Knowledge (XXG)

Rank of an elliptic curve

Source 📝

344:), the rank of elliptic curves should be 1/2 on average. Even stronger half of all elliptic curves should have rank 0 (meaning that the infinite part of its Mordell–Weil group is trivial) and the other half should have rank 1; all remaining ranks consist of a total of 0% of all elliptic curves over 4303:
D. Goldfeld, Conjectures on elliptic curves over quadratic fields, in Number Theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979), Lecture Notes in Math. 751, Springer-Verlag, New York, 1979, pp. 108–118.
1674: 1105: 3543: 2790:. The model makes further predictions on upper bounds which are consistent with all currently known lower bounds from example families of elliptic curves in special cases (such as restrictions on the type of torsion groups). 2262: 3169: 181: 81:. This means that for any elliptic curve there is a finite subset of the rational points on the curve, from which all further rational points may be generated. If the number of rational points on a curve is 3660: 2682: 1114:, one can obtain a well-defined quantity. Obtaining estimates for this quantity is therefore obtaining upper bounds for the size of the average rank of elliptic curves (provided that an average exists). 2027:
or not. This problem has a long history of opinions of experts in the field about it. Park et al. give an account. A popular article can be found in Quanta magazine. For technical reasons instead of
805: 4475:
M. Bhargava and A. Shankar, Ternary cubic forms having bounded invariants, and the existence of a positive proportion of elliptic curves having rank 0, Annals of Mathematics 181 (2015), 587–621
1875: 3589: 3036: 2788: 3219: 2469: 1760: 1466: 2914: 2189: 265: 3426: 1592: 3261: 1715: 4459:
M. Bhargava and A. Shankar, Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, Annals of Mathematics 181 (2015), 191–242
1348:
unconditional proof of the boundedness of the average rank of elliptic curves is obtained by using a certain exact sequence involving the Mordell-Weil group of an elliptic curve
971: 3112: 504: 220: 3081: 2128: 2505: 2306: 2061: 2025: 4494:
Jennifer Park, Bjorn Poonen, John Voight, Melanie Matchett Wood, A heuristic for boundedness of ranks of elliptic curves. J. Eur. Math. Soc. 21 (2019), no. 9, pp. 2859–2903.
3333:
As of 2024 there is no consensus among the experts if the rank of an elliptic curve should be expected to be bounded uniformly only in terms of its base number field or not.
1926: 1407: 3293: 2372: 1376: 1331: 1257: 934: 838: 689: 436: 402: 3388: 4070: 4048: 2604: 633: 364: 326: 2876: 1541: 3320: 2945: 2822: 2743:. Their model was geared along the known results on distribution of elliptic curves in low ranks and their Tate-Shafarevich groups. It predicts a conjectural bound 2574: 2532: 2399: 2333: 2088: 1200: 1122:
In the past two decades there has been some progress made towards the task of finding upper bounds for the average rank. A. Brumer showed that, conditioned on the
580: 2714: 963: 904: 867: 1230: 1148: 659: 533: 1966: 1946: 1895: 1820: 1800: 1780: 1585: 1561: 1506: 1486: 1427: 1297: 1277: 1172: 600: 553: 287: 52: 3461: 1979:, using a method used by Birch and Swinnerton-Dyer in their original computation of the analytic rank of elliptic curves which led to their famous conjecture. 3038:, therefor a uniform bound for all number fields is impossible. They attribute the failure of their model in this case to the existence of elliptic curves 1259:
without assuming either the Birch–Swinnerton-Dyer conjecture or the Generalized Riemann Hypothesis. This is achieved by computing the average size of the
2194: 328:
to be bounded or not. It has been shown that there exist curves with rank at least 29, but it is widely believed that such curves are rare. Indeed,
3350: 2797:
a general number field the same model would predict the same bound, which however cannot hold. Park et al. show the existence of number fields
4512: 4336:
N. M. Katz and P. Sarnak, Random Matrices, Frobenius Eigenvalues, and Monodromy, Amer. Math. Soc. Colloq. Publ. 45, Amer. Math. Soc., 1999.
1123: 303: 3121: 2580:. This was the consensus among the leading experts up to the 2010s. However Mestre in 1982 proved unconditionally that for elliptic curves 117: 3545:, as the group of rational points is no longer finitely generated. In this case the rank will always be infinite. For local fields, the 439: 3594: 2609: 3171:
of all such elliptic curves that do not come from base change of a proper subfield. The model then predicts that the analog bound
3662:
one has an infinite filtration where the successive quotients are finite groups of a well classified structure. But for general
4674: 697: 3679: 2685: 1127: 1825: 3552: 3447:-rational points. This holds much more generally than only for global fields, by a result of NĂ©ron this is true for all 2728: 3330:) it is not clear which modified heuristics predicts correct values let alone which approach would prove such bounds. 2954: 4075:
In 2024, Elkies and Klagsbrun discovered a curve with a rank of at least 29 (under the GRH, the rank is exactly 29):
1564: 2746: 306:. There is currently no consensus among the experts on whether one should expect the ranks of elliptic curves over 3174: 2542: 2404: 1726: 1432: 78: 2881: 2145: 1669:{\displaystyle 0\rightarrow E(\mathbb {Q} )/pE(\mathbb {Q} )\rightarrow \operatorname {Sel} _{p}(E)\rightarrow } 232: 28: 4669: 3393: 3047: 2724: 94: 3341:
Park et al. argue that their model (suitably modified) should not only apply to number fields, but to general
4638: 3228: 1100:{\displaystyle \lim _{X\rightarrow \infty }{\frac {\sum _{H(E(A,B))\leq X}r(E)}{\sum _{H(E(A,B))\leq X}1}}.} 3674:
A common conjecture is that there is no bound on the largest possible rank for an elliptic curve. In 2006,
2546: 1973:
Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves
1679: 1975:, Bhargava and Shankar computed the 2-Selmer rank of elliptic curves on average. They did so by counting 408:
on the set of rational elliptic curves. To define such a function, recall that a rational elliptic curve
3086: 448: 189: 3053: 2093: 2474: 2282: 2030: 1994: 4424:
M. P. Young, Low-lying zeros of families of elliptic curves, J. Amer. Math. Soc. 19 (2006), 205–250.
3440: 1900: 1381: 86: 66: 4392:
D. R. Heath-Brown, The average analytic rank of elliptic curves, Duke Math. J. 122 (2004), 591–623.
3266: 2349: 1351: 1306: 1235: 909: 813: 664: 411: 377: 3360: 661:
are integers that satisfy this property and define a height function on the set of elliptic curves
4053: 4031: 2587: 605: 347: 309: 4581: 1174:, still assuming the same two conjectures. Finally, Young showed that one can obtain a bound of 223: 374:
In order to obtain a reasonable notion of 'average', one must be able to count elliptic curves
2276: 1151: 4591: 4495: 4476: 4460: 4440: 4432: 4408: 4400: 4376: 4368: 4344: 4320: 4312: 2827: 2732: 2538: 1987:
It is in general an open problem whether the rank of all elliptic curves over a fixed field
1511: 4428: 4396: 4364: 4340: 4308: 3298: 2923: 2800: 2552: 2510: 2377: 2311: 2066: 1177: 1110:
It is not known whether or not this limit exists. However, by replacing the limit with the
558: 4517: 4436: 4425: 4404: 4393: 4372: 4361: 4348: 4337: 4316: 4305: 3666:
there is no universal analog in place of the rank that is an interesting object of study.
