Knowledge (XXG)

Frobenius normal form

Source 📝

140:
which the action is as simple as it can get, namely by a scalar), and then similarity can be decided by comparing eigenvalues and their multiplicities. While in practice this is often a quite insightful approach, there are various drawbacks this has as a general method. First, it requires finding all eigenvalues, say as roots of the characteristic polynomial, but it may not be possible to give an explicit expression for them. Second, a complete set of eigenvalues might exist only in an extension of the field one is working over, and then one does not get a proof of similarity over the original field. Finally
2502: 640: 1938: 178:). Therefore, just having for both matrices some decomposition of the space into cyclic subspaces, and knowing the corresponding minimal polynomials, is not in itself sufficient to decide their similarity. An additional condition is imposed to ensure that for similar matrices one gets decompositions into cyclic subspaces that exactly match: in the list of associated minimal polynomials each one must divide the next (and the constant polynomial 1 is forbidden to exclude trivial cyclic subspaces of dimension 0). The resulting list of polynomials are called the 2062: 212: 1558: 2497:{\displaystyle \scriptstyle P={\begin{pmatrix}3&5&1&-1&0&0&-4&0\\4&4&0&-1&-1&-2&-3&-5\\8&5&0&-2&-5&-2&-11&-6\\0&9&0&-1&3&-2&0&0\\-1&-1&0&0&0&1&-1&4\\0&1&0&0&0&0&-1&1\\2&1&0&1&-1&0&2&-6\\-1&-2&0&0&1&-1&4&-2\end{pmatrix}}} 635:{\displaystyle \scriptstyle A={\begin{pmatrix}-1&3&-1&0&-2&0&0&-2\\-1&-1&1&1&-2&-1&0&-1\\-2&-6&4&3&-8&-4&-2&1\\-1&8&-3&-1&5&2&3&-3\\0&0&0&0&0&0&0&1\\0&0&0&0&-1&0&0&0\\1&0&0&0&2&0&0&0\\0&0&0&0&4&0&1&0\end{pmatrix}}.} 1933:{\displaystyle \scriptstyle C={\begin{pmatrix}0&1&0&0&0&0&0&0\\1&1&0&0&0&0&0&0\\0&0&0&0&0&0&0&-1\\0&0&1&0&0&0&0&-4\\0&0&0&1&0&0&0&-4\\0&0&0&0&1&0&0&2\\0&0&0&0&0&1&0&4\\0&0&0&0&0&0&1&0\end{pmatrix}}.} 3130: 3558: 151:
But obtaining such a fine decomposition is not necessary to just decide whether two matrices are similar. The rational canonical form is based on instead using a direct sum decomposition into stable subspaces that are as large as possible, while still allowing a very simple description of the action
139:
are similar, one approach is to try, for each of them, to decompose the vector space as far as possible into a direct sum of stable subspaces, and compare the respective actions on these subspaces. For instance if both are diagonalizable, then one can take the decomposition into eigenspaces (for
165:
of a monic polynomial; this polynomial (the minimal polynomial of the operator restricted to the subspace, which notion is analogous to that of the order of a cyclic subgroup) determines the action of the operator on the cyclic subspace up to isomorphism, and is independent of the choice of the
2846:
is then the minimal polynomial, which all the invariant factors therefore divide, and the product of the invariant factors gives the characteristic polynomial. Note that this implies that the minimal polynomial divides the characteristic polynomial (which is essentially the
156:
and all its images by repeated application of the linear operator associated to the matrix; such subspaces are called cyclic subspaces (by analogy with cyclic subgroups) and they are clearly stable under the linear operator. A basis of such a subspace is obtained by taking
3016: 173:
A direct sum decomposition into cyclic subspaces always exists, and finding one does not require factoring polynomials. However it is possible that cyclic subspaces do allow a decomposition as direct sum of smaller cyclic subspaces (essentially by the
931:. There always exist vectors such that the cyclic subspace that they generate has the same minimal polynomial as the operator has on the whole space; indeed most vectors will have this property, and in this case the first standard basis vector 2764: 3215: 2940:(if the characteristic polynomial splits into linear factors). For instance, the Frobenius normal form of a diagonal matrix with distinct diagonal entries is just the companion matrix of its characteristic polynomial. 890: 2800:
one then takes the unique monic generators of the respective ideals, and since the structure theorem ensures containment of every ideal in the preceding ideal, one obtains the divisibility conditions for the
2892: = 1), the Frobenius normal form is the companion matrix of the characteristic polynomial. As the rational canonical form is uniquely determined by the unique invariant factors associated to 100:(whence the "rational"), notably without factoring polynomials, this shows that whether two matrices are similar does not change upon field extensions. The form is named after German mathematician 1542: 745: 3186:. In any generalized Jordan block, all entries immediately below the main diagonal are 1. A basis of the cyclic module giving rise to this form is obtained by choosing a generating vector 1237: 1150: 3125:{\displaystyle \scriptstyle {\begin{pmatrix}C&0&\cdots &0\\U&C&\cdots &0\\\vdots &\ddots &\ddots &\vdots \\0&\cdots &U&C\end{pmatrix}}} 2054: 1043: 2928:). On the other hand, this makes the Frobenius normal form rather different from other normal forms that do depend on factoring the characteristic polynomial, notably the 2010: 999: 148:
might not be diagonalizable even over this larger field, in which case one must instead use a decomposition into generalized eigenspaces, and possibly into Jordan blocks.
