2104: 2103: 2097: 2096: 2086: 2075: 2070: 2069: 2067: 2060: 2051: 2045: 2041: 2035: 2017: 2016: 2011: 2005: 2004: 1999: 1993: 1992: 1987: 1977: 1965: 1964: 1961: 1934: 1925: 1921: 1904: 1903: 1891: 1881: 1860: 1850: 1848: 1841: 1840: 1833: 1832: 1819: 1816: 1815: 1809: 1808: 1795: 1788: 1777: 1761: 1760: 1747: 1744: 1743: 1737: 1736: 1726: 1719: 1708: 1698: 1697: 1684: 1674: 1652: 1642: 1639: 1638: 1632: 1631: 1618: 1608: 1589: 1579: 1572: 1561: 1560: 1550: 1547: 1546: 1540: 1539: 1529: 1522: 1514: 1513: 1500: 1498: 1493: 1480: 1477: 1476: 1471: 1466: 1460: 1459: 1446: 1444: 1439: 1429: 1422: 1419: 1414: 1407: 1406: 1396: 1393: 1392: 1386: 1385: 1375: 1368: 1355: 1354: 1347: 1343: 1337: 1328: 1322: 1321:of the vectors 1314: 1310: 1303: 1294: 1288: 1284: 1278: 1271: 1265: 1236: 1226: 1205: 1195: 1180: 1170: 1165: 1164: 1154: 1145: 1138: 1132: 1122: 1118: 1106: 1103: 1098: 1087: 1064: 1059: 1058: 1054: 1044: 1037: 1025: 1018: 1011: 1004: 997: 971: 966: 965: 961: 943: 942: 937: 932: 927: 922: 912: 896: 891: 890: 872: 871: 866: 861: 856: 851: 841: 825: 820: 819: 801: 800: 795: 790: 785: 777: 764: 748: 743: 742: 724: 723: 718: 713: 708: 703: 693: 677: 672: 671: 650: 649: 644: 639: 634: 629: 623: 622: 617: 612: 607: 602: 596: 595: 590: 585: 580: 572: 563: 562: 557: 552: 547: 542: 532: 520: 519: 512: 511:Given a matrix 509: 498: 494: 488: 484: 480: 479:Given a matrix 473: 464: 453: 446: 442: 438: 419: 411: 405: 393: 384:)) = dim(colsp( 375: 368: 364: 360: 357: 329: 324: 323: 300: 295: 294: 271: 258: 254: 222: 221: 206: 177: 172: 171: 162:linear subspace 142: 141: 131: 108: 107: 28: 23: 22: 15: 12: 11: 5: 6758: 6756: 6748: 6747: 6742: 6740:Linear algebra 6737: 6727: 6726: 6720: 6719: 6717: 6716: 6705: 6702: 6701: 6699: 6698: 6693: 6688: 6683: 6678: 6676:Floating-point 6672: 6670: 6664: 6663: 6661: 6660: 6658:Tensor product 6655: 6650: 6645: 6643:Function space 6640: 6635: 6629: 6627: 6620: 6619: 6617: 6616: 6611: 6606: 6601: 6596: 6591: 6586: 6581: 6579:Triple product 6576: 6571: 6565: 6563: 6557: 6556: 6554: 6553: 6548: 6543: 6538: 6533: 6528: 6523: 6517: 6515: 6509: 6508: 6506: 6505: 6500: 6495: 6493:Transformation 6490: 6485: 6483:Multiplication 6480: 6475: 6470: 6465: 6459: 6457: 6451: 6450: 6443: 6441: 6439: 6438: 6433: 6428: 6423: 6418: 6413: 6408: 6403: 6398: 6393: 6388: 6383: 6378: 6373: 6368: 6363: 6358: 6353: 6348: 6342: 6340: 6339:Basic concepts 6336: 6335: 6333: 6332: 6327: 6321: 6318: 6317: 6314:Linear algebra 6312: 6310: 6309: 6302: 6295: 6287: 6281: 6280: 6275: 6270: 6265: 6254:Gilbert Strang 6250: 6239:"Column Space" 6231: 6210: 6209:External links 6207: 6206: 6205: 6200: 6187: 6182: 6169: 6159: 6144: 6135: 6130: 6117: 6112: 6091: 6086: 6073: 6068: 6055: 6050: 6031: 6028: 6019: 6018: 6014:characteristic 5990: 5964:of the matrix 5937: 5924: 5911: 5909:, p. 254) 5899: 5897:, p. 183) 5887: 5885:, p. 179) 5875: 5860: 5840: 5829: 5828: 5826: 5823: 5822: 5821: 5814: 5811: 5797:quotient space 5774:isomorphically 5689: 5686: 5609: 5602: 5595: 5594: 5583: 5578: 5571: 5567: 5562: 5557: 5552: 5551: 5548: 5545: 5544: 5540: 5536: 5531: 5526: 5521: 5520: 5516: 5512: 5507: 5502: 5497: 5496: 5494: 5489: 5485: 5481: 5425: 5422: 5406: 5405: 5394: 5391: 5388: 5385: 5382: 5379: 5376: 5373: 5370: 5367: 5364: 5361: 5358: 5355: 5339:is called the 5311:Main article: 5308: 5305: 5281: 5280: 5269: 5264: 5258: 5255: 5253: 5250: 5248: 5245: 5244: 5241: 5238: 5236: 5233: 5231: 5228: 5227: 5224: 5221: 5219: 5216: 5214: 5211: 5210: 5208: 5203: 5198: 5192: 5189: 5187: 5184: 5182: 5179: 5178: 5175: 5172: 5170: 5167: 5165: 5162: 5161: 5158: 5155: 5153: 5150: 5148: 5145: 5144: 5142: 5137: 5131: 5126: 5069: 