2948: 2690: 2340: 1341: 1205: 939: 880: 843: 405: 329: 55: 4280: 3538:{\displaystyle K\in \{\mathbb {R} ,\mathbb {C} ,\mathbb {Q} _{p},\mathbb {F} _{q}((x))\}} 1215: 1133: 638: 512: 4616: 4276: 1951: 1931: 1880: 1805: 1785: 1765: 1570: 1546: 1491: 1471: 1412: 1282: 1262: 1157: 1111: 585: 538: 272: 109: 74: 37: 32: 4540: 4360:
A. Brumer, The average rank of elliptic curves. I, Invent. Math. 109 (1992), 445–472.
4663: 2740: 965:
in hand, one can then define the "average rank" as a limit, provided that it exists:
299: 70: 3455: 3342: 1345: 1300: 1209: 337: 82: 59: 4444: 4412: 4292:
The following table contains some historical data on elliptic curve rank records.
3678:
discovered an elliptic curve with a rank of at least 28. It was shown that under
4480: 4464: 4050:
are known. In particular Elkies gave an infinite family of elliptic curves over
3854:
In 2020, Elkies and Zev Klagsbrun discovered a curve with a rank of exactly 20:
3675: 2736: 2336: 20: 2257:{\displaystyle (B_{K}<\infty )\Leftrightarrow ({\tilde {B}}_{K}<\infty )} 2723:
In 2016 Park et al. introduced a new random model drawing on analogies to the
3435:
For the question of boundedness of ranks of elliptic curves over some field
2374:, which in particular includes elliptic curves, the existence of a constant 1968:, then one would be able to bound the Mordell-Weil rank on average as well. 333: 3221:
should hold, however Park et al. also show the existence of a number field
4455: 4453: 108:
and Mordell's theorem can be stated as the existence of an isomorphism of
4595: 4569: 4499: 4380: 4324: 3591:
one can talk about dimensions as manifolds or algebraic varieties, for
3083:, which their model does not take into account. Instead of the family 3164:{\displaystyle {\mathcal {E}}_{K}^{\circ }\subset {\mathcal {E}}_{K}} 4513:"Without a Proof, Mathematicians Wonder How Much Evidence Is Enough" 1212:
showed that the average rank of elliptic curves is bounded above by
176:{\displaystyle E(K)\cong \mathbb {Z} ^{r}\oplus E(K)_{\text{tors}},} 4586: 3443:
over that field that guarantees finite generation for the group
1409:
the Mordell-Weil group of rational points on the elliptic curve
3655:{\displaystyle K\in \{\mathbb {Q} _{p},\mathbb {F} _{q}((x))\}} 16:
Number of independent rational basis points with infinite order
3353:
over a finite field. They also point out that function fields
2677:{\displaystyle {\text{rk}}(E(\mathbb {Q} ))\leq O(\log(N(E)))} 4541:"Chow's K/k-image and K/k-trace, and the Lang-NĂ©ron theorem" 3150: 3128: 3093: 1928:. Therefore, if one can compute or obtain an upper bound on 4028:
Many other examples of (families of) elliptic curves over
4568:
Klagsbrun, Zev; Sherman, Travis; Weigandt, James (2019).
535:. Moreover, this model is unique if for any prime number 2534:, but confers a favorable attitude towards such bounds. 810:
It can then be shown that the number of elliptic curves
800:{\displaystyle H(E)=H(E(A,B))=\max\{4|A|^{3},27B^{2}\}.} 4639:"New records for ranks of elliptic curves with torsion" 298:
The rank is related to several outstanding problems in
4056: 4034: 3597: 3555: 3464: 3396: 3363: 3301: 3269: 3231: 3177: 3124: 3089: 3056: 2957: 2926: 2884: 2830: 2803: 2749: 2693: 2612: 2590: 2555: 2513: 2477: 2407: 2380: 2352: 2314: 2285: 2197: 2148: 2096: 2069: 2033: 1997: 1954: 1934: 1903: 1883: 1828: 1808: 1788: 1768: 1729: 1682: 1595: 1573: 1549: 1514: 1494: 1474: 1435: 1415: 1384: 1354: 1309: 1285: 1265: 1238: 1218: 1180: 1160: 1136: 974: 942: 912: 883: 846: 816: 700: 667: 641: 608: 588: 561: 541: 515: 451: 414: 380: 350: 340:
conjectured that in a suitable asymptotic sense (see
312: 275: 235: 192: 120: 85:
then some point in a finite basis must have infinite
40: 2916:
such that there are infinitely many elliptic curves
3549:-rational points have other useful structures, for 2471:- such a bound does not translate directly to some 1870:{\displaystyle \#\operatorname {Sel} _{p}(E)=p^{s}} 4570:"The Elkies curve has rank 28 subject only to GRH" 4064: 4042: 3654: 3584:{\displaystyle K\in \{\mathbb {R} ,\mathbb {C} \}} 3583: 3537: 3420: 3382: 3314: 3287: 3255: 3213: 3163: 3106: 3075: 3030: 2939: 2908: 2870: 2816: 2782: 2708: 2676: 2598: 2568: 2526: 2499: 2463: 2393: 2366: 2327: 2300: 2256: 2183: 2122: 2082: 2055: 2019: 1960: 1940: 1920: 1889: 1869: 1814: 1794: 1774: 1754: 1709: 1668: 1579: 1555: 1535: 1500: 1480: 1460: 1421: 1401: 1370: 1325: 1291: 1271: 1251: 1224: 1194: 1166: 1142: 1099: 957: 928: 898: 861: 832: 799: 683: 653: 627: 594: 574: 547: 527: 498: 430: 396: 358: 320: 281: 259: 214: 175: 46: 3031:{\displaystyle {\text{rk}}(E(K_{n}))\geq 2^{n}=} 2279:in 1950 held the existence of an absolute bound 976: 746: 4550:. Department of Mathematics Stanford University 2138:that occurs for infinitely many different such 1877:, is an upper bound for the Mordell-Weil rank 1154:showed that one can obtain an upper bound of 3263:While as of 2024 it cannot be ruled out that 2783:{\displaystyle B_{\mathbb {Q} }\in \{20,21\}} 404:somehow. This requires the introduction of a 229:, for which comparatively much is known, and 8: 3649: 3604: 3578: 3562: 3532: 3471: 3208: 3196: 2777: 2765: 1587:. Then we