2551: 1269: 1446: 1387: 1328: 929: 956: 186:-module defined by) the matrix, and two matrices are similar if and only if they have identical lists of invariant factors. The rational canonical form of a matrix 1407: 1348: 1063: 111:. Instead of decomposing into a minimum number of cyclic subspaces, the primary form decomposes into a maximum number of cyclic subspaces. It is also defined over 3553:{\displaystyle v,A(v),A^{2}(v),\ldots ,A^{d-1}(v),~P(A)(v),A(P(A)(v)),\ldots ,A^{d-1}(P(A)(v)),~P^{2}(A)(v),\ldots ,~P^{k-1}(A)(v),\ldots ,A^{d-1}(P^{k-1}(A)(v))} 1967: 1289: 123:. This article mainly deals with the form that does not require factorization, and explicitly mentions "primary" when the form using factorization is meant. 190:
is obtained by expressing it on a basis adapted to a decomposition into cyclic subspaces whose associated minimal polynomials are the invariant factors of
2994:-modules (like is done for the Frobenius normal form above), where the characteristic polynomial of each summand is still a (generally smaller) power of 2951:, but that does reflect a possible factorization of the characteristic polynomial (or equivalently the minimal polynomial) into irreducible factors over 3664: 2916:
The Frobenius normal form does not reflect any form of factorization of the characteristic polynomial, even if it does exist over the ground field
754: 2851:), and that every irreducible factor of the characteristic polynomial also divides the minimal polynomial (possibly with lower multiplicity). 3006:
in the diagonal blocks, corresponding to a particular choice of a basis for the cyclic modules. This generalized Jordan block is itself a
161:
and its successive images as long as they are linearly independent. The matrix of the linear operator with respect to such a basis is the
2967:. It is based on the fact that the vector space can be canonically decomposed into a direct sum of stable subspaces corresponding to the 3624: 649: 3604: 119:, and as a consequence the primary rational canonical form may change when the same matrix is considered over an extension field of 2943:
There is another way to define a normal form, that, like the Frobenius normal form, is always defined over the same field
1451: 1065:. There exist complementary stable subspaces (of dimension 2) to this cyclic subspace, and the space generated by vectors 654: 3698: 3151:
is a matrix whose sole nonzero entry is a 1 in the upper right hand corner. For the case of a linear irreducible factor
116: 2955:, and which reduces to the Jordan normal form when this factorization only contains linear factors (corresponding to 1155: 1068: 2599: 748: 175: 107:
Some authors use the term rational canonical form for a somewhat different form that is more properly called the
101: 81: 3693: 2848: 2775:-module. The structure theorem provides a decomposition into cyclic factors, each of which is a quotient of 747:, so that the dimension of a subspace generated by the repeated images of a single vector is at most 6. The 2976: 2637: 2015: 1004: 61: 76:). Since only one normal form can be reached from a given matrix (whence the "canonical"), a matrix 2814: 68:. The form reflects a minimal decomposition of the vector space into subspaces that are cyclic for 50: 1972: 1552:
is the block diagonal matrix with the corresponding companion matrices as diagonal blocks, namely
961: 2937: 2818: 2704: 2511: 1242: 1412: 1353: 1294: 895: 3673: 3600: 3583: 2826: 2924:
is replaced by a different field (as long as it contains the entries of the original matrix
2864: 2700: 2587: 179: 162: 934: 3652: 2929: 2565: 1392: 1333: 1048: 93: 3002:
corresponding to such a decomposition into cyclic modules, with a particular form called
2981: 1946: 2990:. These summands can be further decomposed, non-canonically, as a direct sum of cyclic 2986:), where the characteristic polynomial of each summand is a power of the corresponding 1274: 57: 31: 17: 2888:. When the minimal polynomial is identical to the characteristic polynomial (the case 194:; two matrices are similar if and only if they have the same rational canonical form. 3687: 43: 3183: 3007: 2999: 2568: 3678: 1409:(and it is easily checked that it does), and we have found the invariant factors 2897: 2780: 2956: 2765:
structure theorem for finitely generated modules over a principal ideal domain
152:
on each of them. These subspaces must be generated by a single nonzero vector
92:. Since this form can be found without any operations that might change when 1045:
are linearly independent and span a cyclic subspace with minimal polynomial
885:{\displaystyle \chi =X^{8}-X^{7}-5X^{6}+2X^{5}+10X^{4}+2X^{3}-7X^{2}-5X-1} 2779:
by a proper ideal; the zero ideal cannot be present since the resulting
2908:
are similar if and only if they have the same rational canonical form.
