Knowledge (XXG)

Reaction rate constant

Source 📝

1872:, the energy needed to overcome the activation barrier, has a slightly different meaning in each theory. In practice, experimental data does not generally allow a determination to be made as to which is "correct" in terms of best fit. Hence, it must be remembered that all three are conceptual frameworks that make numerous assumptions, both realistic and unrealistic, in their derivations. As a result, they are capable of providing different insights into a system. 1545: 1637:, in which reactants are viewed as hard spheres with a particular cross-section, provided yet another common way to rationalize and model the temperature dependence of the rate constant, although this approach has gradually fallen into disuse. The equation for the rate constant is similar in functional form to both the Arrhenius and Eyring equations: 1294: 1629:
The biggest difference between the two theories is that Arrhenius theory attempts to model the reaction (single- or multi-step) as a whole, while transition state theory models the individual elementary steps involved. Thus, they are not directly comparable, unless the reaction in question involves
579:
There are few examples of elementary steps that are termolecular or higher order, due to the low probability of three or more molecules colliding in their reactive conformations and in the right orientation relative to each other to reach a particular transition state. There are, however, some
1948:
Rate constant can be calculated for elementary reactions by molecular dynamics simulations. One possible approach is to calculate the mean residence time of the molecule in the reactant state. Although this is feasible for small systems with short residence times, this approach is not widely
364:
is a unimolecular rate constant. Since a reaction requires a change in molecular geometry, unimolecular rate constants cannot be larger than the frequency of a molecular vibration. Thus, in general, a unimolecular rate constant has an upper limit of
1965:
The theory is based on the assumption that the reaction can be described by a reaction coordinate, and that we can apply Boltzmann distribution at least in the reactant state. A new, especially reactive segment of the reactant, called the
1540:{\displaystyle k(T)=\kappa {\frac {k_{\mathrm {B} }T}{h}}(c^{\ominus })^{1-M}e^{-\Delta G^{\ddagger }/RT}=\left(\kappa {\frac {k_{\mathrm {B} }T}{h}}(c^{\ominus })^{1-M}\right)e^{\Delta S^{\ddagger }/R}e^{-\Delta H^{\ddagger }/RT},} 1927:
Calculation of rate constants of the processes of generation and relaxation of electronically and vibrationally excited particles are of significant importance. It is used, for example, in the computer simulation of processes in
1254:, or frequency factor (not to be confused here with the reactant A) takes into consideration the frequency at which reactant molecules are colliding and the likelihood that a collision leads to a successful reaction. Here, 807: 2036: 972: 580:
termolecular examples in the gas phase. Most involve the recombination of two atoms or small radicals or molecules in the presence of an inert third body which carries off excess energy, such as O +
1193: 1850: 1091: 2059:
is the rate constant from the saddle domain. The first can be simply calculated from the free energy surface, the latter is easily accessible from short molecular dynamics simulations
463:
is a bimolecular rate constant. Bimolecular rate constants have an upper limit that is determined by how frequently molecules can collide, and the fastest such processes are limited by
1705: 706: 875: 841: 2230:→ 2 NOCl, etc.) have also been suggested as examples of termolecular elementary processes. However, other authors favor a two-step process, each of which is bimolecular: (NO + 652:
For a first-order reaction (including a unimolecular one-step process), there is a direct relationship between the unimolecular rate constant and the half-life of the reaction:
1760: 185: 2587:
West, Anthony M.A.; Elber, Ron; Shalloway, David (2007). "Extending molecular dynamics time scales with milestoning: Example of complex kinetics in a solvated peptide".
644:. In cases where a termolecular step might plausibly be proposed, one of the reactants is generally present in high concentration (e.g., as a solvent or diluent gas). 1975: 547: 434: 335: 225:
the reaction is taking place throughout the volume of the solution. (For a reaction taking place at a boundary, one would use moles of A or B per unit area instead.)
574: 461: 362: 1949:
applicable as reactions are often rare events on molecular scale. One simple approach to overcome this problem is Divided Saddle Theory. Such other methods as the
739: 811:
a quantity that can be regarded as the free energy change needed to reach the transition state. In particular, this energy barrier incorporates both enthalpic
209: 62: 2124: 1585:. In effect, the free energy of activation takes into account both the activation energy and the likelihood of successful collision, while the factor 745: 887: 2571: 2281: 2167: 1100: 999:) of approximately 2 hours. For a one-step process taking place at room temperature, the corresponding Gibbs free energy of activation (Δ 1783: 2439: 2134: 2414: 2389: 2353: 1028: 1606:) ensures the dimensional correctness of the rate constant when the transition state in question is bimolecular or higher. Here, 1868:, and 1 give Arrhenius theory, collision theory, and transition state theory, respectively, although the imprecise notion of Δ 1642: 2527:
Chandler, David (1978). "Statistical mechanics of isomerization dynamics in liquids and the transition state approximation".