have the following exact sequence 906:the Mordell–Weil rank of the elliptic curve 791: 749: 3214:{\displaystyle B_{K}^{\circ }\in \{20,21\}} 2549:expressed their disbelieve in such a bound 2464:{\displaystyle {\text{rk}}(A(K))\leq c_{A}} 1755:{\displaystyle \operatorname {Sel} _{p}(E)} 1461:{\displaystyle \operatorname {Sel} _{p}(E)} 69:(generalized to arbitrary number fields by 2909:{\displaystyle n\in \mathbb {Z} _{\geq 0}} 2184:{\displaystyle B_{K}\leq {\tilde {B}}_{K}} 260:{\displaystyle r\in \mathbb {Z} _{\geq 0}} 4617:"History of elliptic curves rank records" 4585: 4281:"History of elliptic curves rank records" 4271: 4269: 4267: 4265: 4058: 4057: 4055: 4036: 4035: 4033: 3628: 3624: 3623: 3613: 3609: 3608: 3596: 3574: 3573: 3566: 3565: 3554: 3511: 3507: 3506: 3496: 3492: 3491: 3483: 3482: 3475: 3474: 3463: 3421:{\displaystyle B_{K}^{\circ }<\infty } 3406: 3401: 3395: 3368: 3362: 3306: 3300: 3279: 3274: 3268: 3241: 3236: 3230: 3187: 3182: 3176: 3155: 3149: 3148: 3138: 3133: 3127: 3126: 3123: 3118:they suggest to consider only the family 3098: 3092: 3091: 3088: 3061: 3055: 3021: 3020: 3011: 2995: 2976: 2958: 2956: 2931: 2925: 2897: 2893: 2892: 2883: 2862: 2848: 2847: 2838: 2829: 2808: 2802: 2756: 2755: 2754: 2748: 2692: 2628: 2627: 2613: 2611: 2592: 2591: 2589: 2560: 2554: 2518: 2512: 2491: 2480: 2479: 2476: 2454: 2453: 2438: 2408: 2406: 2385: 2379: 2360: 2359: 2351: 2319: 2313: 2292: 2291: 2290: 2284: 2239: 2228: 2227: 2205: 2196: 2175: 2164: 2163: 2153: 2147: 2097: 2095: 2074: 2068: 2047: 2036: 2035: 2032: 2011: 2000: 1999: 1996: 1953: 1933: 1911: 1910: 1902: 1882: 1861: 1836: 1827: 1807: 1787: 1767: 1734: 1728: 1686: 1684: 1681: 1645: 1631: 1630: 1616: 1609: 1608: 1594: 1572: 1548: 1518: 1516: 1513: 1493: 1473: 1440: 1434: 1414: 1392: 1391: 1383: 1364: 1363: 1358: 1353: 1319: 1318: 1313: 1308: 1284: 1264: 1239: 1237: 1217: 1184: 1179: 1159: 1135: 1052: 998: 991: 979: 973: 941: 922: 921: 916: 911: 882: 845: 826: 825: 820: 815: 785: 769: 764: 755: 699: 677: 676: 671: 666: 640: 613: 607: 587: 566: 560: 540: 514: 475: 462: 450: 424: 423: 418: 413: 390: 389: 384: 379: 352: 351: 349: 314: 313: 311: 274: 248: 244: 243: 234: 206: 191: 164: 142: 138: 137: 119: 39: 3451:of finite type over their prime field. 93:basis points with infinite order is the 4261: 1983:Conjectures on the boundedness of ranks 4490: 4488: 3256:{\displaystyle B_{K}^{\circ }\geq 68.} 2716:which itself is unbounded for varying 1802:, defined as the non-negative integer 1130:that one can obtain an upper bound of 7: 3114:of all elliptic curves defined over 2947:(in fact those elliptic curves have 2741:random matrix theory for L-functions 2090:the (potentially infinite) bound on 1710:{\displaystyle {}_{E}\rightarrow 0.} 267:is a nonnegative integer called the 4511:Hartnett, Kevin (31 October 2018). 2268:Elliptic curves over number fields 1202:; still assuming both conjectures. 3415: 3377: 3322:are finite for every number field 3107:{\displaystyle {\mathcal {E}}_{K}} 2339:in 1960 conjectured for a general 2248: 2214: 1829: 986: 499:{\displaystyle E:y^{2}=x^{3}+Ax+B} 215:{\displaystyle E(K)_{\text{tors}}} 77:on an elliptic curve has a finite 14: 3337:Elliptic curves over other fields 3076:{\displaystyle K_{0}\subsetneq K} 2123:{\displaystyle {\text{rk}}(E(K))} 1118:Upper bounds for the average rank 100:In mathematical terms the set of 2576:in various generality regarding 2500:{\displaystyle {\tilde {B}}_{K}} 2301:{\displaystyle B_{\mathbb {Q} }} 2056:{\displaystyle {\tilde {B}}_{K}} 2020:{\displaystyle {\tilde {B}}_{K}} 1124:Birch–Swinnerton-Dyer conjecture 304:Birch–Swinnerton-Dyer conjecture 3345:, in particular including when 1921:{\displaystyle E(\mathbb {Q} )} 1402:{\displaystyle E(\mathbb {Q} )} 1337:Bhargava and Shankar's approach 3646: 3643: 3637: 3634: 3529: 3526: 3520: 3517: 3326:(Park et al. even state it is 3288:{\displaystyle B_{K}^{\circ }} 3025: 3004: 2985: 2982: 2969: 2963: 2852: 2831: 2703: 2697: 2686:conductor of an elliptic curve 2671: 2668: 2665: 2659: 2653: 2644: 2635: 2632: 2624: 2618: 2485: 2458: 2444: 2428: 2425: 2419: 2413: 2367:{\displaystyle K=\mathbb {Q} } 2251: 2233: 2223: 2220: 2217: 2198: 2169: 2117: 2114: 2108: 2102: 2041: 2005: 1915: 1907: 1851: 1845: 1749: 1743: 1701: 1698: 1692: 1663: 1660: 1654: 1638: 1635: 1627: 1613: 1605: 1599: 1530: 1524: 1455: 1449: 1396: 1388: 1371:{\displaystyle E/\mathbb {Q} } 1326:{\displaystyle E/\mathbb {Q} } 1252:{\displaystyle {\frac {7}{6}}} 1128:Generalized Riemann hypothesis 1077: 1074: 1062: 1056: 1043: 1037: 1023: 1020: 1008: 1002: 983: 952: 946: 929:{\displaystyle E/\mathbb {Q} } 893: 887: 856: 850: 833:{\displaystyle E/\mathbb {Q} } 765: 756: 740: 737: 725: 719: 710: 704: 684:{\displaystyle E/\mathbb {Q} } 431:{\displaystyle E/\mathbb {Q} } 397:{\displaystyle E/\mathbb {Q} } 203: 196: 161: 154: 130: 124: 1: 4445:10.1090/S0894-0347-05-00503-5 4413:10.1215/S0012-7094-04-12235-3 3383:{\displaystyle B_{K}=\infty } 4065:{\displaystyle \mathbb {Q} } 4043:{\displaystyle \mathbb {Q} } 2599:{\displaystyle \mathbb {Q} } 628:{\displaystyle p^{6}\nmid B} 359:{\displaystyle \mathbb {Q} } 341: 321:{\displaystyle \mathbb {Q} } 104:-rational points is denoted 4481:10.4007/annals.2015.181.2.4 4465:10.4007/annals.2015.181.1.3 3439:to make sense, one needs a 3042:over general number fields 936:. With the height function 438:can be given in terms of a 4691: 4072:each of rank at least 19. 