2880:, and the block diagonal matrix formed from these blocks yields the 115:, but has somewhat different properties: finding the form requires 3599:. 2nd Edition, John Wiley & Sons. pp. 442, 446, 452-458. 1271:, so the complementary subspace is a cyclic subspace generated by 3619:
Phani Bhushan Bhattacharya, Surender Kumar Jain, S. R. Nagpaul,
1943:
A basis on which this form is attained is formed by the vectors
2837:
as given above must be used instead. The last of these factors
1350:
is the minimal polynomial of the whole space, it is clear that
892:, which is a multiple of the minimal polynomial by a factor 72:(i.e., spanned by some vector and its repeated images under 2912:
A rational normal form generalizing the Jordan normal form
88:
if and only if it has the same rational canonical form as
3139:
is the companion matrix of the irreducible polynomial
3026: 3020: 2078: 2066: 1574: 1562: 228: 216: 3218: 3203:
where the minimal polynomial of the cyclic module is
3019: 2514: 2065: 2018: 1975: 1949: 1561: 1454: 1415: 1395: 1356: 1336: 1297: 1277: 1245: 1158: 1071: 1051: 1007: 964: 937: 898: 757: 657: 215: 1537:{\displaystyle \mu =X^{6}-4X^{4}-2X^{3}+4X^{2}+4X+1} 740:{\displaystyle \mu =X^{6}-4X^{4}-2X^{3}+4X^{2}+4X+1} 131:
When trying to find out whether two square matrices
64:
obtained by conjugation by invertible matrices over
2975:of the characteristic polynomial (as stated by the 3552: 3124: 2616:be a finite-dimensional vector space over a field 2545: 2496: 2048: 2004: 1961: 1932: 1536: 1440: 1401: 1381: 1342: 1322: 1283: 1263: 1231: 1144: 1057: 1037: 993: 950: 923: 884: 739: 634: 3637:Les maths en tête, Mathématiques pour M', Algèbre 2896:, and these invariant factors are independent of 2748:"; with these conditions the list of polynomials 3674:An Algorithm for the Frobenius Normal Form (pdf) 3165:, these blocks are reduced to single entries 1232:{\displaystyle w=(5,4,5,9,-1,1,1,-2)^{\top }} 1145:{\displaystyle v=(3,4,8,0,-1,0,2,-1)^{\top }} 8: 2998:. The primary rational canonical form is a 2791:is finite-dimensional. For the polynomials 3679:A rational canonical form Algorithm (pdf) 3517: 3498: 3455: 3415: 3366: 3272: 3244: 3217: 3021: 3018: 2936:is diagonalizable) or more generally the 2920:. This implies that it is invariant when 2602:and minimal polynomial are both equal to 2531: 2513: 2073: 2064: 2017: 1993: 1980: 1974: 1948: 1569: 1560: 1513: 1497: 1481: 1465: 1453: 1420: 1414: 1394: 1361: 1355: 1335: 1302: 1296: 1276: 1244: 1223: 1157: 1136: 1070: 1050: 1006: 982: 969: 963: 942: 936: 903: 897: 861: 845: 829: 813: 797: 781: 768: 756: 716: 700: 684: 668: 656: 223: 214: 3612: 27:Canonical form of matrices over a field 3595:David S. Dummit and Richard M. Foote. 2900:, it follows that two square matrices 2813:Given an arbitrary square matrix, the 1548:. Then the rational canonical form of 202:Consider the following matrix A, over 3669:) Algorithm for Frobenius Normal Form 2959:). This form is sometimes called the 7: 2703:of positive degree (so they are non- 3653:Rational Canonical Form (Mathworld) 1224: 1137: 25: 2783:would be infinite-dimensional as 2056:; explicitly this means that for 3192:(one that is not annihilated by 2817:used in the construction of the 2965:primary rational canonical form 2740:where "a | b" is notation for " 2049:{\displaystyle k=0,1,\ldots ,5} 1239:is an example. In fact one has 1038:{\displaystyle k=0,1,\ldots ,5} 109:primary rational canonical form 3639:, 1998, Ellipses, Th. 1 p. 173 3547: 3544: 3538: 3535: 3529: 3510: 3482: 3476: 3473: 3467: 3436: 3430: 3427: 3421: 3402: 3399: 3393: 3390: 3384: 3378: 3350: 3347: 3341: 3338: 3332: 3326: 3317: 3311: 3308: 3302: 3290: 3284: 3256: 3250: 3234: 3228: 3182:and, one finds a (transposed) 2961:generalized Jordan normal form 2586:, there is associated to it a 1999: 1986: 1220: 1165: 1133: 1078: 988: 975: 1: 2711:) that satisfy the relations 2005:{\displaystyle A^{k}(e_{1})} 1291:; it has minimal polynomial 994:{\displaystyle A^{k}(e_{1})} 117:factorization of polynomials 2546:{\displaystyle A=PCP^{-1}.