5068: 5053: 5048: 5042: 5039: 5037: 5034: 5032: 5029: 5028: 5025: 5022: 5020: 5017: 5015: 5012: 5011: 5008: 5005: 5003: 5000: 4998: 4995: 4994: 4992: 4983: 4978: 4973: 4968: 4963: 4958: 4955: 4950: 4945: 4939: 4933: 4927: 4924: 4922: 4919: 4917: 4914: 4913: 4910: 4907: 4905: 4902: 4900: 4897: 4896: 4893: 4890: 4888: 4885: 4883: 4880: 4879: 4877: 4868: 4863: 4858: 4853: 4848: 4843: 4840: 4835: 4830: 4824: 4820: 4818: 4816: 4811: 4805: 4802: 4800: 4797: 4795: 4792: 4791: 4788: 4785: 4783: 4780: 4778: 4775: 4774: 4771: 4768: 4766: 4763: 4761: 4758: 4757: 4755: 4746: 4741: 4736: 4731: 4726: 4719: 4714: 4709: 4703: 4697: 4691: 4688: 4686: 4683: 4681: 4678: 4677: 4674: 4671: 4669: 4666: 4664: 4661: 4660: 4657: 4654: 4652: 4649: 4647: 4644: 4643: 4641: 4632: 4627: 4622: 4617: 4612: 4607: 4604: 4599: 4594: 4588: 4584: 4582: 4578: 4572: 4569: 4567: 4564: 4562: 4559: 4558: 4555: 4552: 4550: 4547: 4545: 4542: 4541: 4538: 4535: 4533: 4530: 4528: 4525: 4524: 4522: 4517: 4516: 4500: 4491: 4482: 4461: 4460: 4449: 4444: 4438: 4435: 4433: 4430: 4428: 4425: 4424: 4421: 4418: 4416: 4413: 4411: 4408: 4407: 4404: 4401: 4399: 4396: 4394: 4391: 4390: 4388: 4383: 4380: 4350: 4347: 4278: 4277: 4266: 4261: 4253: 4249: 4245: 4242: 4238: 4234: 4230: 4226: 4222: 4218: 4217: 4215: 4210: 4205: 4199: 4196: 4194: 4191: 4189: 4186: 4185: 4183: 4176: 4172: 4168: 4163: 4157: 4154: 4152: 4149: 4147: 4144: 4143: 4141: 4134: 4130: 4113: 4104: 4094: 4084: 4077: 4076: 4065: 4060: 4054: 4051: 4049: 4046: 4044: 4041: 4040: 4037: 4034: 4032: 4029: 4027: 4024: 4023: 4021: 4016: 4013: 3992: 3985: 3964:is called the 3958: 3951: 3941: 3935: 3928: 3921: 3920: 3909: 3904: 3899: 3892: 3888: 3884: 3881: 3878: 3873: 3868: 3861: 3857: 3853: 3848: 3843: 3836: 3832: 3809: 3802: 3795: 3761: 3758: 3756: 3753: 3738: 3734:to the scalar 3728: 3723:of the vector 3703: 3697: 3690: 3689: 3676: 3672: 3666: 3661: 3654: 3649: 3646: 3643: 3639: 3612: 3609: 3542: 3525: 3524: 3513: 3508: 3501: 3497: 3492: 3487: 3482: 3481: 3478: 3475: 3474: 3470: 3466: 3461: 3456: 3451: 3450: 3446: 3442: 3437: 3432: 3427: 3426: 3424: 3419: 3415: 3408: 3403: 3332: 3329: 3321: 3320: 3308: 3305: 3302: 3299: 3296: 3293: 3290: 3287: 3284: 3281: 3278: 3275: 3272: 3269: 3221: 3216: 3192: 3187: 3182: 3177: 3172: 3130:Main article: 3127: 3124: 3088: 3087: 3076: 3071: 3065: 3062: 3061: 3058: 3055: 3054: 3051: 3048: 3047: 3044: 3041: 3040: 3038: 3031: 3026: 3020: 3017: 3016: 3013: 3010: 3009: 3006: 3003: 3002: 2999: 2996: 2995: 2993: 2986: 2981: 2975: 2972: 2971: 2968: 2965: 2964: 2961: 2958: 2957: 2954: 2951: 2950: 2948: 2930: 2923: 2916: 2909: 2908: 2897: 2892: 2886: 2883: 2881: 2878: 2876: 2873: 2871: 2868: 2867: 2864: 2861: 2859: 2856: 2854: 2851: 2849: 2846: 2845: 2842: 2839: 2837: 2834: 2832: 2829: 2827: 2824: 2823: 2820: 2817: 2815: 2812: 2809: 2807: 2804: 2802: 2799: 2798: 2796: 2791: 2786: 2780: 2777: 2775: 2772: 2770: 2767: 2765: 2762: 2761: 2758: 2755: 2752: 2750: 2747: 2745: 2742: 2740: 2737: 2736: 2733: 2730: 2728: 2725: 2723: 2720: 2718: 2715: 2714: 2711: 2708: 2706: 2703: 2700: 2698: 2695: 2693: 2690: 2689: 2687: 2682: 2677: 2671: 2668: 2666: 2663: 2660: 2658: 2655: 2652: 2650: 2647: 2646: 2643: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2621: 2618: 2615: 2613: 2610: 2608: 2605: 2603: 2600: 2599: 2596: 2593: 2591: 2588: 2586: 2583: 2581: 2578: 2577: 2575: 2570: 2565: 2559: 2556: 2554: 2551: 2549: 2546: 2544: 2541: 2540: 2537: 2534: 2532: 2529: 2527: 2524: 2522: 2519: 2518: 2515: 2512: 2510: 2507: 2505: 2502: 2500: 2497: 2496: 2493: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2474: 2472: 2444: 2443: 2432: 2427: 2421: 2418: 2416: 2413: 2411: 2408: 