635:. We can then assume that 54:defined over the field of 3441:Mordell-Weil-type theorem 2731:of number fields and the 2275:According to Park et al. 25:rank of an elliptic curve 3682:it has exactly rank 28: 3357:are known to exist with 2725:Cohen-Lenstra heuristics 1336: 442:, that is, we can write 1991:is bounded by a number 4675:Analytic number theory 4283:. University of Zagreb 4066: 4044: 3656: 3585: 3539: 3422: 3384: 3316: 3289: 3257: 3215: 3165: 3108: 3077: 3032: 2941: 2910: 2872: 2871:{\displaystyle =2^{n}} 2818: 2784: 2710: 2678: 2600: 2570: 2528: 2501: 2465: 2395: 2368: 2329: 2302: 2258: 2185: 2124: 2084: 2057: 2021: 1962: 1942: 1922: 1891: 1871: 1816: 1796: 1776: 1756: 1711: 1670: 1581: 1565:Tate–Shafarevich group 1557: 1537: 1536:{\displaystyle {}_{E}} 1502: 1482: 1462: 1423: 1403: 1372: 1327: 1293: 1273: 1253: 1226: 1196: 1168: 1150:for the average rank. 1144: 1101: 959: 930: 900: 863: 834: 801: 685: 655: 629: 596: 576: 549: 529: 500: 432: 398: 360: 322: 283: 261: 216: 177: 48: 4067: 4045: 3657: 3586: 3540: 3432:cannot be ruled out. 3423: 3385: 3317: 3315:{\displaystyle B_{K}} 3290: 3258: 3216: 3166: 3109: 3078: 3050:of a proper subfield 3033: 2942: 2940:{\displaystyle K_{n}} 2911: 2873: 2824:of increasing degree 2819: 2817:{\displaystyle K_{n}} 2785: 2711: 2679: 2601: 2571: 2569:{\displaystyle B_{K}} 2529: 2527:{\displaystyle B_{K}} 2502: 2466: 2396: 2394:{\displaystyle c_{A}} 2369: 2330: 2328:{\displaystyle r_{E}} 2303: 2259: 2186: 2125: 2085: 2083:{\displaystyle B_{K}} 2058: 2022: 1963: 1943: 1923: 1892: 1872: 1817: 1797: 1777: 1757: 1712: 1671: 1582: 1558: 1538: 1503: 1483: 1463: 1424: 1404: 1373: 1328: 1294: 1274: 1254: 1227: 1197: 1195:{\displaystyle 25/14} 1169: 1145: 1102: 960: 931: 901: 864: 835: 802: 686: 656: 630: 597: 577: 575:{\displaystyle p^{4}} 550: 530: 501: 433: 399: 361: 323: 284: 262: 217: 178: 49: 4054: 4032: 3595: 3553: 3462: 3394: 3361: 3299: 3267: 3229: 3175: 3122: 3087: 3054: 2955: 2924: 2882: 2828: 2801: 2747: 2739:heuristics based on 2709:{\displaystyle N(E)} 2691: 2610: 2588: 2553: 2511: 2475: 2405: 2378: 2350: 2312: 2283: 2195: 2146: 2094: 2067: 2031: 1995: 1977:binary quartic forms 1952: 1932: 1901: 1881: 1826: 1806: 1786: 1766: 1727: 1719:This shows that the 1680: 1593: 1571: 1547: 1512: 1492: 1472: 1433: 1413: 1382: 1352: 1307: 1283: 1263: 1236: 1216: 1178: 1158: 1134: 972: 958:{\displaystyle H(E)} 940: 910: 899:{\displaystyle r(E)} 881: 862:{\displaystyle H(E)} 844: 840:with bounded height 814: 698: 665: 639: 606: 586: 559: 539: 513: 449: 412: 378: 348: 310: 273: 233: 190: 118: 73:) says the group of 58:or more generally a 38: 3670:Largest known ranks 3411: 3284: 3246: 3192: 3143: 2130:of elliptic curves 1303:of elliptic curves 1225:{\displaystyle 1.5} 1143:{\displaystyle 2.3} 654:{\displaystyle A,B} 528:{\displaystyle A,B} 302:, most notably the 4381:10.1007/BF01232033 4325:10.1007/BFb0062705 4062: 4040: 3652: 3581: 3535: 3418: 3397: 3380: 3312: 3285: 3270: 3253: 3232: 3211: 3178: 3161: 3125: 3104: 3073: 3028: 2937: 2906: 2868: 2814: 2780: 2706: 2674: 2596: 2566: 2524: 2497: 2461: 2391: 2364: 2325: 2298: 2254: 2181: 2120: 2080: 2053: 2017: 1958: 1938: 1918: 1887: 1867: 1812: 1792: 1772: 1762:, also called the 1752: 1707: 1666: 1577: 1553: 1533: 1498: 1478: 1458: 1419: 1399: 1368: 1323: 1289: 1269: 1249: 1222: 1192: 1164: 1140: 1097: 1087: 1033: 990: 955: 926: 896: 859: 830: 797: 681: 651: 625: 592: 572: 545: 525: 509:for some integers 496: 428: 394: 356: 318: 279: 257: 212: 173: 44: 4643:NMBRTHRY Archives 4615:Dujella, Andrej. 4596:10.1090/mcom/3348 2961: 2616: 2606:there is a bound 2488: 2411: 2236: 2172: 2100: 2044: 2008: 1961:{\displaystyle E} 1941:{\displaystyle p} 1890:{\displaystyle r} 1815:{\displaystyle s} 1795:{\displaystyle E} 1775:{\displaystyle p} 1580:{\displaystyle E} 1556:{\displaystyle p} 1501:{\displaystyle E} 1488:-Selmer group of 1481:{\displaystyle p} 1422:{\displaystyle E} 1292:{\displaystyle 3} 1272:{\displaystyle 2} 1247: 1167:{\displaystyle 2} 1092: 1048: 994: 975: 595:{\displaystyle A} 548:{\displaystyle p} 282:{\displaystyle E} 224:torsion group of 209: 167: 67:Mordell's theorem 47:{\displaystyle E} 4682: 4654: 4653: 4651: 4649: 4634: 4628: 4627: 4625: 4623: 4612: 4606: 4605: 4603: 4602: 4589: 4580:(316): 837–846. 