2486: 2636: 112: 128: 1950: 1619: 1023:
at which a reaction proceeds. The rate constant as a function of thermodynamic temperature is then given by:
1286: 709: 655: 1251: 1232: 850: 816: 2348:. Treichel, Paul., Townsend, John R. (7th ed.). Belmont, Calif.: Thomson Brooks/ Cole. p. 703. 1554: 1278: 992:. As useful rules of thumb, a first-order reaction with a rate constant of 10 s will have a half-life ( 1724: 2596: 2536: 2464: 2310: 2073: 1936:. First-principle based models should be used for such calculation. It can be done with the help of 2098: 1937: 1888: 214: 1954: 1610:
is the standard concentration, generally chosen based on the unit of concentration used (usually
1012: 989: 284: 253: 237: 287:. Almost all elementary steps are either unimolecular or bimolecular. For a unimolecular step 1618:
is the molecularity of the transition state. Lastly, κ, usually set to unity, is known as the
2612: 2567: 2509: 2445: 2435: 2410: 2385: 2359: 2349: 2326: 2277: 2269: 2163: 2140: 2130: 1881: 1205: 1016: 67: 31: 1015:
is an elementary treatment that gives the quantitative basis of the relationship between the
486: 384: 296: 2604: 2544: 2501: 2377: 2318: 1933: 1929: 1634: 552: 439: 340: 1282: 981: 880: 715: 641: 2600: 2540: 2314: 222: 194: 47: 1553:
is the free energy of activation, a parameter that incorporates both the enthalpy and
2630: 2068: 1020: 276: 120: 2078: 1623: 1213: 802:{\displaystyle {\Delta G^{\ddagger }=\Delta H^{\ddagger }-T\Delta S^{\ddagger }}} 2031:{\displaystyle k=k_{\mathrm {SD} }\cdot \alpha _{\mathrm {RS} }^{\mathrm {SD} }} 1225: 218: 1224:
are experimentally determined partial orders in and , respectively. Since at
2363: 2330: 2129:. Richardson, Kathleen Schueller (3rd ed.). New York: Harper & Row. 2052:
is the conversion factor between the reactant state and saddle domain, while
1557:
change needed to reach the transition state. The temperature dependence of Δ
213:
is the reaction rate constant that depends on temperature, and and are the
66:) is a proportionality constant which quantifies the rate and direction of a 17: 2144: 967:{\textstyle k(T)={\frac {k_{\mathrm {B} }T}{h}}e^{-\Delta G^{\ddagger }/RT}} 464: 2616: 2513: 2449: 283:
a relationship between stoichiometry and rate law, as determined by the
2276:. Comprehensive Chemical Kinetics. Vol. 6. Elsevier. p. 174. 1721:
is energy input required to overcome the activation barrier. Of note,
1235:, one can expect the proportion of collisions with energy greater than 467:. Thus, in general, a bimolecular rate constant has an upper limit of 2608: 2505: 2405:
Steinfeld, Jeffrey I.; Francisco, Joseph S.; Hase, William L. (1999).
2322: 2548: 2270:"5. Reactions of the Oxides of Nitrogen §5.5 Reactions with Chlorine" 879:
changes that need to be achieved for the reaction to take place: The
2564:
Algorithms for Chemical Computations, ACS Symposium Series No. 46
2487:"Divided Saddle Theory: A New Idea for Rate Constant Calculation" 1561:
is used to compute these parameters, the enthalpy of activation Δ
1915:
For order three, the rate constant has units of L·mol·s (or M·s)
1918:
For order four, the rate constant has units of L·mol·s (or M·s)
1906:
For order zero, the rate constant has units of mol·L·s (or M·s)
1277:
Another popular model that is derived using more sophisticated
628:. One well-established example is the termolecular step 2 I + 1912:
For order two, the rate constant has units of L·mol·s (or M·s)
73:
For a reaction between reactants A and B to form a product C,
2268:
Compton, R.G.; Bamford, C. H.; Tipper, C.F.H., eds. (2014) .
2182:
The reactions of nitric oxide with the diatomic molecules
1957:
have also been developed for rate constant calculations.
1774:
All three theories model the temperature dependence of
1766:
different from both the Arrhenius and Eyring models.
890: 658: 1978: 1880:
The units of the rate constant depend on the overall
1786: 1727: 1645: 1297: 1103: 1031: 853: 819: 748: 718: 555: 489: 442: 387: 343: 299: 197: 131: 50: 1970:, is introduced, and the rate constant is factored: 1188:{\displaystyle r=Ae^{-E_{\mathrm {a} }/RT}^{m}^{n},} 70:
by relating it with the concentration of reactants.