} 3715: 2854:For each invariant factor 1264:{\displaystyle A\cdot v=w} 2600:characteristic polynomial 1441:{\displaystyle X^{2}-X-1} 1382:{\displaystyle X^{2}-X-1} 1323:{\displaystyle X^{2}-X-1} 924:{\displaystyle X^{2}-X-1} 749:characteristic polynomial 176:Chinese remainder theorem 170:generating the subspace. 102:Ferdinand Georg Frobenius 3004:generalized Jordan block 3209:), and taking as basis 2882:rational canonical form 2849:Cayley-Hamilton theorem 2556:General case and theory 40:rational canonical form 18:Rational canonical form 3621:Basic abstract algebra 3554: 3126: 2547: 2498: 2050: 2006: 1963: 1934: 1538: 1442: 1403: 1383: 1344: 1324: 1285: 1265: 1233: 1146: 1059: 1039: 995: 952: 925: 886: 741: 636: 3555: 3127: 3000:block diagonal matrix 2624:a square matrix over 2578:. Given a polynomial 2548: 2499: 2051: 2007: 1964: 1935: 1539: 1443: 1404: 1384: 1345: 1325: 1286: 1266: 1234: 1147: 1060: 1040: 996: 958:does so: the vectors 953: 951:{\displaystyle e_{1}} 926: 887: 742: 637: 36:Frobenius normal form 3216: 3017: 2971:irreducible factors 2810:. See for details. 2787:vector space, while 2652:-module isomorphism 2512: 2063: 2016: 1973: 1947: 1559: 1452: 1413: 1402:{\displaystyle \mu } 1393: 1354: 1343:{\displaystyle \mu } 1334: 1295: 1275: 1243: 1156: 1069: 1058:{\displaystyle \mu } 1049: 1005: 962: 935: 896: 755: 655: 213: 3699:Matrix normal forms 2815:elementary divisors 2771:, viewing it as an 2699:may be taken to be 2640:with the action of 1969:above, followed by 1962:{\displaystyle v,w} 3550: 3122: 3121: 3115: 2938:Jordan normal form 2821:do not exist over 2819:Jordan normal form 2543: 2494: 2493: 2487: 2046: 2002: 1959: 1930: 1929: 1920: 1534: 1438: 1399: 1379: 1340: 1320: 1281: 1261: 1229: 1142: 1055: 1035: 991: 948: 921: 882: 737: 650:minimal polynomial 632: 631: 622: 49:with entries in a 3635:Xavier Gourdon, 3584:Smith normal form 3450: 3410: 3298: 2827:invariant factors 2701:monic polynomials 2560:Fix a base field 1284:{\displaystyle v} 180:invariant factors 16:(Redirected from 3706: 3640: 3633: 3627: 3617: 3597:Abstract Algebra 3573: 3559: 3557: 3556: 3551: 3528: 3527: 3509: 3508: 3466: 3465: 3448: 3420: 3419: 3408: 3377: 3376: 3296: 3283: 3282: 3249: 3248: 3208: 3202: 3191: 3181: 3174: 3164: 3150: 3144: 3131: 3129: 3128: 3123: 3120: 3119: 2985: 2977:lemme des noyaux 2865:companion matrix 2588:companion matrix 2552: 2550: 2549: 2544: 2539: 2538: 2503: 2501: 2500: 2495: 2492: 2491: 2055: 2053: 2052: 2047: 2011: 2009: 2008: 2003: 1998: 1997: 1985: 1984: 1968: 1966: 1965: 1960: 1939: 1937: 1936: 1931: 1925: 1924: 1543: 1541: 1540: 1535: 1518: 1517: 1502: 1501: 1486: 1485: 1470: 1469: 1447: 1445: 1444: 1439: 1425: 1424: 1408: 1406: 1405: 1400: 1388: 1386: 1385: 1380: 1366: 1365: 1349: 1347: 1346: 1341: 1329: 1327: 1326: 1321: 1307: 1306: 1290: 1288: 1287: 1282: 1270: 1268: 1267: 1262: 1238: 1236: 1235: 1230: 1228: 1227: 1151: 1149: 1148: 1143: 1141: 1140: 1064: 1062: 1061: 1056: 1044: 1042: 1041: 1036: 1000: 998: 997: 992: 987: 986: 974: 973: 957: 955: 954: 949: 947: 946: 930: 928: 927: 922: 908: 907: 891: 889: 888: 883: 866: 865: 850: 849: 834: 833: 818: 817: 802: 801: 786: 785: 773: 772: 746: 744: 743: 738: 721: 720: 705: 704: 689: 688: 673: 672: 641: 639: 638: 633: 627: 626: 163:companion matrix 21: 3714: 3713: 3709: 3708: 3707: 3705: 3704: 3703: 3684: 3683: 3661: 3649: 3644: 3643: 3634: 3630: 3623:, Theorem 5.4, 3618: 3614: 3592: 3580: 3564: 3513: 3494: 3451: 3411: 3362: 3268: 3240: 3214: 3213: 3204: 3193: 3187: 3176: 3166: 3152: 3146: 3140: 3114: 3113: 3108: 3103: 3098: 3092: 3091: 3086: 3081: 3076: 3070: 3069: 3064: 3059: 3054: 3048: 3047: 3042: 3037: 3032: 3022: 3015: 3014: 2979: 2914: 2879: 2878: 2862: 2845: 2836: 2809: 2799: 2761:Sketch of Proof 2756: 2736: 2727: 2720: 2694: 2682: 2669: 2597: 2558: 2527: 2510: 2509: 2486: 2485: 2477: 2472: 2464: 2459: 2454: 2449: 2441: 2432: 2431: 2423: 2418: 2413: 2405: 2400: 2395: 2390: 2384: 2383: 2378: 2370: 2365: 2360: 2355: 2350: 2345: 2339: 2338: 2333: 2325: 2320: 2315: 2310: 2305: 2297: 2288: 2287: 2282: 2277: 2269: 2264: 2256: 2251: 2246: 2240: 2239: 2231: 2223: 2215: 2207: 2199: 2194: 2189: 2183: 2182: 2174: 2166: 2158: 2150: 2142: 2137: 2132: 2126: 2125: 2120: 2112: 2107: 