4565: 4559: 4558: 4556: 4555: 4545: 4536: 4530: 4529: 4527: 4525: 4508: 4502: 4500:10.4171/JEMS/893 4492: 4483: 4473: 4467: 4457: 4448: 4422: 4416: 4390: 4384: 4358: 4352: 4334: 4328: 4301: 4295: 4294: 4289: 4288: 4273: 4250: 4249: 4246: 4243: 4240: 4237: 4234: 4231: 4228: 4225: 4222: 4219: 4216: 4213: 4210: 4207: 4204: 4201: 4198: 4195: 4192: 4189: 4186: 4183: 4180: 4177: 4174: 4171: 4168: 4165: 4162: 4153: 4152: 4149: 4146: 4143: 4140: 4137: 4134: 4131: 4128: 4125: 4122: 4119: 4116: 4113: 4110: 4107: 4104: 4101: 4098: 4095: 4071: 4069: 4068: 4063: 4061: 4049: 4047: 4046: 4041: 4039: 4025: 4024: 4021: 4018: 4015: 4012: 4009: 4006: 4003: 4000: 3997: 3994: 3991: 3988: 3985: 3982: 3979: 3976: 3973: 3970: 3967: 3964: 3961: 3958: 3955: 3952: 3949: 3946: 3937: 3936: 3933: 3930: 3927: 3924: 3921: 3918: 3915: 3912: 3909: 3906: 3903: 3900: 3897: 3894: 3891: 3888: 3885: 3850: 3849: 3846: 3843: 3840: 3837: 3834: 3831: 3828: 3825: 3822: 3819: 3816: 3813: 3810: 3807: 3804: 3801: 3798: 3795: 3792: 3789: 3786: 3783: 3780: 3777: 3774: 3771: 3762: 3761: 3758: 3755: 3752: 3749: 3746: 3743: 3740: 3737: 3734: 3731: 3728: 3725: 3722: 3719: 3716: 3713: 3710: 3661: 3659: 3658: 3653: 3633: 3632: 3627: 3618: 3617: 3612: 3590: 3588: 3587: 3582: 3577: 3569: 3544: 3542: 3541: 3536: 3516: 3515: 3510: 3501: 3500: 3495: 3486: 3478: 3427: 3425: 3424: 3419: 3410: 3405: 3389: 3387: 3386: 3381: 3373: 3372: 3321: 3319: 3318: 3313: 3311: 3310: 3294: 3292: 3291: 3286: 3283: 3278: 3262: 3260: 3259: 3254: 3245: 3240: 3220: 3218: 3217: 3212: 3191: 3186: 3170: 3168: 3167: 3162: 3160: 3159: 3154: 3153: 3142: 3137: 3132: 3131: 3113: 3111: 3110: 3105: 3103: 3102: 3097: 3096: 3082: 3080: 3079: 3074: 3066: 3065: 3046:which come from 3037: 3035: 3034: 3029: 3024: 3016: 3015: 3000: 2999: 2981: 2980: 2962: 2959: 2949:positive density 2946: 2944: 2943: 2938: 2936: 2935: 2915: 2913: 2912: 2907: 2905: 2904: 2896: 2877: 2875: 2874: 2869: 2867: 2866: 2851: 2843: 2842: 2823: 2821: 2820: 2815: 2813: 2812: 2789: 2787: 2786: 2781: 2761: 2760: 2759: 2715: 2713: 2712: 2707: 2684:in terms of the 2683: 2681: 2680: 2675: 2631: 2617: 2614: 2605: 2603: 2602: 2597: 2595: 2575: 2573: 2572: 2567: 2565: 2564: 2533: 2531: 2530: 2525: 2523: 2522: 2506: 2504: 2503: 2498: 2496: 2495: 2490: 2489: 2481: 2470: 2468: 2467: 2462: 2457: 2443: 2442: 2412: 2409: 2400: 2398: 2397: 2392: 2390: 2389: 2373: 2371: 2370: 2365: 2363: 2334: 2332: 2331: 2326: 2324: 2323: 2307: 2305: 2304: 2299: 2297: 2296: 2295: 2263: 2261: 2260: 2255: 2244: 2243: 2238: 2237: 2229: 2210: 2209: 2190: 2188: 2187: 2182: 2180: 2179: 2174: 2173: 2165: 2158: 2157: 2129: 2127: 2126: 2121: 2101: 2098: 2089: 2087: 2086: 2081: 2079: 2078: 2062: 2060: 2059: 2054: 2052: 2051: 2046: 2045: 2037: 2026: 2024: 2023: 2018: 2016: 2015: 2010: 2009: 2001: 1967: 1965: 1964: 1959: 1948:-Selmer rank of 1947: 1945: 1944: 1939: 1927: 1925: 1924: 1919: 1914: 1896: 1894: 1893: 1888: 1876: 1874: 1873: 1868: 1866: 1865: 1841: 1840: 1821: 1819: 1818: 1813: 1801: 1799: 1798: 1793: 1782:-Selmer rank of 1781: 1779: 1778: 1773: 1761: 1759: 1758: 1753: 1739: 1738: 1716: 1714: 1713: 1708: 1691: 1690: 1685: 1675: 1673: 1672: 1667: 1650: 1649: 1634: 1620: 1612: 1586: 1584: 1583: 1578: 1562: 1560: 1559: 1554: 1542: 1540: 1539: 1534: 1523: 1522: 1517: 1507: 1505: 1504: 1499: 1487: 1485: 1484: 1479: 1467: 1465: 1464: 1459: 1445: 1444: 1428: 1426: 1425: 1420: 1408: 1406: 1405: 1400: 1395: 1377: 1375: 1374: 1369: 1367: 1362: 1332: 1330: 1329: 1324: 1322: 1317: 1298: 1296: 1295: 1290: 1278: 1276: 1275: 1270: 1258: 1256: 1255: 1250: 1248: 1240: 1231: 1229: 1228: 1223: 1201: 1199: 1198: 1193: 1188: 1173: 1171: 1170: 1165: 1149: 1147: 1146: 1141: 1106: 1104: 1103: 1098: 1093: 1091: 1086: 1046: 1032: 992: 989: 964: 962: 961: 956: 935: 933: 932: 927: 925: 920: 905: 903: 902: 897: 868: 866: 865: 860: 839: 837: 836: 831: 829: 824: 806: 804: 803: 798: 790: 789: 774: 773: 768: 759: 690: 688: 687: 682: 680: 675: 660: 658: 657: 652: 634: 632: 631: 626: 618: 617: 601: 599: 598: 593: 581: 579: 578: 573: 571: 570: 554: 552: 551: 546: 534: 532: 531: 526: 505: 503: 502: 497: 480: 479: 467: 466: 440:Weierstrass form 437: 435: 434: 429: 427: 422: 403: 401: 400: 395: 393: 388: 365: 363: 362: 357: 355: 327: 325: 324: 319: 317: 288: 286: 285: 280: 266: 264: 263: 258: 256: 255: 247: 221: 219: 218: 213: 211: 210: 207: 182: 180: 179: 174: 169: 168: 165: 147: 146: 141: 89:. The number of 56:rational numbers 53: 51: 50: 45: 27:is the rational 4690: 4689: 4685: 4684: 4683: 4681: 4680: 4679: 4670:Elliptic curves 4660: 4659: 4658: 4657: 4647: 4645: 4636: 4635: 4631: 4621: 4619: 4614: 4613: 4609: 4600: 4598: 4567: 4566: 4562: 4553: 4551: 4543: 4539:Conrad, Brian. 4538: 4537: 4533: 4523: 4521: 4518:Quanta Magazine 4510: 4509: 4505: 4493: 4486: 4474: 4470: 4458: 4451: 4423: 4419: 4391: 4387: 4359: 4355: 4335: 4331: 4302: 4298: 4286: 4284: 4277:Dujella, Andrej 4275: 4274: 4263: 4258: 4247: 4244: 4241: 4238: 4235: 4232: 4229: 4226: 4223: 4220: 4217: 4214: 4211: 4208: 4205: 4202: 4199: 4196: 4193: 4190: 4187: 4184: 4181: 4178: 4175: 4172: 4169: 4166: 4163: 4160: 4158: 4150: 4147: 4144: 4141: 4138: 4135: 4132: 4129: 4126: 4123: 4120: 4117: 4114: 4111: 4108: 4105: 4102: 4099: 4096: 4093: 4091: 4052: 4051: 4030: 4029: 4022: 4019: 4016: 4013: 4010: 4007: 4004: 4001: 3998: 3995: 3992: 3989: 3986: 3983: 3980: 3977: 3974: 3971: 3968: 3965: 3962: 3959: 3956: 3953: 3950: 3947: 3944: 3942: 3934: 3931: 3928: 3925: 3922: 3919: 3916: 3913: 3910: 3907: 3904: 3901: 3898: 3895: 3892: 3889: 3886: 3883: 3881: 3847: 3844: 3841: 3838: 3835: 3832: 3829: 3826: 3823: 3820: 3817: 3814: 3811: 3808: 3805: 3802: 3799: 3796: 3793: 3790: 3787: 3784: 3781: 3778: 3775: 3772: 3769: 3767: 3759: 3756: 3753: 3750: 3747: 3744: 3741: 3738: 3735: 3732: 3729: 3726: 3723: 3720: 3717: 3714: 3711: 3708: 3706: 3672: 3622: 