244:generally equal to the stoichiometric coefficients 2297:Sullivan, John H. (1967-01-01). "Mechanism of the 2030: 1903:), the rate constant has units of mol·L·s (or M·s) 1844: 1754: 1699: 1539: 1187: 1085: 966: 869: 835: 801: 733: 700: 568: 541: 455: 428: 356: 329: 203: 179: 56: 2562:Bennett, C. H. (1977). Christofferson, R. (ed.). 1845:{\displaystyle k(T)=CT^{\alpha }e^{-\Delta E/RT}} 1599:gives the frequency of molecular collision. 2566:. Washington, D.C.: American Chemical Society. 2384:(3rd ed.). Harper & Row. p. 113. 1909:For order one, the rate constant has units of s 712:gives a relationship between the rate constant 1086:{\displaystyle k(T)=Ae^{-E_{\mathrm {a} }/RT}} 2274:Reactions of Non-metallic Inorganic Compounds 1622:, a parameter which essentially serves as a " 8: 2432:Determination of organic reaction mechanisms 2409:(2nd ed.). Prentice Hall. p. 301. 2162:(3rd ed.). John Wiley. pp. 226–7. 1891:of mol·L (sometimes abbreviated as M), then 1231:the molecules have energies according to a 267:) is called the overall order of reaction. 2158:Moore, John W.; Pearson, Ralph G. (1981). 1713:is the steric (or probability) factor and 27:Coefficient of rate of a chemical reaction 2126:Mechanism and theory in organic chemistry 2018: 2017: 2008: 2007: 1990: 1989: 1977: 1829: 1819: 1809: 1785: 1742: 1738: 1726: 1681: 1671: 1644: 1521: 1515: 1504: 1490: 1484: 1476: 1455: 1445: 1422: 1421: 1414: 1390: 1384: 1373: 1357: 1347: 1324: 1323: 1316: 1296: 1176: 1167: 1158: 1149: 1133: 1126: 1125: 1117: 1102: 1070: 1063: 1062: 1054: 1030: 951: 945: 934: 914: 913: 906: 889: 861: 852: 827: 818: 792: 773: 757: 749: 747: 717: 680: 667: 663: 657: 560: 554: 531: 520: 509: 500: 488: 447: 441: 418: 407: 398: 386: 348: 342: 319: 310: 298: 196: 171: 162: 153: 144: 130: 49: 1700:{\displaystyle k(T)=PZe^{-\Delta E/RT},} 741:and the Gibbs free energy of activation 2090: 1762:, making the temperature dependence of 701:{\textstyle t_{1/2}={\frac {\ln 2}{k}}} 256:and can be determined experimentally. 2485:Daru, János; Stirling, András (2014). 2480: 2478: 7: 870:{\displaystyle \Delta S^{\ddagger }} 836:{\displaystyle \Delta H^{\ddagger }} 2346:Chemistry & chemical reactivity 881:result from transition state theory 2022: 2019: 2012: 2009: 1994: 1991: 1823: 1675: 1626:" for transition state theory. 1508: 1477: 1423: 1377: 1325: 1246:. The constant of proportionality 1168: 1150: 1127: 1064: 938: 915: 854: 820: 785: 766: 750: 532: 521: 510: 483:the reaction rate is described by 419: 408: 381:the reaction rate is described by 320: 293:the reaction rate is described by 163: 145: 25: 1717:is the collision frequency, and Δ 1569:, based on the defining formula Δ 576:is a termolecular rate constant. 123:is often found to have the form: 1887:If concentration is measured in 1755:{\displaystyle Z\propto T^{1/2}} 1003:) is approximately 23 kcal/mol. 648:Relationship to other parameters 2589:The Journal of Chemical Physics 2303:The Journal of Chemical Physics 1630:only a single elementary step. 1565:and the entropy of activation Δ 1258:has the same dimensions as an ( 1095:The reaction rate is given by: 2407:Chemical Kinetics and Dynamics 1796: 1790: 1778:using an equation of the form 1655: 1649: 1452: 1438: 1354: 1340: 1307: 1301: 1173: 1164: 1155: 1146: 1041: 1035: 900: 894: 728: 722: 536: 528: 525: 517: 514: 506: 423: 415: 412: 404: 324: 316: 168: 159: 150: 141: 1: 252:. Instead they depend on the 221:per unit volume of solution, 2430:Carpenter, Barry K. (1984). 