2102: 2094: 2089: 2084: 2074: 2061: 2060: 2014: 2013: 1989: 1976: 1971: 1970: 1945: 1944: 1919: 1918: 1913: 1908: 1903: 1898: 1893: 1888: 1883: 1877: 1876: 1871: 1866: 1861: 1856: 1851: 1846: 1841: 1835: 1834: 1829: 1824: 1819: 1814: 1809: 1804: 1799: 1793: 1792: 1784: 1779: 1774: 1769: 1764: 1759: 1754: 1748: 1747: 1739: 1734: 1729: 1724: 1719: 1714: 1709: 1703: 1702: 1694: 1689: 1684: 1679: 1674: 1669: 1664: 1658: 1657: 1652: 1647: 1642: 1637: 1632: 1627: 1622: 1616: 1615: 1610: 1605: 1600: 1595: 1590: 1585: 1580: 1570: 1557: 1556: 1509: 1493: 1477: 1461: 1450: 1449: 1416: 1411: 1410: 1391: 1390: 1357: 1352: 1351: 1332: 1331: 1298: 1293: 1292: 1273: 1272: 1241: 1240: 1219: 1154: 1153: 1132: 1067: 1066: 1047: 1046: 1003: 1002: 978: 965: 960: 959: 938: 933: 932: 899: 894: 893: 857: 841: 825: 809: 793: 777: 764: 753: 752: 712: 696: 680: 664: 653: 652: 621: 620: 615: 610: 605: 600: 595: 590: 585: 579: 578: 573: 568: 563: 558: 553: 548: 543: 537: 536: 531: 526: 521: 513: 508: 503: 498: 492: 491: 486: 481: 476: 471: 466: 461: 456: 450: 449: 441: 436: 431: 426: 418: 410: 405: 396: 395: 390: 382: 374: 366: 361: 356: 348: 339: 338: 330: 325: 317: 309: 304: 299: 291: 282: 281: 273: 268: 263: 255: 250: 242: 237: 224: 211: 210: 200: 129: 28: 23: 22: 15: 12: 11: 5: 3712: 3710: 3702: 3701: 3696: 3694:Linear algebra 3686: 3685: 3682: 3681: 3676: 3671: 3660: 3657: 3656: 3655: 3648: 3647:External links 3645: 3642: 3641: 3628: 3611: 3610: 3609: 3608: 3591: 3588: 3587: 3586: 3579: 3576: 3561: 3560: 3549: 3546: 3543: 3540: 3537: 3534: 3531: 3526: 3523: 3520: 3516: 3512: 3507: 3504: 3501: 3497: 3493: 3490: 3487: 3484: 3481: 3478: 3475: 3472: 3469: 3464: 3461: 3458: 3454: 3447: 3444: 3441: 3438: 3435: 3432: 3429: 3426: 3423: 3418: 3414: 3407: 3404: 3401: 3398: 3395: 3392: 3389: 3386: 3383: 3380: 3375: 3372: 3369: 3365: 3361: 3358: 3355: 3352: 3349: 3346: 3343: 3340: 3337: 3334: 3331: 3328: 3325: 3322: 3319: 3316: 3313: 3310: 3307: 3304: 3301: 3295: 3292: 3289: 3286: 3281: 3278: 3275: 3271: 3267: 3264: 3261: 3258: 3255: 3252: 3247: 3243: 3239: 3236: 3233: 3230: 3227: 3224: 3221: 3133: 3132: 3118: 3112: 3109: 3107: 3104: 3102: 3099: 3097: 3094: 3093: 3090: 3087: 3085: 3082: 3080: 3077: 3075: 3072: 3071: 3068: 3065: 3063: 3060: 3058: 3055: 3053: 3050: 3049: 3046: 3043: 3041: 3038: 3036: 3033: 3031: 3028: 3027: 3025: 2913: 2910: 2874: 2870: 2863:one takes its 2858: 2841: 2832: 2805: 2795: 2752: 2738: 2737: 2732: 2725: 2718: 2690: 2684: 2683: 2678: 2667: 2632:(viewed as an 2593: 2557: 2554: 2542: 2537: 2534: 2530: 2526: 2523: 2520: 2517: 2506: 2505: 2490: 2484: 2481: 2478: 2476: 2473: 2471: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2442: 2440: 2437: 2434: 2433: 2430: 2427: 2424: 2422: 2419: 2417: 2414: 2412: 2409: 2406: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2385: 2382: 2379: 2377: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2356: 2354: 2351: 2349: 2346: 2344: 2341: 2340: 2337: 2334: 2332: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2298: 2296: 2293: 2290: 2289: 2286: 2283: 2281: 2278: 2276: 2273: 2270: 2268: 2265: 2263: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2241: 2238: 2235: 2232: 2230: 2227: 2224: 2222: 2219: 2216: 2214: 2211: 2208: 2206: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2184: 2181: 2178: 2175: 2173: 2170: 2167: 2165: 2162: 2159: 2157: 2154: 2151: 2149: 2146: 2143: 2141: 2138: 2136: 2133: 2131: 2128: 2127: 2124: 2121: 2119: 2116: 2113: 2111: 2108: 2106: 2103: 2101: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2079: 2077: 2072: 2069: 2045: 2042: 2039: 2036: 2033: 2030: 2027: 2024: 2021: 2001: 1996: 1992: 1988: 1983: 1979: 1958: 1955: 1952: 1941: 1940: 1928: 1923: 1917: 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1897: 1894: 1892: 1889: 1887: 1884: 1882: 1879: 1878: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1850: 1847: 1845: 1842: 1840: 1837: 1836: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1794: 1791: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1749: 1746: 1743: 1740: 1738: 1735: 1733: 1730: 1728: 1725: 1723: 1720: 1718: 1715: 1713: 1710: 1708: 1705: 1704: 