3607: 3593: 3592: 3551: 3550: 3505: 3490: 3460: 3459: 3454:This fails for 3392: 3391: 3364: 3359: 3358: 3339: 3302: 3297: 3296: 3265: 3264: 3227: 3226: 3173: 3172: 3147: 3120: 3119: 3090: 3085: 3084: 3057: 3052: 3051: 3007: 2991: 2972: 2953: 2952: 2927: 2922: 2921: 2891: 2880: 2879: 2858: 2834: 2826: 2825: 2804: 2799: 2798: 2750: 2745: 2744: 2689: 2688: 2608: 2607: 2586: 2585: 2556: 2551: 2550: 2514: 2509: 2508: 2478: 2473: 2472: 2434: 2403: 2402: 2381: 2376: 2375: 2348: 2347: 2341:abelian variety 2315: 2310: 2309: 2286: 2281: 2280: 2273: 2226: 2201: 2193: 2192: 2162: 2149: 2144: 2143: 2092: 2091: 2070: 2065: 2064: 2034: 2029: 2028: 1998: 1993: 1992: 1985: 1950: 1949: 1930: 1929: 1899: 1898: 1879: 1878: 1857: 1832: 1824: 1823: 1804: 1803: 1784: 1783: 1764: 1763: 1730: 1725: 1724: 1683: 1678: 1677: 1641: 1591: 1590: 1569: 1568: 1545: 1544: 1515: 1510: 1509: 1490: 1489: 1470: 1469: 1436: 1431: 1430: 1411: 1410: 1380: 1379: 1350: 1349: 1339: 1305: 1304: 1281: 1280: 1261: 1260: 1234: 1233: 1214: 1213: 1176: 1175: 1156: 1155: 1132: 1131: 1120: 1047: 993: 970: 969: 938: 937: 908: 907: 879: 878: 875: 842: 841: 812: 811: 781: 763: 696: 695: 663: 662: 637: 636: 609: 604: 603: 584: 583: 562: 557: 556: 537: 536: 511: 510: 471: 458: 447: 446: 410: 409: 406:height function 376: 375: 372: 346: 345: 308: 307: 271: 270: 242: 231: 230: 202: 188: 187: 160: 136: 116: 115: 97:of the curve. 75:rational points 36: 35: 17: 12: 11: 5: 4688: 4686: 4678: 4677: 4672: 4662: 4661: 4656: 4655: 4637:Elkies, Noam. 4629: 4607: 4560: 4531: 4503: 4484: 4468: 4449: 4417: 4385: 4353: 4329: 4296: 4260: 4259: 4257: 4254: 4253: 4252: 4060: 4038: 3879: 3878: 3852: 3851: 3671: 3668: 3651: 3648: 3645: 3642: 3639: 3636: 3631: 3626: 3621: 3616: 3611: 3606: 3603: 3600: 3580: 3576: 3572: 3568: 3564: 3561: 3558: 3534: 3531: 3528: 3525: 3522: 3519: 3514: 3509: 3504: 3499: 3494: 3489: 3485: 3481: 3477: 3473: 3470: 3467: 3417: 3414: 3409: 3404: 3400: 3379: 3376: 3371: 3367: 3351:function field 3338: 3335: 3309: 3305: 3282: 3277: 3273: 3252: 3249: 3244: 3239: 3235: 3210: 3207: 3204: 3201: 3198: 3195: 3190: 3185: 3181: 3158: 3152: 3146: 3141: 3136: 3130: 3101: 3095: 3072: 3069: 3064: 3060: 3027: 3023: 3019: 3014: 3010: 3006: 3003: 2998: 2994: 2990: 2987: 2984: 2979: 2975: 2971: 2968: 2965: 2934: 2930: 2903: 2900: 2895: 2890: 2887: 2865: 2861: 2857: 2854: 2850: 2846: 2841: 2837: 2833: 2811: 2807: 2779: 2776: 2773: 2770: 2767: 2764: 2758: 2753: 2705: 2702: 2699: 2696: 2673: 2670: 2667: 2664: 2661: 2658: 2655: 2652: 2649: 2646: 2643: 2640: 2637: 2634: 2630: 2626: 2623: 2620: 2594: 2563: 2559: 2521: 2517: 2494: 2487: 2484: 2460: 2456: 2452: 2449: 2446: 2441: 2437: 2433: 2430: 2427: 2424: 2421: 2418: 2415: 2388: 2384: 2362: 2358: 2355: 2322: 2318: 2294: 2289: 2272: 2266: 2253: 2250: 2247: 2242: 2235: 2232: 2225: 2222: 2219: 2216: 2213: 2208: 2204: 2200: 2178: 2171: 2168: 2161: 2156: 2152: 2119: 2116: 2113: 2110: 2107: 2104: 2077: 2073: 2063:one considers 2050: 2043: 2040: 2014: 2007: 2004: 1984: 1981: 1957: 1937: 1917: 1913: 1909: 1906: 1886: 1864: 1860: 1856: 1853: 1850: 1847: 1844: 1839: 1835: 1831: 1811: 1791: 1771: 1751: 1748: 1745: 1742: 1737: 1733: 1706: 1703: 1700: 1697: 1694: 1689: 1665: 1662: 1659: 1656: 1653: 1648: 1644: 1640: 1637: 1633: 1629: 1626: 1623: 1619: 1615: 1611: 1607: 1604: 1601: 1598: 1576: 1552: 1532: 1529: 1526: 1521: 1497: 1477: 1457: 1454: 1451: 1448: 1443: 1439: 1418: 1398: 1394: 1390: 1387: 1366: 1361: 1357: 1338: 1335: 1333:respectively. 1321: 1316: 1312: 1288: 1268: 1246: 1243: 1221: 1191: 1187: 1183: 1163: 1139: 1119: 1116: 1112:limit superior 1108: 1107: 1096: 1090: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1058: 1055: 1051: 1045: 1042: 1039: 1036: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 1007: 1004: 1001: 997: 988: 985: 982: 978: 954: 951: 948: 945: 924: 919: 915: 895: 892: 889: 886: 874: 871: 858: 855: 852: 849: 828: 823: 819: 808: 807: 796: 793: 788: 784: 780: 777: 772: 767: 762: 758: 754: 751: 748: 745: 742: 739: 736: 733: 730: 727: 724: 721: 718: 715: 712: 709: 706: 703: 679: 674: 670: 650: 647: 644: 624: 621: 616: 612: 591: 569: 565: 544: 524: 521: 518: 507: 506: 495: 492: 489: 486: 483: 478: 474: 470: 465: 461: 457: 454: 426: 421: 417: 392: 387: 383: 371: 368: 354: 316: 278: 254: 251: 246: 241: 238: 205: 201: 198: 195: 184: 183: 172: 163: 159: 156: 153: 150: 145: 140: 135: 132: 129: 126: 123: 110:abelian groups 43: 33:elliptic curve 15: 13: 10: 9: 6: 4: 3: 2: 4687: 4676: 4673: 4671: 4668: 4667: 4665: 4644: 4640: 4633: 4630: 4618: 4611: 4608: 4597: 4593: 4588: 4583: 4579: 4575: 4571: 4564: 4561: 4549: 4542: 4535: 4532: 4520: 4519: 4514: 4507: 4504: 4501: 4497: 4491: 4489: 4485: 4482: 4478: 4472: 4469: 4466: 4462: 4456: 4454: 4450: 4446: 4442: 4438: 4434: 4430: 4427: 4421: 4418: 4414: 4410: 4406: 4402: 4398: 4395: 4389: 4386: 4382: 4378: 4374: 4370: 4366: 4363: 4357: 4354: 4350: 4346: 4342: 4339: 4333: 4330: 4326: 4322: 4318: 4314: 4310: 4307: 4300: 4297: 4293: 4282: 4278: 4272: 4270: 4268: 4266: 4262: 4255: 4156: 4089: 4085: 4081: 4078: 4077: 4076: 4073: 4026: 3940: 3876: 3872: 3868: 3864: 3860: 3857: 3856: 3855: 3765: 3704: 3700: 3696: 3692: 3688: 3685: 