2301:Hydrogen—Iodine Reaction". 180:{\displaystyle r=k^{m}^{n}} 113:stoichiometric coefficients 2653: 1951:Bennett Chandler procedure 1944:Rate constant calculations 259:Sum of m and n, that is, ( 2123:Lowry, Thomas H. (1987). 2099:"Chemical Kinetics Notes" 1007:Dependence on temperature 217:of substances A and B in 40:reaction rate coefficient 2465:"Differential Rate Laws" 1620:transmission coefficient 642:hydrogen-iodine reaction 477:For a termolecular step 1287:transition state theory 1266:)-order rate constant ( 710:Transition state theory 542:{\displaystyle r=k_{3}} 429:{\displaystyle r=k_{2}} 375:For a bimolecular step 330:{\displaystyle r=k_{1}} 2494:J. Chem. Theory Comput 2344:Kotz, John C. (2009). 2160:Kinetics and Mechanism 2032: 1846: 1756: 1701: 1633:Finally, in the past, 1614:= 1 mol L = 1 M), and 1541: 1281:considerations is the 1279:statistical mechanical 1252:pre-exponential factor 1233:Boltzmann distribution 1189: 1087: 968: 871: 837: 803: 735: 702: 570: 543: 457: 430: 358: 331: 205: 181: 58: 36:reaction rate constant 2266:+ NO → 2 NOCl). See: 2033: 1961:Divided saddle theory 1847: 1757: 1702: 1542: 1190: 1088: 969: 872: 838: 804: 736: 703: 571: 569:{\displaystyle k_{3}} 544: 458: 456:{\displaystyle k_{2}} 431: 359: 357:{\displaystyle k_{1}} 332: 206: 182: 94:A and B are reactants 59: 2103:www.chem.arizona.edu 2074:Equilibrium constant 1976: 1784: 1770:Comparison of models 1725: 1643: 1295: 1101: 1029: 888: 851: 817: 746: 734:{\displaystyle k(T)} 716: 656: 553: 487: 440: 385: 341: 297: 215:molar concentrations 195: 129: 48: 2601:2007JChPh.126n5104W 2541:1978JChPh..68.2959C 2434:. New York: Wiley. 2315:1967JChPh..46...73S 2027: 1938:computer simulation 236:are called partial 2028: 2003: 1854:for some constant 1842: 1752: 1697: 1537: 1185: 1083: 1013:Arrhenius equation 990:molar gas constant 964: 867: 833: 799: 731: 698: 566: 539: 453: 426: 354: 327: 285:law of mass action 254:reaction mechanism 238:orders of reaction 201: 177: 54: 2637:Chemical kinetics 2609:10.1063/1.2716389 2573:978-0-8412-0371-6 2506:10.1021/ct400970y 2469:Chemical Kinetics 2382:Chemical Kinetics 2378:Laidler, Keith J. 2323:10.1063/1.1840433 2283:978-0-08-086801-1 2169:978-0-471-03558-9 1882:order of reaction 1436: 1338: 1206:activation energy 1017:activation energy 928: 696: 204:{\displaystyle k} 68:chemical reaction 57:{\displaystyle k} 32:chemical kinetics 16:(Redirected from 2644: 2621: 2620: 2584: 2578: 2577: 2559: 2553: 2552: 2549:10.1063/1.436049 2524: 2518: 2517: 2500:(3): 1121–1127. 