2406: 2403: 2402: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2380: 2377: 2374: 2372: 2369: 2367: 2364: 2362: 2359: 2358: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2336: 2334: 2329: 2326: 2284: 2281: 2221: 2213: 2209: 2205: 2202: 2201: 2196: 2192: 2188: 2187: 2182: 2178: 2174: 2173: 2171: 2166: 2161: 2155: 2152: 2151: 2148: 2145: 2144: 2141: 2138: 2137: 2135: 2128: 2124: 2120: 2115: 2109: 2106: 2105: 2102: 2099: 2098: 2095: 2092: 2091: 2089: 2082: 2078: 2065: 2058: 2049: 2039: 2021: 2015: 2012: 2010: 2007: 2006: 2003: 2000: 1998: 1995: 1994: 1991: 1988: 1986: 1983: 1982: 1980: 1975: 1972: 1960: 1957: 1918: 1917: 1900: 1895: 1888: 1884: 1880: 1877: 1874: 1869: 1864: 1857: 1853: 1849: 1847: 1844: 1842: 1837: 1829: 1826: 1822: 1818: 1817: 1814: 1811: 1810: 1805: 1802: 1798: 1794: 1793: 1791: 1784: 1780: 1776: 1773: 1770: 1765: 1757: 1754: 1750: 1746: 1745: 1742: 1739: 1738: 1733: 1729: 1725: 1724: 1722: 1715: 1711: 1707: 1702: 1694: 1691: 1687: 1681: 1677: 1673: 1670: 1667: 1662: 1659: 1655: 1649: 1645: 1641: 1640: 1637: 1634: 1633: 1628: 1625: 1621: 1615: 1611: 1607: 1604: 1601: 1596: 1592: 1586: 1582: 1578: 1577: 1575: 1570: 1565: 1557: 1553: 1549: 1548: 1545: 1542: 1541: 1536: 1532: 1528: 1527: 1525: 1518: 1510: 1507: 1503: 1499: 1497: 1494: 1490: 1487: 1483: 1479: 1478: 1475: 1472: 1470: 1467: 1465: 1462: 1461: 1456: 1453: 1449: 1445: 1443: 1440: 1436: 1432: 1428: 1427: 1425: 1420: 1418: 1415: 1411: 1403: 1399: 1395: 1394: 1391: 1388: 1387: 1382: 1378: 1374: 1373: 1371: 1366: 1363: 1362: 1333: 1326: 1305:is called the 1299: 1292: 1282: 1276: 1269: 1262: 1261: 1250: 1245: 1240: 1233: 1229: 1225: 1222: 1219: 1214: 1209: 1202: 1198: 1194: 1189: 1184: 1177: 1173: 1150: 1143: 1136: 1102: 1099: 1097: 1094: 1073: 1068: 1036:to the vector 1023: 1016: 1009: 1002: 980: 975: 947: 941: 938: 936: 933: 931: 928: 926: 923: 921: 918: 917: 915: 910: 905: 900: 876: 870: 867: 865: 862: 860: 857: 855: 852: 850: 847: 846: 844: 839: 834: 829: 805: 799: 796: 794: 791: 789: 786: 784: 781: 778: 776: 773: 770: 769: 767: 762: 757: 752: 728: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 698: 696: 691: 686: 681: 668: 667: 654: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 624: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 597: 594: 591: 589: 586: 584: 581: 579: 576: 573: 571: 568: 565: 564: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 537: 535: 530: 527: 508: 505: 469: 462: 424: 423: 409: 391: 380:) = dim(rowsp( 356: 353: 351:respectively. 338: 333: 309: 304: 283:respectively. 229: 184: 180: 149: 115: 89:column vectors 56:linear algebra 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6757: 6746: 6743: 6741: 6738: 6736: 6733: 6732: 6730: 6715: 6707: 6706: 6703: 6697: 6694: 6692: 6691:Sparse matrix 6689: 6687: 6684: 6682: 6679: 6677: 6674: 6673: 6671: 6669: 6665: 6659: 6656: 6654: 6651: 6649: 6646: 6644: 6641: 6639: 6636: 6634: 6631: 6630: 6628: 6626:constructions 6625: 6621: 6615: 6614:Outermorphism 6612: 6610: 6607: 6605: 6602: 6600: 6597: 6595: 6592: 6590: 6587: 6585: 6582: 6580: 6577: 6575: 6574:Cross product 6572: 6570: 6567: 6566: 6564: 6562: 6558: 6552: 6549: 6547: 6544: 6542: 6541:Outer product 6539: 6537: 6534: 6532: 6529: 6527: 6524: 6522: 6521:Orthogonality 6519: 6518: 6516: 6514: 6510: 6504: 6501: 6499: 6498:Cramer's rule 6496: 6494: 6491: 6489: 6486: 6484: 6481: 6479: 6476: 6474: 6471: 6469: 6468:Decomposition 6466: 6464: 6461: 6460: 6458: 6456: 6452: 6447: 6437: 6434: 6432: 6429: 6427: 6424: 6422: 6419: 6417: 6414: 6412: 6409: 6407: 6404: 6402: 6399: 6397: 6394: 6392: 6389: 6387: 6384: 6382: 6379: 6377: 6374: 6372: 6369: 6367: 6364: 6362: 6359: 