1701: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1659: 1656: 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1617: 1614: 1611: 1609: 1606: 1604: 1601: 1599: 1596: 1594: 1591: 1589: 1586: 1584: 1581: 1579: 1576: 1575: 1573: 1568: 1565: 1533: 1530: 1527: 1524: 1521: 1516: 1512: 1508: 1505: 1500: 1496: 1492: 1489: 1484: 1480: 1476: 1473: 1468: 1464: 1460: 1457: 1437: 1434: 1431: 1428: 1423: 1419: 1398: 1378: 1375: 1372: 1369: 1364: 1360: 1339: 1319: 1316: 1313: 1310: 1305: 1301: 1280: 1260: 1257: 1254: 1251: 1248: 1226: 1222: 1218: 1215: 1212: 1209: 1206: 1203: 1200: 1197: 1194: 1191: 1188: 1185: 1182: 1179: 1176: 1173: 1170: 1167: 1164: 1161: 1139: 1135: 1131: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1074: 1054: 1034: 1031: 1028: 1025: 1022: 1019: 1016: 1013: 1010: 990: 985: 981: 977: 972: 968: 945: 941: 920: 917: 914: 911: 906: 902: 881: 878: 875: 872: 869: 864: 860: 856: 853: 848: 844: 840: 837: 832: 828: 824: 821: 816: 812: 808: 805: 800: 796: 792: 789: 784: 780: 776: 771: 767: 763: 760: 736: 733: 730: 727: 724: 719: 715: 711: 708: 703: 699: 695: 692: 687: 683: 679: 676: 671: 667: 663: 660: 643: 642: 630: 625: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 589: 586: 584: 581: 580: 577: 574: 572: 569: 567: 564: 562: 559: 557: 554: 552: 549: 547: 544: 542: 539: 538: 535: 532: 530: 527: 525: 522: 520: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 493: 490: 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 451: 448: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 419: 417: 414: 411: 409: 406: 404: 401: 398: 397: 394: 391: 389: 386: 383: 381: 378: 375: 373: 370: 367: 365: 362: 360: 357: 355: 352: 349: 347: 344: 341: 340: 337: 334: 331: 329: 326: 324: 321: 318: 316: 313: 310: 308: 305: 303: 300: 298: 295: 292: 290: 287: 284: 283: 280: 277: 274: 272: 269: 267: 264: 262: 259: 256: 254: 251: 249: 246: 243: 241: 238: 236: 233: 230: 229: 227: 222: 219: 199: 196: 128: 125: 58:canonical form 32:linear algebra 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3711: 3700: 3697: 3695: 3692: 3691: 3689: 3680: 3677: 3675: 3672: 3670: 3668: 3663: 3662: 3658: 3654: 3651: 3650: 3646: 3638: 3632: 3629: 3626: 3622: 3616: 3613: 3606: 3605:0-471-36857-1 3602: 3598: 3594: 3593: 3589: 3585: 3582: 3581: 3577: 3575: 3571: 3567: 3541: 3532: 3524: 3521: 3518: 3514: 3505: 3502: 3499: 3495: 3491: 3488: 3485: 3479: 3470: 3462: 3459: 3456: 3452: 3445: 3442: 3439: 3433: 3424: 3416: 3412: 3405: 3396: 3387: 3381: 3373: 3370: 3367: 3363: 3359: 3356: 3353: 3344: 3335: 3329: 3323: 3320: 3314: 3305: 3299: 3293: 3287: 3279: 3276: 3273: 3269: 3265: 3262: 3259: 3253: 3245: 3241: 3237: 3231: 3225: 3222: 3219: 3212: 3211: 3210: 3207: 3200: 3196: 3190: 3185: 3179: 3173: 3169: 3163: 3159: 3155: 3149: 3143: 3138: 3116: 3110: 3105: 3100: 3095: 3088: 3083: 3078: 3073: 3066: 3061: 3056: 3051: 3044: 3039: 3034: 3029: 3023: 3013: 3012: 3011: 3009: 3005: 3001: 2997: 2993: 2989: 2983: 2978: 2974: 2970: 2966: 2962: 2958: 2954: 2950: 2946: 2941: 2939: 2935: 2931: 2930:diagonal form 2927: 2923: 2919: 2911: 2909: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2877: 2873: 2869: 2866: 2861: 2857: 2852: 2850: 2844: 2840: 2835: 2831: 2828: 2824: 2820: 2816: 2811: 2808: 2804: 2798: 2794: 2790: 2786: 2782: 2778: 2774: 2770: 2766: 2762: 2758: 2755: 2751: 2747: 2743: 2735: 2731: 2724: 2717: 2714: 2713: 2712: 2710: 2706: 2702: 2698: 2693: 2689: 2681: 2677: 2673: 2666: 2662: 2658: 2655: 2654: 2653: 2651: 2647: 2643: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2611: 2607: 2605: 2601: 2596: 2592: 2589: 2585: 2581: 2577: 2573: 2570: 2567: 2564:and a finite- 2563: 2555: 2553: 2540: 2535: 2532: 2528: 2524: 2521: 2518: 2515: 2488: 2482: 2479: 2474: 2469: 2466: 2461: 2456: 2451: 2446: 2443: 2438: 2435: 2428: 2425: 2420: 2415: 2410: 2407: 2402: 2397: 2392: 2387: 2380: 2375: 2372: 2367: 2362: 2357: 2352: 2347: 2342: 2335: 2330: 2327: 2322: 2317: 2312: 2307: 2302: 2299: 2294: 2291: 2284: 2279: 2274: 2271: 2266: 2261: 2258: 2253: 2248: 2243: 2236: 2233: 2228: 2225: 2220: 2217: 2212: 2209: 2204: 2201: 2196: 2191: 2186: 2179: 2176: 2171: 2168: 2163: 2160: 2155: 2152: 2147: 2144: 2139: 2134: 