2491: 2482: 2473: 2472: 2460: 2454: 2453: 2427: 2421: 2420: 2402: 2396: 2395: 2374: 2368: 2367: 2341: 2335: 2334: 2294: 2288: 2287: 2265: 2264: 2263: 2253: 2252: 2251: 2241: 2240: 2239: 2229: 2228: 2227: 2217: 2216: 2215: 2205: 2204: 2203: 2193: 2192: 2191: 2180: 2174: 2173: 2155: 2149: 2148: 2120: 2114: 2113: 2111: 2109: 2095: 2051: 2050: 2037: 2035: 2034: 2029: 2026: 2025: 2016: 2015: 1999: 1998: 1997: 1934:microelectronics 1930:plasma chemistry 1923:Plasma and gases 1867: 1866: 1862: 1851: 1849: 1848: 1843: 1841: 1840: 1833: 1814: 1813: 1761: 1759: 1758: 1753: 1751: 1750: 1746: 1706: 1704: 1703: 1698: 1693: 1692: 1685: 1635:collision theory 1546: 1544: 1543: 1538: 1533: 1532: 1525: 1520: 1519: 1499: 1498: 1494: 1489: 1488: 1471: 1467: 1466: 1465: 1450: 1449: 1437: 1432: 1428: 1427: 1426: 1415: 1402: 1401: 1394: 1389: 1388: 1368: 1367: 1352: 1351: 1339: 1334: 1330: 1329: 1328: 1317: 1194: 1192: 1191: 1186: 1181: 1180: 1171: 1163: 1162: 1153: 1145: 1144: 1137: 1132: 1131: 1130: 1092: 1090: 1089: 1084: 1082: 1081: 1074: 1069: 1068: 1067: 975: 973: 971: 970: 965: 963: 962: 955: 950: 949: 929: 924: 920: 919: 918: 907: 878: 876: 874: 873: 868: 866: 865: 844: 842: 840: 839: 834: 832: 831: 810: 808: 806: 805: 800: 798: 797: 796: 778: 777: 762: 761: 740: 738: 737: 732: 707: 705: 704: 699: 697: 692: 681: 676: 675: 671: 639: 638: 637: 627: 626: 625: 615: 614: 613: 603: 602: 601: 591: 590: 589: 575: 573: 572: 567: 565: 564: 548: 546: 545: 540: 535: 524: 513: 505: 504: 462: 460: 459: 454: 452: 451: 435: 433: 432: 427: 422: 411: 403: 402: 363: 361: 360: 355: 353: 352: 336: 334: 333: 328: 323: 315: 314: 271:Elementary steps 212: 210: 208: 207: 202: 186: 184: 183: 178: 176: 175: 166: 158: 157: 148: 65: 63: 61: 60: 55: 21: 2652: 2651: 2647: 2646: 2645: 2643: 2642: 2641: 2627: 2626: 2625: 2624: 2586: 2585: 2581: 2574: 2561: 2560: 2556: 2526: 2525: 2521: 2489: 2484: 2483: 2476: 2463:Blauch, David. 2462: 2461: 2457: 2442: 2429: 2428: 2424: 2417: 2404: 2403: 2399: 2392: 2376: 2375: 2371: 2356: 2343: 2342: 2338: 2296: 2295: 2291: 2284: 2267: 2262: 2259: 2258: 2257: 2255: 2250: 2247: 2246: 2245: 2243: 2238: 2235: 2234: 2233: 2231: 2226: 2223: 2222: 2221: 2219: 2214: 2211: 2210: 2209: 2207: 2202: 2199: 2198: 2197: 2195: 2190: 2187: 2186: 2185: 2183: 2181: 2177: 2170: 2157: 2156: 2152: 2137: 2122: 2121: 2117: 2107: 2105: 2097: 2096: 2092: 2087: 2065: 2058: 2049: 2046: 2045: 2044: 1985: 1974: 1973: 1963: 1946: 1925: 1878: 1864: 1860: 1859: 1858:, where α = 0, 1815: 1805: 1782: 1781: 1772: 1734: 1723: 1722: 1667: 1641: 1640: 1591: 1511: 1500: 1480: 1472: 1451: 1441: 1417: 1416: 1410: 1406: 1380: 1369: 1353: 1343: 1319: 1318: 1293: 1292: 1283:Eyring equation 1241: 1203: 1172: 1154: 1121: 1113: 1099: 1098: 1058: 1050: 1027: 1026: 1009: 998: 982:Planck constant 941: 930: 909: 908: 886: 885: 884: 857: 849: 848: 846: 823: 815: 814: 812: 788: 769: 753: 744: 743: 742: 714: 713: 682: 659: 654: 653: 650: 636: 633: 632: 631: 629: 624: 621: 620: 619: 617: 612: 609: 608: 607: 605: 600: 597: 596: 595: 593: 588: 585: 584: 583: 581: 556: 551: 550: 496: 485: 484: 481: 473: 443: 438: 437: 394: 383: 382: 379: 371: 344: 339: 338: 306: 295: 294: 291: 277:elementary step 273: 193: 192: 190: 167: 149: 127: 126: 88: 46: 45: 43: 28: 23: 22: 15: 12: 11: 5: 2650: 2648: 2640: 2639: 2629: 2628: 2623: 2622: 2595:(14): 145104. 