6357: 6354: 6352: 6349: 6347: 6344: 6343: 6341: 6337: 6331: 6328: 6326: 6323: 6322: 6319: 6315: 6308: 6303: 6301: 6296: 6294: 6289: 6288: 6285: 6279: 6276: 6274: 6271: 6269: 6266: 6264: 6260: 6255: 6251: 6246: 6245: 6240: 6237: 6232: 6227: 6226: 6221: 6218: 6213: 6212: 6208: 6203: 6197: 6193: 6188: 6185: 6183:0-534-99845-3 6179: 6175: 6170: 6166: 6162: 6156: 6152: 6151: 6145: 6141: 6136: 6133: 6127: 6123: 6118: 6115: 6113:0-395-14017-X 6109: 6105: 6100: 6099: 6092: 6089: 6083: 6079: 6074: 6071: 6069:0-387-98259-0 6065: 6061: 6056: 6053: 6051:0-471-84819-0 6047: 6043: 6039: 6034: 6033: 6029: 6026: 6015: 6011: 6010:number fields 6007: 6003: 5997: 5995: 5991: 5987: 5983: 5978: 5972: 5962: 5959: 5955: 5951: 5941: 5938: 5934: 5928: 5925: 5921: 5915: 5912: 5908: 5903: 5900: 5896: 5891: 5888: 5884: 5879: 5876: 5871: 5867: 5863: 5857: 5853: 5852: 5844: 5841: 5834: 5831: 5824: 5820: 5817: 5816: 5812: 5810: 5806: 5802: 5798: 5785: 5779: 5775: 5763: 5759: 5750: 5747: 5743: 5739: 5733: 5729: 5723: 5719: 5715: 5711: 5707: 5703: 5702:vector spaces 5687: 5685: 5683: 5679: 5671: 5666: 5664: 5660: 5656: 5647: 5641: 5636: 5630: 5626: 5623: 5612: 5608: 5601: 5581: 5576: 5565: 5560: 5546: 5534: 5529: 5510: 5505: 5492: 5487: 5479: 5472: 5471: 5470: 5468: 5463: 5453: 5449: 5446: 5440: 5431: 5423: 5421: 5419: 5392: 5389: 5386: 5380: 5374: 5371: 5368: 5362: 5356: 5353: 5346: 5345: 5344: 5342: 5338: 5334: 5329: 5326: 5325: 5320: 5314: 5306: 5304: 5293: 5287: 5267: 5262: 5256: 5251: 5246: 5239: 5234: 5229: 5222: 5217: 5212: 5206: 5201: 5196: 5190: 5185: 5180: 5173: 5168: 5163: 5156: 5151: 5146: 5140: 5135: 5124: 5116: 5115: 5114: 5111: 5097: 5092: 5087: 5085: 5080: 5051: 5046: 5040: 5035: 5030: 5023: 5018: 5013: 5006: 5001: 4996: 4990: 4981: 4966: 4956: 4953: 4948: 4937: 4931: 4925: 4920: 4915: 4908: 4903: 4898: 4891: 4886: 4881: 4875: 4866: 4851: 4841: 4838: 4833: 4822: 4819: 4809: 4803: 4798: 4793: 4786: 4781: 4776: 4769: 4764: 4759: 4753: 4744: 4729: 4717: 4712: 4701: 4695: 4689: 4684: 4679: 4672: 4667: 4662: 4655: 4650: 4645: 4639: 4630: 4615: 4605: 4602: 4597: 4586: 4583: 4576: 4570: 4565: 4560: 4553: 4548: 4543: 4536: 4531: 4526: 4520: 4507: 4506: 4505: 4499: 4490: 4481: 4476: 4474: 4466: 4447: 4442: 4436: 4431: 4426: 4419: 4414: 4409: 4402: 4397: 4392: 4386: 4381: 4378: 4371: 4370: 4369: 4366: 4364: 4360: 4359:row reduction 4356: 4348: 4346: 4343: 4333: 4331: 4326: 4324: 4320: 4316: 4311: 4307: 4301: 4297: 4293: 4289: 4264: 4259: 4251: 4247: 4243: 4236: 4232: 4224: 4220: 4213: 4208: 4203: 4197: 4192: 4187: 4181: 4174: 4170: 4166: 4161: 4155: 4150: 4145: 4139: 4132: 4128: 4120: 4119: 4118: 4112: 4103: 4093: 4083: 4063: 4058: 4052: 4047: 4042: 4035: 4030: 4025: 4019: 4014: 4011: 4004: 4003: 4002: 3999: 3995: 3991: 3984: 3979: 3967: 3961: 3957: 3950: 3944: 3934: 3927: 3907: 3902: 3890: 3886: 3882: 3879: 3876: 3871: 3859: 3855: 3851: 3846: 3834: 3830: 3822: 3821: 3820: 3818: 3812: 3808: 3801: 3794: 3788: 3784: 3775: 3771: 3759: 3754: 3752: 3750: 3746: 3741: 3731: 3727: 3722: 3718: 3715: 3712:-space with " 3706: 3696: 3674: 3670: 3664: 3652: 3647: 3644: 3641: 3629: 3628: 3627: 3622: 3618: 3610: 3608: 3606: 3599:For a matrix 3597: 3591: 3586: 3580: 3574: 3569: 3563: 3559: 3556: 3545: 3541: 3535: 3530: 3511: 3506: 3495: 3490: 3476: 3464: 3459: 3440: 3435: 3422: 3417: 3401: 3393: 3392: 3391: 3389: 3384: 3378: 3369: 3365: 3360: 3356: 3353: 3347: 3338: 3330: 3328: 3326: 3306: 3303: 3300: 3294: 3288: 3285: 3282: 3276: 3270: 3267: 3260: 3259: 3258: 3248: 3244: 3239: 3237: 3219: 3190: 3175: 3160: 3156: 3151: 3149: 3145: 3144: 3139: 3133: 3125: 3123: 3121: 3116: 3113: 3108: 3099: 3097: 3093: 3074: 3069: 3063: 