3684: 3683: 3681: 3677: 3669: 3667: 3665: 3640: 3629: 3619: 3614: 3601: 3598: 3570: 3559: 3556: 3548: 3523: 3512: 3502: 3497: 3487: 3479: 3468: 3465: 3457: 3452: 3450: 3446: 3442: 3438: 3433: 3431: 3428:for all such 3412: 3407: 3402: 3398: 3374: 3369: 3365: 3356: 3352: 3348: 3344: 3343:global fields 3336: 3334: 3331: 3329: 3325: 3307: 3303: 3280: 3275: 3271: 3250: 3247: 3242: 3237: 3233: 3224: 3205: 3202: 3199: 3193: 3188: 3183: 3179: 3156: 3144: 3139: 3134: 3117: 3099: 3070: 3067: 3062: 3058: 3049: 3045: 3041: 3017: 3012: 3008: 3001: 2996: 2992: 2988: 2977: 2973: 2966: 2950: 2932: 2928: 2920:defined over 2919: 2901: 2898: 2888: 2885: 2863: 2859: 2855: 2844: 2839: 2835: 2809: 2805: 2796: 2791: 2774: 2771: 2768: 2762: 2751: 2742: 2738: 2734: 2730: 2726: 2721: 2719: 2700: 2694: 2687: 2662: 2656: 2650: 2647: 2641: 2638: 2621: 2583: 2579: 2561: 2557: 2548: 2544: 2540: 2535: 2519: 2515: 2492: 2482: 2450: 2447: 2439: 2435: 2431: 2422: 2416: 2386: 2382: 2356: 2353: 2346:defined over 2345: 2342: 2338: 2320: 2316: 2308:for the rank 2287: 2278: 2271: 2267: 2265: 2245: 2240: 2230: 2211: 2206: 2202: 2176: 2166: 2159: 2154: 2150: 2141: 2137: 2134:defined over 2133: 2111: 2105: 2075: 2071: 2048: 2038: 2012: 2002: 1990: 1982: 1980: 1978: 1974: 1969: 1955: 1935: 1904: 1884: 1862: 1858: 1854: 1848: 1842: 1837: 1833: 1809: 1789: 1769: 1746: 1740: 1735: 1731: 1722: 1717: 1704: 1695: 1687: 1657: 1651: 1646: 1642: 1624: 1621: 1617: 1602: 1596: 1588: 1574: 1566: 1563:-part of the 1550: 1527: 1519: 1495: 1475: 1452: 1446: 1441: 1437: 1416: 1385: 1359: 1355: 1347: 1343: 1334: 1314: 1310: 1302: 1301:Selmer groups 1286: 1266: 1244: 1241: 1219: 1211: 1207: 1203: 1189: 1185: 1181: 1161: 1153: 1137: 1129: 1125: 1117: 1115: 1113: 1094: 1088: 1083: 1080: 1071: 1068: 1065: 1059: 1053: 1049: 1040: 1034: 1029: 1026: 1017: 1014: 1011: 1005: 999: 995: 980: 968: 967: 966: 949: 943: 917: 913: 890: 884: 877:We denote by 872: 870: 853: 847: 821: 817: 794: 786: 782: 778: 775: 770: 760: 752: 743: 734: 731: 728: 722: 716: 713: 707: 701: 694: 693: 692: 672: 668: 648: 645: 642: 622: 619: 614: 610: 589: 567: 563: 542: 522: 519: 516: 493: 490: 487: 484: 481: 476: 472: 468: 463: 459: 455: 452: 445: 444: 443: 441: 419: 415: 407: 385: 381: 369: 367: 343: 339: 335: 331: 305: 301: 300:number theory 296: 294: 292: 276: 252: 249: 239: 236: 228: 227: 199: 193: 170: 157: 151: 148: 143: 133: 127: 121: 114: 113: 112: 111: 107: 103: 98: 96: 92: 88: 84: 80: 76: 72: 68: 64: 61: 57: 41: 34: 30: 26: 22: 4646:. Retrieved 4642: 4632: 4620:. Retrieved 4610: 4599:. Retrieved 4577: 4573: 4563: 4552:. Retrieved 4548:Brian Conrad 4547: 4534: 4522:. Retrieved 4516: 4506: 4471: 4420: 4388: 4356: 4332: 4299: 4291: 4285:. Retrieved 4154: 4087: 4083: 4079: 4074: 4027: 3938: 3880: 3874: 3870: 3866: 3862: 3858: 3853: 3763: 3702: 3698: 3694: 3690: 3686: 3673: 3663: 3546: 3456:local fields 3453: 3448: 3444: 3436: 3434: 3429: 3354: 3346: 3340: 3332: 3327: 3323: 3222: 3115: 3043: 3039: 2917: 2794: 2792: 2729:class groups 2722: 2717: 2581: 2577: 2536: 2343: 2274: 2269: 2139: 2135: 2131: 1988: 1986: 1976: 1972: 1970: 1720: 1718: 1589: 1508:, and let Đš 1378:. Denote by 1340: 1279:-Selmer and 1204: 1121: 1109: 876: 873:Average rank 809: 508: 373: 297: 290: 268: 225: 185: 105: 101: 99: 90: 62: 60:number field 29:Mordell–Weil 24: 18: 3676:Noam Elkies 3390:, but that 3048:base change 1543:denote the 1152:Heath-Brown 869:is finite. 91:independent 31:rank of an 21:mathematics 4664:Categories 4601:2024-05-04 4587:1606.07178 4574:Math. Comp 4554:2024-05-04 4437:1086.11032 4405:1063.11013 4373:0783.14019 4349:0958.11004 4317:0417.14031 4287:2024-05-04 4256:References 3225:such that 2878:for every 2401:such that 2335:probable. 2142:. We have 1822:such that 602:, we have 555:such that 332:and later 71:AndrĂ© Weil 3602:∈ 3560:∈ 3469:∈ 3416:∞ 3408:∘ 3378:∞ 3328:plausible 3295:and even 3281:∘ 3248:≥ 3243:∘ 3194:∈ 3189:∘ 3145:⊂ 3140:∘ 3068:⊊ 2989:≥ 2899:≥ 2889:∈ 2763:∈ 2651:⁡ 2639:≤ 2545:and 1982 2486:~ 2432:≤ 2249:∞ 2234:~ 2221:⇔ 2215:∞ 2170:~ 2160:≤ 2042:~ 2006:~ 1843:⁡ 1830:# 1741:⁡ 1702:→ 1664:→ 1652:⁡ 1639:→ 1600:→ 1447:⁡ 1346:Shankar's 1081:≤ 1050:∑ 1027:≤ 996:∑ 987:∞ 984:→ 620:∤ 250:≥ 240:∈ 149:⊕ 134:≅ 4648:30 March 4622:30 March 3458:such as 2537:In 1966 1342:Bhargava 1206:Bhargava 1126:and the 582:divides 330:Goldfeld 269:rank of 83:infinite 4524:18 July 4429:2169047 4397:2057019 4365:1176198 4341:1659828 4309:0564926 2951:) with 2733:Keating 2541:, 1974 2539:Cassels 1210:Shankar 370:Heights 222:is the 4435:  4403:  4371:  4347:  4315:  2737:Snaith 2584:over 2547:Mestre 338:Sarnak 289:(over 186:where 23:, the 4582:arXiv 4544:(PDF) 3349:is a 2337:Honda 2277:NĂ©ron 342:below 87:order 79:basis 4650:2020 4624:2020 4526:2019 3413:< 2793:For 2727:for 2543:Tate 2246:< 2212:< 2191:and 1971:In 1721:rank 1468:the 1344:and 1232:and 1208:and 334:Katz 208:tors 166:tors 106:E(K) 95:rank 4592:doi 4496:doi 4477:doi 4461:doi 4441:doi 4433:Zbl 4409:doi 4401:Zbl 4377:doi 4369:Zbl 4345:Zbl 4321:doi 4313:Zbl 4248:497 4245:721 4242:636 4239:425 4236:173 4233:716 4230:277 4227:413 4224:149 4221:779 4218:404 4215:372 4212:608 4209:079 4206:535 4203:032 4200:067 4197:521 