2579: 2572: 2554: 2519: 2474: 2455: 2441:978-0471893691 2440: 2422: 2415: 2397: 2390: 2369: 2354: 2336: 2289: 2282: 2260: 2248: 2236: 2224: 2218:(e.g., 2 NO + 2212: 2200: 2188: 2175: 2168: 2150: 2136:978-0060440848 2135: 2115: 2089: 2088: 2086: 2083: 2082: 2081: 2076: 2071: 2064: 2061: 2056: 2047: 2024: 2021: 2014: 2011: 2006: 2002: 1996: 1993: 1988: 1984: 1981: 1962: 1959: 1945: 1942: 1924: 1921: 1920: 1919: 1916: 1913: 1910: 1907: 1904: 1877: 1874: 1839: 1836: 1832: 1828: 1825: 1822: 1818: 1812: 1808: 1804: 1801: 1798: 1795: 1792: 1789: 1771: 1768: 1749: 1745: 1741: 1737: 1733: 1730: 1696: 1691: 1688: 1684: 1680: 1677: 1674: 1670: 1666: 1663: 1660: 1657: 1654: 1651: 1648: 1589: 1536: 1531: 1528: 1524: 1518: 1514: 1510: 1507: 1503: 1497: 1493: 1487: 1483: 1479: 1475: 1470: 1464: 1461: 1458: 1454: 1448: 1444: 1440: 1435: 1431: 1425: 1420: 1413: 1409: 1405: 1400: 1397: 1393: 1387: 1383: 1379: 1376: 1372: 1366: 1363: 1360: 1356: 1350: 1346: 1342: 1337: 1333: 1327: 1322: 1315: 1312: 1309: 1306: 1303: 1300: 1239: 1201: 1184: 1179: 1175: 1170: 1166: 1161: 1157: 1152: 1148: 1143: 1140: 1136: 1129: 1124: 1120: 1116: 1112: 1109: 1106: 1080: 1077: 1073: 1066: 1061: 1057: 1053: 1049: 1046: 1043: 1040: 1037: 1034: 1008: 1005: 996: 961: 958: 954: 948: 944: 940: 937: 933: 927: 923: 917: 912: 905: 902: 899: 896: 893: 864: 860: 856: 830: 826: 822: 795: 791: 787: 784: 781: 776: 772: 768: 765: 760: 756: 752: 730: 727: 724: 721: 695: 691: 688: 685: 679: 674: 670: 666: 662: 649: 646: 640:→ 2 HI in the 634: 622: 610: 598: 586: 563: 559: 538: 534: 530: 527: 523: 519: 516: 512: 508: 503: 499: 495: 492: 479: 471: 450: 446: 425: 421: 417: 414: 410: 406: 401: 397: 393: 390: 377: 369: 351: 347: 326: 322: 318: 313: 309: 305: 302: 289: 272: 269: 228:The exponents 200: 174: 170: 165: 161: 156: 152: 147: 143: 140: 137: 134: 117: 116: 98: 97:C is a product 95: 75: 53: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2649: 2638: 2635: 2634: 2632: 2618: 2614: 2610: 2606: 2602: 2598: 2594: 2590: 2583: 2580: 2575: 2569: 2565: 2558: 2555: 2550: 2546: 2542: 2538: 2534: 2530: 2529:J. Chem. Phys 2523: 2520: 2515: 2511: 2507: 2503: 2499: 2495: 2488: 2481: 2479: 2475: 2470: 2466: 2459: 2456: 2451: 2447: 2443: 2437: 2433: 2426: 2423: 2418: 2416:0-13-737123-3 2412: 2408: 2401: 2398: 2393: 2391:0-06-043862-2 2387: 2383: 2379: 2373: 2370: 2365: 2361: 2357: 2355:9780495387039 2351: 2347: 2340: 2337: 2332: 2328: 2324: 2320: 2316: 2312: 2308: 2304: 2300: 2293: 2290: 2285: 2279: 2275: 2271: 2179: 2176: 2171: 2165: 2161: 2154: 2151: 2146: 2142: 2138: 2132: 2128: 2127: 2119: 2116: 2104: 2100: 2094: 2091: 2084: 2080: 2077: 2075: 2072: 2070: 2069:Reaction rate 2067: 2066: 2062: 2060: 2055: 2043: 2038: 2004: 2000: 1986: 1982: 1979: 1971: 1969: 1968:saddle domain 1960: 1958: 1956: 1952: 1943: 1941: 1939: 1935: 1931: 1922: 1917: 1914: 1911: 1908: 1905: 1902: 1898: 1894: 1893: 1892: 1890: 1885: 1883: 1875: 1873: 1871: 1857: 1852: 1837: 1834: 1830: 1826: 1820: 1816: 1810: 1806: 1802: 1799: 1793: 1787: 1779: 1777: 1769: 1767: 1765: 1747: 1743: 1739: 1735: 1731: 1728: 1720: 1716: 1712: 1707: 1694: 1689: 1686: 1682: 1678: 1672: 1668: 1664: 1661: 1658: 1652: 1646: 1638: 1636: 1631: 1627: 1625: 1621: 1617: 1613: 1609: 1605: 1600: 1598: 1594: 1588: 1584: 1580: 1576: 1572: 1568: 1564: 1560: 1556: 1552: 1547: 1534: 1529: 1526: 1522: 1516: 1512: 1505: 1501: 1495: 1491: 1485: 1481: 1473: 1468: 1462: 1459: 1456: 1446: 1442: 1433: 1429: 1418: 1411: 1407: 1403: 1398: 