3056: 3049: 3042: 3036: 3029: 3024: 3018: 3011: 3004: 2997: 2991: 2984: 2979: 2973: 2966: 2959: 2952: 2946: 2937: 2936: 2935: 2929: 2922: 2915: 2895: 2890: 2884: 2879: 2874: 2869: 2862: 2857: 2852: 2847: 2840: 2835: 2830: 2825: 2818: 2813: 2810: 2805: 2800: 2794: 2789: 2784: 2778: 2773: 2768: 2763: 2756: 2753: 2748: 2743: 2738: 2731: 2726: 2721: 2716: 2709: 2704: 2701: 2696: 2691: 2685: 2680: 2675: 2669: 2664: 2661: 2656: 2653: 2648: 2641: 2638: 2633: 2628: 2623: 2616: 2611: 2606: 2601: 2594: 2589: 2584: 2579: 2573: 2568: 2563: 2557: 2552: 2547: 2542: 2535: 2530: 2525: 2520: 2513: 2508: 2503: 2498: 2491: 2486: 2481: 2476: 2470: 2461: 2460: 2459: 2457: 2449: 2430: 2425: 2419: 2414: 2409: 2404: 2397: 2392: 2387: 2382: 2375: 2370: 2365: 2360: 2353: 2348: 2343: 2338: 2332: 2327: 2324: 2317: 2316: 2315: 2312: 2310: 2306: 2305:row reduction 2302: 2298: 2294: 2282: 2280: 2278: 2274: 2270: 2265: 2261: 2255: 2251: 2247: 2243: 2219: 2211: 2207: 2203: 2194: 2190: 2180: 2176: 2169: 2164: 2159: 2153: 2146: 2139: 2133: 2126: 2122: 2118: 2113: 2107: 2100: 2093: 2087: 2080: 2076: 2064: 2057: 2048: 2038: 2019: 2013: 2008: 2001: 1996: 1989: 1984: 1978: 1973: 1970: 1958: 1956: 1954: 1950: 1946: 1941: 1937: 1931: 1928: 1898: 1886: 1882: 1878: 1875: 1872: 1867: 1855: 1851: 1845: 1835: 1827: 1824: 1820: 1812: 1803: 1800: 1796: 1789: 1782: 1778: 1774: 1771: 1768: 1763: 1755: 1752: 1748: 1740: 1731: 1727: 1720: 1713: 1709: 1705: 1700: 1692: 1689: 1685: 1679: 1675: 1671: 1668: 1665: 1660: 1657: 1653: 1647: 1643: 1635: 1626: 1623: 1619: 1613: 1609: 1605: 1602: 1599: 1594: 1590: 1584: 1580: 1573: 1568: 1563: 1555: 1551: 1543: 1534: 1530: 1523: 1516: 1508: 1505: 1501: 1495: 1488: 1485: 1481: 1473: 1468: 1463: 1454: 1451: 1447: 1441: 1434: 1430: 1423: 1416: 1409: 1401: 1397: 1389: 1380: 1376: 1369: 1364: 1353: 1352: 1351: 1340: 1336: 1332: 1325: 1320: 1308: 1302: 1298: 1291: 1285: 1275: 1268: 1248: 1243: 1231: 1227: 1223: 1220: 1217: 1212: 1200: 1196: 1192: 1187: 1175: 1171: 1163: 1162: 1161: 1159: 1153: 1149: 1142: 1135: 1129: 1125: 1116: 1112: 1100: 1095: 1093: 1090: 1071: 1052: 1047: 1040: 1035: 1031: 1022: 1015: 1008: 1001: 995: 978: 945: 939: 934: 929: 924: 919: 913: 908: 903: 874: 868: 863: 858: 853: 848: 842: 837: 832: 803: 797: 792: 787: 782: 779: 774: 771: 765: 760: 755: 726: 720: 715: 710: 705: 700: 694: 689: 684: 670:the rows are 652: 646: 641: 636: 631: 626: 619: 614: 609: 604: 599: 592: 587: 582: 577: 574: 569: 566: 559: 554: 549: 544: 539: 533: 528: 525: 518: 517: 516: 506: 504: 501: 491: 477: 472: 468: 461: 457: 449: 435: 433: 429: 415: 410: 403: 397: 392: 387: 383: 379: 374: 373: 372: 371:matrix. Then 354: 352: 336: 307: 293: 289: 284: 280: 276: 275: 267: 263: 262: 251: 249: 244: 242: 227: 220: 214: 210: 204: 200: 182: 178: 170: 168: 163: 147: 138: 134: 129: 113: 104: 102: 98: 94: 90: 86: 82: 78: 75: 71: 70: 65: 61: 57: 49: 44: 37: 32: 19: 6624:Vector space 6415: 6356:Vector space 6242: 6223: 6191: 6173: 6165:the original 6149: 6139: 6121: 6097: 6077: 6059: 6037: 6008:, and other 6002:real numbers 5981: 5976: 5970: 5960: 5957: 5940: 5927: 5920:Gauss–Jordan 5914: 5902: 5890: 5878: 5850: 5843: 5833: 5804: 5800: 5786: 5751: 5745: 5741: 5737: 5731: 5727: 5721: 5717: 5713: 5691: 5678:column space 5667: 5648: 5634: 5628: 5624: 5621: 5610: 5606: 5599: 5596: 5469:of vectors: 5461: 5451: 5447: 5444: 5438: 5427: 5407: 5340: 5333:column space 5330: 5322: 5316: 5291: 5285: 5282: 5109: 5107:above, find 5095: 5088: 5081: 5070: 4497: 4488: 4479: 4477: 4462: 4367: 4352: 4341: 4334: 4327: 4309: 4305: 4299: 4295: 4291: 4287: 4279: 4110: 4101: 4091: 4081: 4078: 4000: 3993: 3989: 3982: 3965: 3959: 3955: 3948: 