2129: 2122: 2117: 2114: 2109: 2104: 2099: 2096: 2091: 2086: 2081: 2075: 2070: 2067: 2059: 2058: 2057: 2043: 2040: 2037: 2034: 2031: 2028: 2025: 2022: 2019: 1994: 1990: 1981: 1977: 1956: 1953: 1950: 1926: 1921: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1880: 1873: 1868: 1863: 1858: 1853: 1848: 1843: 1838: 1831: 1826: 1821: 1816: 1811: 1806: 1801: 1796: 1789: 1786: 1781: 1776: 1771: 1766: 1761: 1756: 1751: 1744: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1706: 1699: 1696: 1691: 1686: 1681: 1676: 1671: 1666: 1661: 1654: 1649: 1644: 1639: 1634: 1629: 1624: 1619: 1612: 1607: 1602: 1597: 1592: 1587: 1582: 1577: 1571: 1566: 1563: 1555: 1554: 1553: 1551: 1547: 1531: 1528: 1525: 1522: 1519: 1514: 1510: 1506: 1503: 1498: 1494: 1490: 1487: 1482: 1478: 1474: 1471: 1466: 1462: 1458: 1455: 1435: 1432: 1429: 1426: 1421: 1417: 1396: 1376: 1373: 1370: 1367: 1362: 1358: 1337: 1317: 1314: 1311: 1308: 1303: 1299: 1278: 1258: 1255: 1252: 1249: 1246: 1216: 1213: 1210: 1207: 1204: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1162: 1159: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1075: 1072: 1052: 1032: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 983: 979: 970: 966: 943: 939: 918: 915: 912: 909: 904: 900: 879: 876: 873: 870: 867: 862: 858: 854: 851: 846: 842: 838: 835: 830: 826: 822: 819: 814: 810: 806: 803: 798: 794: 790: 787: 782: 778: 774: 769: 765: 761: 758: 750: 734: 731: 728: 725: 722: 717: 713: 709: 706: 701: 697: 693: 690: 685: 681: 677: 674: 669: 665: 661: 658: 651: 647: 628: 623: 617: 612: 607: 602: 597: 592: 587: 582: 575: 570: 565: 560: 555: 550: 545: 540: 533: 528: 523: 518: 515: 510: 505: 500: 495: 488: 483: 478: 473: 468: 463: 458: 453: 446: 443: 438: 433: 428: 423: 420: 415: 412: 407: 402: 399: 392: 387: 384: 379: 376: 371: 368: 363: 358: 353: 350: 345: 342: 335: 332: 327: 322: 319: 314: 311: 306: 301: 296: 293: 288: 285: 278: 275: 270: 265: 260: 257: 252: 247: 244: 239: 234: 231: 225: 220: 217: 209: 208: 207: 205: 197: 195: 193: 189: 185: 181: 177: 171: 169: 164: 160: 155: 149: 147: 143: 138: 134: 126: 124: 122: 118: 114: 110: 105: 103: 99: 95: 91: 87: 83: 79: 75: 71: 67: 63: 59: 55: 52: 48: 45: 44:square matrix 41: 37: 33: 19: 3666: 3636: 3631: 3620: 3615: 3596: 3569: 3565: 3562: 3205: 3198: 3194: 3188: 3184:Jordan block 3177: 3171: 3167: 3161: 3157: 3153: 3147: 3141: 3136: 3134: 3010:of the form 3008:block matrix 3003: 2995: 2991: 2987: 2972: 2968: 2964: 2960: 2952: 2948: 2944: 2942: 2933: 2925: 2921: 2917: 2915: 2905: 2901: 2893: 2889: 2885: 2881: 2875: 2871: 2867: 2859: 2855: 2853: 2842: 2838: 2833: 2829: 2822: 2812: 2806: 2802: 2796: 2792: 2788: 2784: 2776: 2772: 2768: 2763:: Apply the 2760: 2759: 2753: 2749: 2745: 2741: 2739: 2733: 2729: 2722: 2715: 2708: 2696: 2691: 2687: 2685: 2679: 2675: 2671: 2664: 2660: 2656: 2649: 2645: 2641: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2608: 2603: 2594: 2590: 2583: 2579: 2575: 2571: 2569:vector space 2561: 2559: 2507: 1942: 1549: 1545: 1389:must divide 645: 644: 203: 201: 191: 187: 183: 172: 167: 158: 153: 150: 145: 141: 136: 132: 130: 120: 112: 108: 106: 97: 89: 85: 77: 73: 69: 65: 53: 46: 39: 35: 29: 2980: [ 2957:eigenvalues 2781:free module 2757:is unique. 2648:) admits a 2566:dimensional 3688:Categories 3659:Algorithms 3590:References 2686:where the 127:Motivation 96:the field 3522:− 3503:− 3489:… 3460:− 3443:… 3371:− 3357:… 3277:− 3263:… 3101:⋯ 3089:⋮ 3084:⋱ 3079:⋱ 3074:⋮ 3062:⋯ 3040:⋯ 2825:, so the 2644:given by 2533:− 2480:− 2467:− 2444:− 2436:− 2426:− 2408:− 2373:− 2328:− 2300:− 2292:− 2272:− 2259:− 2234:− 2226:− 2218:− 2210:− 2202:− 2177:− 2169:− 2161:− 2153:− 2145:− 2115:− 2097:− 2038:… 1787:− 1742:− 1697:− 1488:− 1472:− 1456:μ 1433:− 1427:− 1397:μ 1374:− 1368:− 1338:μ 1315:− 1309:− 1250:⋅ 1225:⊤ 1214:− 1193:− 1138:⊤ 1127:− 1106:− 1053:μ 1027:… 916:− 910:− 877:− 868:− 852:− 788:− 775:− 759:χ 691:− 675:− 659:μ 516:− 444:− 421:− 413:− 400:− 385:− 377:− 369:− 351:− 343:− 333:− 320:− 312:− 294:− 286:− 276:− 258:− 245:− 232:− 94:extending 3578:See also 2969:distinct 2744:divides 2508:one has 1330:. Since 182:of (the 62:matrices 2628:. Then 2610:Theorem 198:Example 166:vector 82:similar 3603:  3568:= deg( 3563:where 3449:  3409:  3297:  3145:, and 3135:where 2728:| … | 2670:⊕ … ⊕ 2638:module 2620:, and 2612:: Let 2598:whose 34:, the 3665:An O( 3625:p.423 2984:] 2963:, or 2898:basis 2705:units 2574:over 56:is a 51:field 42:of a 3601:ISBN 3175:and 2932:(if 2904:and 2012:for 1448:and 1152:and 1001:for 648:has 144:and 135:and 80:is 60:for 38:or 3180:= 1 2947:as 2884:of 2767:to 2707:in 1544:of 751:is 84:to 30:In 3690:: 3574:. 