1395: 1391: 1385: 1381: 1374: 1370: 1364: 1361: 1358: 1348: 1344: 1335: 1331: 1320: 1313: 1310: 1304: 1298: 1290: 1288: 1284: 1280: 1275: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1245: 1242:to vary with 1238: 1234: 1230: 1227: 1223: 1219: 1215: 1211: 1207: 1200: 1195: 1182: 1177: 1159: 1141: 1138: 1134: 1122: 1118: 1114: 1110: 1107: 1104: 1096: 1093: 1078: 1075: 1071: 1059: 1055: 1051: 1047: 1044: 1038: 1032: 1024: 1022: 1021:reaction rate 1018: 1014: 1006: 1004: 1002: 995: 991: 987: 983: 979: 959: 956: 952: 946: 942: 935: 931: 925: 921: 910: 903: 897: 891: 882: 862: 858: 845:and entropic 828: 824: 793: 789: 782: 779: 774: 770: 763: 758: 754: 725: 719: 711: 693: 689: 686: 683: 677: 672: 668: 664: 660: 647: 645: 643: 577: 561: 557: 501: 497: 493: 490: 480:A + B + C → P 478: 475: 470: 466: 448: 444: 399: 395: 391: 388: 376: 373: 368: 349: 345: 311: 307: 303: 300: 288: 286: 282: 278: 270: 268: 266: 262: 257: 255: 251: 247: 243: 239: 235: 231: 226: 224: 220: 216: 198: 187: 172: 154: 138: 135: 132: 124: 122: 121:reaction rate 114: 110: 106: 102: 99: 96: 93: 92: 91: 86: 82: 78: 74: 71: 69: 51: 41: 37: 33: 19: 18:Rate constant 2592: 2588: 2582: 2563: 2557: 2532: 2528: 2522: 2497: 2493: 2468: 2458: 2431: 2425: 2406: 2400: 2381: 2372: 2345: 2339: 2309:(1): 73–78. 2306: 2302: 2298: 2292: 2273: 2178: 2159: 2153: 2125: 2118: 2106:. Retrieved 2102: 2093: 2079:Molecularity 2053: 2041: 2039: 1972: 1967: 1964: 1947: 1926: 1900: 1896: 1886: 1879: 1869: 1855: 1853: 1780: 1775: 1773: 1763: 1718: 1714: 1710: 1708: 1639: 1632: 1628: 1624:fudge factor 1615: 1611: 1607: 1603: 1602:The factor ( 1601: 1596: 1592: 1586: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1550: 1548: 1291: 1276: 1271: 1267: 1263: 1259: 1255: 1247: 1243: 1236: 1228: 1221: 1217: 1214:gas constant 1209: 1198: 1196: 1097: 1094: 1025: 1010: 1000: 993: 985: 977: 651: 578: 482: 476: 474:≤ ~10 Ms. 468: 380: 374: 366: 292: 280: 274: 264: 260: 258: 249: 245: 241: 233: 229: 227: 188: 125: 118: 108: 104: 100: 89: 84: 80: 76: 72: 39: 35: 29: 2535:(6): 2959. 2299:Bimolecular 1955:Milestoning 1895:For order ( 1226:temperature 372:≤ ~10 s. 2085:References 1940:software. 83: B → 79: A + 2364:220756597 2331:0021-9606 2005:α 2001:⋅ 1824:Δ 1821:− 1811:α 1732:∝ 1676:Δ 1673:− 1517:‡ 1509:Δ 1506:− 1486:‡ 1478:Δ 1460:− 1447:⊖ 1412:κ 1386:‡ 1378:Δ 1375:− 1362:− 1349:⊖ 1314:κ 1119:− 1056:− 947:‡ 939:Δ 936:− 863:‡ 855:Δ 829:‡ 821:Δ 794:‡ 786:Δ 780:− 775:‡ 767:Δ 759:‡ 751:Δ 687:⁡ 465:diffusion 378:A + B → P 2631:Category 2617:17444753 2514:26580187 2380:(1987). 2145:14214254 2063:See also 1019:and the 549:, where 436:, where 337:, where 279:, there 240:and are 223:assuming 2597:Bibcode 2537:Bibcode 2450:9894996 2311:Bibcode 1863:⁄ 1555:entropy 1549:where Δ 1250:is the 1212:is the 1204:is the 980:is the 275:For an 211:⁠ 191:⁠ 87: C 64:⁠ 44:⁠ 2615:  2570:  2512:  2448:  2438:  2413:  2388:  2362:  2352:  2329:  2280:  2166:  2143:  2133:  2040:where 1953:, and 1709:where 1270:Units 1216:, and 1208:, and 1197:where 976:where 107:, and 90:where 2490:(PDF) 2108:5 May 1889:units 1876:Units 1285:from 1272:below 290:A → P 219:moles 189:Here 2613:PMID 2568:ISBN 2510:PMID 2446:OCLC 2436:ISBN 2411:ISBN 2386:ISBN 2360:OCLC 2350:ISBN 2327:ISSN 2278:ISBN 2256:NOCl 2244:NOCl 2164:ISBN 2141:OCLC 2131:ISBN 2110:2018 1220:and 1011:The 988:the 984:and 248:and 232:and 119:the 111:are 34:, a 2605:doi 2593:126 2545:doi 2502:doi 2319:doi 2206:or 1932:or 1573:= Δ 1274:). 