3939: 3932: 3925: 3922: 3810: 3806: 3799: 3792: 3786: 3782: 3763: 3748: 3744: 3736: 3729: 3725: 3701: 3694: 3691: 3616: 3614: 3604: 3598: 3584: 3581: 3567: 3561: 3557: 3554: 3543: 3539: 3533: 3526: 3390:of vectors: 3382: 3376: 3358: 3354: 3351: 3345: 3334: 3322: 3242: 3240: 3152: 3141: 3135: 3117: 3111: 3109:matrix  3100: 3096:echelon form 3089: 2927: 2920: 2913: 2910: 2445: 2313: 2286: 2263: 2259: 2253: 2249: 2245: 2241: 2062: 2055: 2046: 2036: 1962: 1939: 1935: 1929: 1926: 1919: 1341: 1334: 1330: 1323: 1307:column space 1306: 1300: 1296: 1289: 1280: 1273: 1266: 1263: 1151: 1147: 1140: 1133: 1127: 1123: 1104: 1096:Column space 1088: 1045: 1038: 1020: 1013: 1006: 999: 669: 510: 499: 489: 487:on a vector 478: 470: 466: 459: 455: 447: 436: 425: 413: 400:= number of 395: 385: 381: 377: 358: 288:real numbers 285: 278: 273: 272: 265: 260: 259: 252: 247: 245: 212: 208: 166: 136: 132: 105: 76: 68: 63: 60:column space 59: 53: 6604:Multivector 6569:Determinant 6526:Dot product 6371:Linear span 6220:"Row Space" 5950:commutative 5895:Anton (1987 5883:Anton (1987 5704:, then the 5467:dot product 3717:free module 3529:row vectors 3388:dot product 292:real spaces 6729:Categories 6638:Direct sum 6473:Invertible 6376:Linear map 6102:, Boston: 6023:See also: 5735:for which 5640:orthogonal 5442:for which 5432:of matrix 5430:null space 5337:null space 4361:to find a 3760:Definition 3573:orthogonal 3364:null space 3349:such that 3247:null space 2307:to find a 1101:Definition 1034:orthogonal 458:) = span({ 6668:Numerical 6431:Transpose 6244:MathWorld 6225:MathWorld 5984:, unlike 5982:preserved 5870:956503593 5776:onto the 5663:dimension 5566:⋅ 5547:⋮ 5535:⋅ 5511:⋅ 5375:⁡ 5357:⁡ 5319:dimension 5307:Dimension 5202:∼ 4972:→ 4954:− 4857:→ 4839:− 4735:→ 4718:− 4621:→ 4603:− 3966:row space 3880:⋯ 3755:Row space 3638:∑ 3588:) is the 3496:⋅ 3477:⋮ 3465:⋅ 3441:⋅ 3368:transpose 3289:⁡ 3271:⁡ 3181:→ 3138:dimension 3126:Dimension 3107:transpose 2811:− 2790:∼ 2754:− 2702:− 2681:∼ 2662:− 2654:− 2639:− 2569:∼ 1876:⋯ 1813:⋮ 1772:⋯ 1741:⋮ 1669:⋯ 1636:⋮ 1603:⋯ 1544:⋮ 1496:⋯ 1474:⋮ 1469:⋱ 1464:⋮ 1442:⋯ 1390:⋮ 1221:⋯ 780:− 772:− 575:− 567:− 248:row space 199:dimension 87:) of its 6745:Matrices 6714:Category 6653:Subspace 6648:Quotient 6599:Bivector 6513:Bilinear 6455:Matrices 6330:Glossary 5813:See also 5665:above). 5619:. Thus 4938:→ 4823:→ 4702:→ 4587:→ 3692:for any 3552:. Thus 3527:because 3236:subspace 355:Overview 6325:Outline 5954:product 5948:is not 5762:coimage 5653:is the 5605:, ..., 5372:nullity 5341:nullity 4313:(using 3988:, ..., 3976:is the 3954:, ..., 3938:, ..., 3805:, ..., 3774:scalars 3700:, ..., 3366:of the 3286:nullity 3243:nullity 2267:(using 1959:Example 1329:, ..., 1317:is the 1295:, ..., 1279:, ..., 1146:, ..., 1115:scalars 994:spanned 507:Example 465:, ..., 452:, then 197:. The 164:of the 79:is the 72:) of a 6609:Tensor 6421:Kernel 6351:Vector 6346:Scalar 6198:  6180:  6157:  6128:  6110:  6084:  6066:  6048:  6004:, the 5868:  5858:  5803:/ ker( 5756:is an 5706:kernel 5597:where 5408:where 5077:{ , } 5073:{ , } 3923:where 3780:be an 3776:. Let 3749:scalar 3745:vector 3092:pivots 1933:, for 1264:where 1121:be an 1117:. Let 1051:kernel 454:colsp( 445:. If 402:pivots 363:be an 169:-space 74:matrix 58:, the 48:matrix 36:matrix 6478:Minor 6463:Block 6401:Basis 6042:Wiley 5974:from 5838:2005. 