4194:821 4191:191 4188:118 4185:591 4182:699 4179:736 4176:475 4173:376 4170:342 4167:551 4164:058 4161:258 4151:385 4148:737 4145:954 4142:357 4139:836 4136:621 4133:054 4130:768 4127:784 4124:453 4121:297 4118:145 4115:652 4112:434 4109:218 4106:922 4103:630 4100:241 4097:183 4094:006 4023:931 4020:499 4017:121 4014:151 4011:438 4008:898 4005:989 4002:830 3999:957 3996:238 3993:434 3990:964 3987:028 3984:682 3981:270 3978:743 3975:817 3972:806 3969:258 3966:979 3963:222 3960:546 3957:034 3954:183 3951:053 3948:182 3945:710 3943:961 3935:707 3932:853 3929:859 3926:821 3923:573 3920:757 3917:270 3914:769 3911:961 3908:168 3905:487 3902:803 3899:463 3896:601 3893:319 3890:336 3887:673 3884:537 3882:244 3848:429 3845:243 3842:732 3839:448 3836:939 3833:291 3830:296 3827:008 3824:266 3821:361 3818:180 3815:319 3812:359 3809:944 3806:855 3803:374 3800:720 3797:390 3794:690 3791:985 3788:032 3785:467 3782:556 3779:030 3776:795 3773:611 3770:481 3760:502 3757:956 3754:178 3751:312 3748:230 3745:930 3742:750 3739:542 3736:338 3733:209 3730:208 3727:033 3724:585 3721:526 3718:575 3715:415 3712:762 3709:067 3680:GRH 3251:68. 2648:log 2507:or 1897:of 1834:Sel 1732:Sel 1723:of 1643:Sel 1567:of 1438:Sel 1220:1.5 1138:2.3 977:lim 747:max 691:by 19:In 4666:: 4641:. 4590:. 4578:88 4576:. 4572:. 4546:. 4515:. 4487:^ 4452:^ 4439:. 4431:. 4426:MR 4407:. 4399:. 4394:MR 4375:. 4367:. 4362:MR 4343:. 4338:MR 4319:. 4311:. 4306:MR 4290:. 4279:. 4264:^ 4159:55 4157:+ 4092:27 4090:− 4086:= 4084:xy 4082:+ 3941:+ 3873:− 3869:= 3865:+ 3863:xy 3861:+ 3768:34 3766:+ 3707:20 3705:− 3701:− 3697:= 3693:+ 3691:xy 3689:+ 3206:21 3200:20 2960:rk 2775:21 2769:20 2720:. 2615:rk 2410:rk 2264:. 2099:rk 1705:0. 1676:Đš 1429:, 1190:14 1182:25 779:27 366:. 295:. 65:. 4652:. 4626:. 4604:. 4594:: 4584:: 4557:. 4528:. 4498:: 4479:: 4463:: 4447:. 4443:: 4415:. 4411:: 4383:. 4379:: 4351:. 4327:. 4323:: 4251:. 4155:x 4088:x 4080:y 4059:Q 4037:Q 3939:x 3877:- 3875:x 3871:x 3867:y 3859:y 3764:x 3703:x 3699:x 3695:y 3687:y 3664:K 3650:} 3647:) 3644:) 3641:x 3638:( 3635:( 3630:q 3625:F 3620:, 3615:p 3610:Q 3605:{ 3599:K 3579:} 3575:C 3571:, 3567:R 3563:{ 3557:K 3547:K 3533:} 3530:) 3527:) 3524:x 3521:( 3518:( 3513:q 3508:F 3503:, 3498:p 3493:Q 3488:, 3484:C 3480:, 3476:R 3472:{ 3466:K 3449:K 3445:K 3437:K 3430:K 3403:K 3399:B 3375:= 3370:K 3366:B 3355:K 3347:K 3324:K 3308:K 3304:B 3276:K 3272:B 3238:K 3234:B 3223:K 3209:} 3203:, 3197:{ 3184:K 3180:B 3157:K 3151:E 3135:K 3129:E 3116:K 3100:K 3094:E 3071:K 3063:0 3059:K 3044:K 3040:E 3026:] 3022:Q 3018:: 3013:n 3009:K 3005:[ 3002:= 2997:n 2993:2 2986:) 2983:) 2978:n 2974:K 2970:( 2967:E 2964:( 2933:n 2929:K 2918:E 2902:0 2894:Z 2886:n 2864:n 2860:2 2856:= 2853:] 2849:Q 2845:: 2840:n 2836:K 2832:[ 2810:n 2806:K 2795:K 2778:} 2772:, 2766:{ 2757:Q 2752:B 2735:- 2718:E 2704:) 2701:E 2698:( 2695:N 2672:) 2669:) 2666:) 2663:E 2660:( 2657:N 2654:( 2645:( 2642:O 2636:) 2633:) 2629:Q 2625:( 2622:E 2619:( 2593:Q 2582:E 2578:K 2562:K 2558:B 2520:K 2516:B 2493:K 2483:B 2459:] 2455:Q 2451:: 2448:K 2445:[ 2440:A 2436:c 2429:) 2426:) 2423:K 2420:( 2417:A 2414:( 2387:A 2383:c 2361:Q 2357:= 2354:K 2344:A 2321:E 2317:r 2293:Q 2288:B 2270:K 2252:) 2241:K 2231:B 2224:( 2218:) 2207:K 2203:B 2199:( 2177:K 2167:B 2155:K 2151:B 2140:E 2136:K 2132:E 2118:) 2115:) 2112:K 2109:( 2106:E 2103:( 2076:K 2072:B 2049:K 2039:B 2013:K 2003:B 1989:K 1956:E 1936:p 1916:) 1912:Q 1908:( 1905:E 1885:r 1863:s 1859:p 1855:= 1852:) 1849:E 1846:( 1838:p 1810:s 1790:E 1770:p 1750:) 1747:E 1744:( 1736:p 1699:] 1696:p 1693:[ 1688:E 1661:) 1658:E 1655:( 1647:p 1636:) 1632:Q 1628:( 1625:E 1622:p 1618:/ 1614:) 1610:Q 1606:( 1603:E 1597:0 1575:E 1551:p 1531:] 1528:p 1525:[ 1520:E 1496:E 1476:p 1456:) 1453:E 1450:( 1442:p 1417:E 1397:) 1393:Q 1389:( 1386:E 1365:Q 1360:/ 1356:E 1320:Q 1315:/ 1311:E 1299:- 1287:3 1267:2 1245:6 1242:7 1186:/ 1162:2 1095:. 1089:1 1084:X 1078:) 1075:) 1072:B 1069:, 1066:A 1063:( 1060:E 1057:( 1054:H 1044:) 1041:E 1038:( 1035:r 1030:X 1024:) 1021:) 1018:B 1015:, 1012:A 1009:( 1006:E 1003:( 1000:H 981:X 953:) 950:E 947:( 944:H 923:Q 918:/ 914:E 894:) 891:E 888:( 885:r 857:) 854:E 851:( 848:H 827:Q 822:/ 818:E 795:. 792:} 787:2 783:B 776:, 771:3 766:| 761:A 757:| 753:4 750:{ 744:= 741:) 738:) 735:B 732:, 729:A 726:( 723:E 720:( 717:H 714:= 711:) 708:E 705:( 702:H 678:Q 673:/ 669:E 649:B 646:, 643:A 623:B 615:6 611:p 590:A 568:4 564:p 543:p 523:B 520:, 517:A 494:B 491:+ 488:x 485:A 482:+ 477:3 473:x 469:= 464:2 460:y 456:: 453:E 425:Q 420:/ 416:E 391:Q 386:/ 382:E 353:Q 336:– 315:Q 293:) 291:K 277:E 253:0 245:Z 237:r 226:E 204:) 200:K 197:( 194:E 171:, 162:) 158:K 155:( 152:E 144:r 139:Z 131:) 128:K 125:( 122:E 102:K 63:K 42:E

Index

mathematics
Mordell–Weil
elliptic curve
rational numbers
number field
Mordell's theorem
André Weil
rational points
basis
infinite
order
rank
abelian groups
torsion group of E
number theory
Birch–Swinnerton-Dyer conjecture
Goldfeld
Katz
Sarnak
below
height function
Weierstrass form
limit superior
Birch–Swinnerton-Dyer conjecture
Generalized Riemann hypothesis
Heath-Brown
Bhargava
Shankar
Selmer groups
Bhargava

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