1268:see 997:1/2 883:is 242:not 38:or 30:In 2633:: 2611:. 2603:. 2591:. 2543:. 2533:68 2531:. 2508:. 2498:10 2496:. 2492:. 2477:^ 2467:. 2444:. 2358:. 2325:. 2317:. 2307:46 2305:. 2272:. 2254:, 2242:⇄ 2232:Cl 2220:Cl 2196:Br 2194:, 2184:Cl 2139:. 2101:. 2057:SD 2048:RS 1899:+ 1884:. 1577:− 1289:: 1262:+ 708:. 684:ln 616:+ 604:→ 592:+ 281:is 263:+ 103:, 2619:. 2607:: 2599:: 2576:. 2551:. 2547:: 2539:: 2516:. 2504:: 2471:. 2452:. 2419:. 2394:. 2366:. 2333:. 2321:: 2313:: 2286:. 2261:2 2249:2 2237:2 2225:2 2213:2 2208:O 2201:2 2189:2 2172:. 2147:. 2112:. 2054:k 2042:α 2023:D 2020:S 2013:S 2010:R 1995:D 1992:S 1987:k 1983:= 1980:k 1901:n 1897:m 1870:E 1865:2 1861:1 1856:C 1838:T 1835:R 1831:/ 1827:E 1817:e 1807:T 1803:C 1800:= 1797:) 1794:T 1791:( 1788:k 1776:k 1764:k 1748:2 1744:/ 1740:1 1736:T 1729:Z 1719:E 1715:Z 1711:P 1695:, 1690:T 1687:R 1683:/ 1679:E 1669:e 1665:Z 1662:P 1659:= 1656:) 1653:T 1650:( 1647:k 1616:M 1612:c 1608:c 1604:c 1597:h 1595:/ 1593:T 1590:B 1587:k 1583:S 1581:Δ 1579:T 1575:H 1571:G 1567:S 1563:H 1559:G 1551:G 1535:, 1530:T 1527:R 1523:/ 1513:H 1502:e 1496:R 1492:/ 1482:S 1474:e 1469:) 1463:M 1457:1 1453:) 1443:c 1439:( 1434:h 1430:T 1424:B 1419:k 1408:( 1404:= 1399:T 1396:R 1392:/ 1382:G 1371:e 1365:M 1359:1 1355:) 1345:c 1341:( 1336:h 1332:T 1326:B 1321:k 1311:= 1308:) 1305:T 1302:( 1299:k 1264:n 1260:m 1256:A 1248:A 1244:e 1240:a 1237:E 1229:T 1222:n 1218:m 1210:R 1202:a 1199:E 1183:, 1178:n 1174:] 1169:B 1165:[ 1160:m 1156:] 1151:A 1147:[ 1142:T 1139:R 1135:/ 1128:a 1123:E 1115:e 1111:A 1108:= 1105:r 1079:T 1076:R 1072:/ 1065:a 1060:E 1052:e 1048:A 1045:= 1042:) 1039:T 1036:( 1033:k 1001:G 994:t 986:R 978:h 974:, 960:T 957:R 953:/ 943:G 932:e 926:h 922:T 916:B 911:k 904:= 901:) 898:T 895:( 892:k 877:) 859:S 847:( 843:) 825:H 813:( 809:, 790:S 783:T 771:H 764:= 755:G 729:) 726:T 723:( 720:k 694:k 690:2 678:= 673:2 669:/ 665:1 661:t 635:2 630:H 623:2 618:N 611:3 606:O 599:2 594:N 587:2 582:O 562:3 558:k 537:] 533:C 529:[ 526:] 522:B 518:[ 515:] 511:A 507:[ 502:3 498:k 494:= 491:r 472:2 469:k 449:2 445:k 424:] 420:B 416:[ 413:] 409:A 405:[ 400:2 396:k 392:= 389:r 370:1 367:k 350:1 346:k 325:] 321:A 317:[ 312:1 308:k 304:= 301:r 265:n 261:m 250:b 246:a 234:n 230:m 199:k 173:n 169:] 164:B 160:[ 155:m 151:] 146:A 142:[ 139:k 136:= 133:r 115:, 109:c 105:b 101:a 85:c 81:b 77:a 52:k 42:( 20:)

Index

Rate constant
chemical kinetics
chemical reaction
stoichiometric coefficients
reaction rate
molar concentrations
moles
assuming
orders of reaction
reaction mechanism
elementary step
law of mass action
diffusion
hydrogen-iodine reaction
Transition state theory
result from transition state theory
Planck constant
molar gas constant
Arrhenius equation
activation energy
reaction rate
activation energy
gas constant
temperature
Boltzmann distribution
pre-exponential factor
statistical mechanical
Eyring equation
transition state theory
entropy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.