5787:When 5778:image 5708:of a 5661:(see 4363:basis 4349:Basis 4319:plane 3815:. A 3770:field 3768:be a 3714:right 3617:right 3253:with 3155:image 2309:basis 2293:basis 2283:Basis 2273:plane 1949:range 1945:image 1156:. A 1111:field 1109:be a 432:image 412:rank( 394:rank( 376:rank( 160:is a 128:field 126:be a 97:range 93:image 69:image 64:range 6633:Dual 6488:Rank 6196:ISBN 6178:ISBN 6155:ISBN 6126:ISBN 6108:ISBN 6082:ISBN 6064:ISBN 6046:ISBN 5866:OCLC 5856:ISBN 5744:) = 5700:are 5696:and 5680:and 5428:The 5354:rank 5324:rank 5317:The 4298:) ∈ 4108:and 4089:and 3978:span 3764:Let 3621:ring 3335:The 3268:rank 3241:The 3143:rank 3136:The 2919:= −2 2252:) ∈ 2061:and 2044:and 1947:(or 1319:span 1105:Let 367:-by- 359:Let 322:and 270:and 246:The 219:ring 207:min( 203:rank 106:Let 81:span 5780:of 5764:of 5752:If 5692:If 5684:). 5638:is 4471:to 4325:). 4308:= 2 3968:of 3772:of 3626:as 3571:is 3548:of 3531:of 3370:of 3339:of 2454:to 2279:). 2262:= 2 1963:If 1309:of 1113:of 1053:of 996:by 95:or 66:or 54:In 6731:: 6257:, 6241:. 6222:. 6106:, 6044:, 5993:^ 5864:. 5809:. 5784:. 5730:∈ 5720:→ 5716:: 5646:. 5627:= 5450:= 5420:. 5303:. 4495:, 4486:, 4475:: 4345:. 4294:, 4290:, 4097:= 4087:= 3998:. 3931:, 3798:, 3785:× 3751:. 3607:. 3596:. 3579:. 3560:= 3357:= 3327:. 3238:. 3115:. 3098:. 2926:+ 2458:: 2248:, 2244:, 2052:= 2042:= 1955:. 1938:∈ 1732:11 1595:11 1435:11 1339:. 1272:, 1139:, 1126:× 1092:. 1041:= 1019:, 1012:, 1005:, 998:{ 889:, 818:, 741:, 515:: 476:. 474:}) 450:= 388:)) 243:. 211:, 135:× 103:. 6306:e 6299:t 6292:v 6247:. 6228:. 6016:. 5988:. 5977:K 5971:c 5966:A 5961:c 5958:A 5946:K 5935:. 5872:. 5807:) 5805:T 5801:V 5793:T 5789:V 5782:T 5770:T 5766:T 5754:V 5746:0 5742:v 5740:( 5738:T 5732:V 5728:v 5722:W 5718:V 5714:T 5698:W 5694:V 5674:A 5651:A 5644:A 5635:x 5629:0 5625:x 5622:A 5617:A 5611:m 5607:r 5603:1 5600:r 5582:, 5577:] 5570:x 5561:m 5556:r 5539:x 5530:2 5525:r 5515:x 5506:1 5501:r 5493:[ 5488:= 5484:x 5480:A 5462:x 5457:A 5452:0 5448:x 5445:A 5439:x 5434:A 5414:A 5410:n 5393:, 5390:n 5387:= 5384:) 5381:A 5378:( 5369:+ 5366:) 5363:A 5360:( 5301:A 5297:A 5292:A 5286:A 5268:. 5263:] 5257:0 5252:0 5247:0 5240:2 5235:1 5230:0 5223:1 5218:2 5213:1 5207:[ 5197:] 5191:2 5186:4 5181:2 5174:5 5169:7 5164:3 5157:1 5152:2 5147:1 5141:[ 5136:= 5130:T 5125:A 5110:A 5105:A 5101:A 5096:A 5052:. 5047:] 5041:0 5036:0 5031:0 5024:0 5019:1 5014:0 5007:2 5002:0 4997:1 4991:[ 4982:1 4977:r 4967:2 4962:r 4957:3 4949:1 4944:r 4932:] 4926:0 4921:0 4916:0 4909:0 4904:1 4899:0 4892:2 4887:3 4882:1 4876:[ 4867:3 4862:r 4852:2 4847:r 4842:2 4834:3 4829:r 4810:] 4804:0 4799:2 4794:0 4787:0 4782:1 4777:0 4770:2 4765:3 4760:1 4754:[ 4745:3 4740:r 4730:1 4725:r 4713:3 4708:r 4696:] 4690:2 4685:5 4680:1 4673:0 4668:1 4663:0 4656:2 4651:3 4646:1 4640:[ 4631:2 4626:r 4616:1 4611:r 4606:2 4598:2 4593:r 4577:] 4571:2 4566:5 4561:1 4554:4 4549:7 4544:2 4537:2 4532:3 4527:1 4521:[ 4501:3 4498:r 4492:2 4489:r 4483:1 4480:r 4469:A 4448:. 4443:] 4437:2 4432:5 4427:1 4420:4 4415:7 4410:2 4403:2 4398:3 4393:1 4387:[ 4382:= 4379:A 4342:A 4337:A 4310:x 4306:z 4300:K 4296:z 4292:y 4288:x 4286:( 4282:A 4265:. 4260:] 4252:1 4248:c 4244:2 4237:2 4233:c 4225:1 4221:c 4214:[ 4209:= 4204:] 4198:0 4193:1 4188:0 4182:[ 4175:2 4171:c 4167:+ 4162:] 4156:2 4151:0 4146:1 4140:[ 4133:1 4129:c 4114:2 4111:r 4105:1 4102:r 4095:2 4092:r 4085:1 4082:r 4064:, 4059:] 4053:0 4048:1 4043:0 4036:2 4031:0 4026:1 4020:[ 4015:= 4012:A 3994:m 3990:r 3986:1 3983:r 3974:A 3970:A 3960:m 3956:r 3952:1 3949:r 3942:m 3940:c 3936:2 3933:c 3929:1 3926:c 3908:, 3903:m 3898:r 3891:m 3887:c 3883:+ 3877:+ 3872:2 3867:r 3860:2 3856:c 3852:+ 3847:1 3842:r 3835:1 3831:c 3811:m 3807:r 3803:2 3800:r 3796:1 3793:r 3787:n 3783:m 3778:A 3766:K 3747:– 3739:k 3737:c 3730:k 3726:v 3710:m 3704:n 3702:c 3698:1 3695:c 3675:k 3671:c 3665:k 3660:v 3653:n 3648:1 3645:= 3642:k 3624:K 3601:A 3594:A 3585:A 3577:A 3568:x 3562:0 3558:x 3555:A 3550:A 3544:k 3540:v 3534:A 3512:, 3507:] 3500:x 3491:n 3486:v 3469:x 3460:2 3455:v 3445:x 3436:1 3431:v 3423:[ 3418:= 3414:x 3407:T 3402:A 3383:x 3377:A 3372:A 3359:0 3355:A 3352:x 3346:x 3341:A 3307:. 3304:n 3301:= 3298:) 3295:A 3292:( 3283:+ 3280:) 3277:A 3274:( 3255:n 3251:A 3220:4 3215:R 3191:4 3186:R 3176:4 3171:R 3112:A 3103:A 3075:. 3070:] 3064:8 3057:1 3050:9 3043:4 3037:[ 3030:, 3025:] 3019:2 3012:5 3005:7 2998:3 2992:[ 2985:, 2980:] 2974:1 2967:1 2960:2 2953:1 2947:[ 2931:2 2928:v 2924:1 2921:v 2917:3 2914:v 2896:. 2891:] 2885:0 2880:0 2875:0 2870:0 2863:1 2858:0 2853:0 2848:0 2841:0 2836:1 2831:1 2826:0 2819:0 2814:2 2806:0 2801:1 2795:[ 2785:] 2779:5 2774:0 2769:0 2764:0 2757:5 2749:0 2744:0 2739:0 2732:1 2727:1 2722:1 2717:0 2710:1 2705:2 2697:0 2692:1 2686:[ 2676:] 2670:4 2665:1 2657:1 2649:0 2642:3 2634:2 2629:2 2624:0 2617:1 2612:1 2607:1 2602:0 2595:4 2590:1 2585:3 2580:1 2574:[ 2564:] 2558:8 2553:0 2548:2 2543:1 2536:1 2531:3 2526:5 2521:1 2514:9 2509:3 2504:7 2499:2 2492:4 2487:1 2482:3 2477:1 2471:[ 2452:A 2431:. 2426:] 2420:8 2415:0 2410:2 2405:1 2398:1 2393:3 2388:5 2383:1 2376:9 2371:3 2366:7 2361:2 2354:4 2349:1 2344:3 2339:1 2333:[ 2328:= 2325:A 2289:A 2264:x 2260:z 2254:R 2250:z 2246:y 2242:x 2240:( 2236:A 2220:] 2212:1 2208:c 2204:2 2195:2 2191:c 2181:1 2177:c 2170:[ 2165:= 2160:] 2154:0 2147:1 2140:0 2134:[ 2127:2 2123:c 2119:+ 2114:] 2108:2 2101:0 2094:1 2088:[ 2081:1 2077:c 2066:2 2063:v 2059:1 2056:v 2050:2 2047:v 2040:1 2037:v 2020:] 2014:0 2009:2 2002:1 1997:0 1990:0 1985:1 1979:[ 1974:= 1971:A 1940:K 1936:x 1930:x 1927:A 1922:A 1899:n 1894:v 1887:n 1883:c 1879:+ 1873:+ 1868:1 1863:v 1856:1 1852:c 1846:= 1836:] 1828:n 1825:m 1821:a 1804:n 1801:1 1797:a 1790:[ 1783:n 1779:c 1775:+ 1769:+ 1764:] 1756:1 1753:m 1749:a 1728:a 1721:[ 1714:1 1710:c 1706:= 1701:] 1693:n 1690:m 1686:a 1680:n 1676:c 1672:+ 1666:+ 1661:1 1658:m 1654:a 1648:1 1644:c 1627:n 1624:1 1620:a 1614:n 1610:c 1606:+ 1600:+ 1591:a 1585:1 1581:c 1574:[ 1569:= 1564:] 1556:n 1552:c 1535:1 1531:c 1524:[ 1517:] 1509:n 1506:m 1502:a 1489:1 1486:m 1482:a 1455:n 1452:1 1448:a 1431:a 1424:[ 1417:= 1410:] 1402:n 1398:c 1381:1 1377:c 1370:[ 1365:A 1348:A 1344:A 1335:n 1331:v 1327:1 1324:v 1315:A 1311:A 1301:n 1297:v 1293:1 1290:v 1283:n 1281:c 1277:2 1274:c 1270:1 1267:c 1249:, 1244:n 1239:v 1232:n 1228:c 1224:+ 1218:+ 1213:2 1208:v 1201:2 1197:c 1193:+ 1188:1 1183:v 1176:1 1172:c 1152:n 1148:v 1144:2 1141:v 1137:1 1134:v 1128:n 1124:m 1119:A 1107:K 1089:n 1072:5 1067:R 1055:J 1046:n 1043:( 1039:n 1026:} 1024:4 1021:r 1017:3 1014:r 1010:2 1007:r 1003:1 1000:r 979:5 974:R 962:J 946:] 940:1 935:5 930:2 925:6 920:3 914:[ 909:= 904:4 899:r 875:] 869:2 864:2 859:2 854:6 849:1 843:[ 838:= 833:3 828:r 804:] 798:5 793:0 788:1 783:2 775:1 766:[ 761:= 756:2 751:r 727:] 721:2 716:3 711:1 706:4 701:2 695:[ 690:= 685:1 680:r 653:] 647:1 642:5 637:2 632:6 627:3 620:2 615:2 610:2 605:6 600:1 593:5 588:0 583:1 578:2 570:1 560:2 555:3 550:1 545:4 540:2 534:[ 529:= 526:J 513:J 500:x 495:A 490:x 485:A 481:A 471:n 467:a 463:1 460:a 456:A 448:A 443:A 439:A 422:. 420:A 416:) 414:A 408:, 406:A 398:) 396:A 390:, 386:A 382:A 378:A 369:n 365:m 361:A 337:m 332:R 308:n 303:R 281:) 279:A 277:( 274:C 268:) 266:A 264:( 261:C 255:A 228:R 215:) 213:n 209:m 183:m 179:F 167:m 148:F 137:n 133:m 114:F 77:A 20:)

Index

Range of a matrix

matrix

matrix
linear algebra
image
matrix
span
linear combinations
column vectors
image
range
matrix transformation
field
linear subspace
m-space
dimension
rank
ring
is also possible
real numbers
real spaces
pivots
linear transformation
image
spanned
linearly independent
orthogonal
kernel

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.