3170:= 3160:− 3156:= 2982:fr 2721:| 2695:∈ 2659:≅ 2606:. 2582:∈ 2229:11 823:10 206:: 104:. 3667:n 3607:. 3572:) 3570:P 3566:d 3548:) 3545:) 3542:v 3539:( 3536:) 3533:A 3530:( 3525:1 3519:k 3515:P 3511:( 3506:1 3500:d 3496:A 3492:, 3486:, 3483:) 3480:v 3477:( 3474:) 3471:A 3468:( 3463:1 3457:k 3453:P 3446:, 3440:, 3437:) 3434:v 3431:( 3428:) 3425:A 3422:( 3417:2 3413:P 3406:, 3403:) 3400:) 3397:v 3394:( 3391:) 3388:A 3385:( 3382:P 3379:( 3374:1 3368:d 3364:A 3360:, 3354:, 3351:) 3348:) 3345:v 3342:( 3339:) 3336:A 3333:( 3330:P 3327:( 3324:A 3321:, 3318:) 3315:v 3312:( 3309:) 3306:A 3303:( 3300:P 3294:, 3291:) 3288:v 3285:( 3280:1 3274:d 3270:A 3266:, 3260:, 3257:) 3254:v 3251:( 3246:2 3242:A 3238:, 3235:) 3232:v 3229:( 3226:A 3223:, 3220:v 3206:P 3201:) 3199:A 3197:( 3195:P 3189:v 3178:U 3172:λ 3168:C 3162:λ 3158:x 3154:P 3148:U 3142:P 3137:C 3117:) 3111:C 3106:U 3096:0 3067:0 3057:C 3052:U 3045:0 3035:0 3030:C 3024:( 2996:P 2992:F 2988:P 2973:P 2953:F 2949:A 2945:F 2934:A 2926:A 2922:F 2918:F 2906:B 2902:A 2894:A 2890:k 2886:A 2876:i 2872:f 2868:C 2860:i 2856:f 2843:k 2839:f 2834:i 2830:f 2823:F 2807:i 2803:f 2797:i 2793:f 2789:V 2785:F 2777:F 2773:F 2769:V 2754:i 2750:f 2746:b 2742:a 2734:k 2730:f 2726:2 2723:f 2719:1 2716:f 2709:F 2697:F 2692:i 2688:f 2680:k 2676:f 2674:/ 2672:F 2668:1 2665:f 2663:/ 2661:F 2657:V 2650:F 2646:A 2642:X 2636:- 2634:F 2630:V 2626:F 2622:A 2618:F 2614:V 2604:P 2595:P 2591:C 2584:F 2580:P 2576:F 2572:V 2562:F 2541:. 2536:1 2529:P 2525:C 2522:P 2519:= 2516:A 2504:, 2489:) 2483:2 2475:4 2470:1 2462:1 2457:0 2452:0 2447:2 2439:1 2429:6 2421:2 2416:0 2411:1 2403:1 2398:0 2393:1 2388:2 2381:1 2376:1 2368:0 2363:0 2358:0 2353:0 2348:1 2343:0 2336:4 2331:1 2323:1 2318:0 2313:0 2308:0 2303:1 2295:1 2285:0 2280:0 2275:2 2267:3 2262:1 2254:0 2249:9 2244:0 2237:6 2221:2 2213:5 2205:2 2197:0 2192:5 2187:8 2180:5 2172:3 2164:2 2156:1 2148:1 2140:0 2135:4 2130:4 2123:0 2118:4 2110:0 2105:0 2100:1 2092:1 2087:5 2082:3 2076:( 2071:= 2068:P 2044:5 2041:, 2035:, 2032:1 2029:, 2026:0 2023:= 2020:k 2000:) 1995:1 1991:e 1987:( 1982:k 1978:A 1957:w 1954:, 1951:v 1927:. 1922:) 1916:0 1911:1 1906:0 1901:0 1896:0 1891:0 1886:0 1881:0 1874:4 1869:0 1864:1 1859:0 1854:0 1849:0 1844:0 1839:0 1832:2 1827:0 1822:0 1817:1 1812:0 1807:0 1802:0 1797:0 1790:4 1782:0 1777:0 1772:0 1767:1 1762:0 1757:0 1752:0 1745:4 1737:0 1732:0 1727:0 1722:0 1717:1 1712:0 1707:0 1700:1 1692:0 1687:0 1682:0 1677:0 1672:0 1667:0 1662:0 1655:0 1650:0 1645:0 1640:0 1635:0 1630:0 1625:1 1620:1 1613:0 1608:0 1603:0 1598:0 1593:0 1588:0 1583:1 1578:0 1572:( 1567:= 1564:C 1550:A 1546:A 1532:1 1529:+ 1526:X 1523:4 1520:+ 1515:2 1511:X 1507:4 1504:+ 1499:3 1495:X 1491:2 1483:4 1479:X 1475:4 1467:6 1463:X 1459:= 1436:1 1430:X 1422:2 1418:X 1377:1 1371:X 1363:2 1359:X 1318:1 1312:X 1304:2 1300:X 1279:v 1259:w 1256:= 1253:v 1247:A 1221:) 1217:2 1211:, 1208:1 1205:, 1202:1 1199:, 1196:1 1190:, 1187:9 1184:, 1181:5 1178:, 1175:4 1172:, 1169:5 1166:( 1163:= 1160:w 1134:) 1130:1 1124:, 1121:2 1118:, 1115:0 1112:, 1109:1 1103:, 1100:0 1097:, 1094:8 1091:, 1088:4 1085:, 1082:3 1079:( 1076:= 1073:v 1033:5 1030:, 1024:, 1021:1 1018:, 1015:0 1012:= 1009:k 989:) 984:1 980:e 976:( 971:k 967:A 944:1 940:e 919:1 913:X 905:2 901:X 880:1 874:X 871:5 863:2 859:X 855:7 847:3 843:X 839:2 836:+ 831:4 827:X 820:+ 815:5 811:X 807:2 804:+ 799:6 795:X 791:5 783:7 779:X 770:8 766:X 762:= 735:1 732:+ 729:X 726:4 723:+ 718:2 714:X 710:4 707:+ 702:3 698:X 694:2 686:4 682:X 678:4 670:6 666:X 662:= 646:A 629:. 624:) 618:0 613:1 608:0 603:4 598:0 593:0 588:0 583:0 576:0 571:0 566:0 561:2 556:0 551:0 546:0 541:1 534:0 529:0 524:0 519:1 511:0 506:0 501:0 496:0 489:1 484:0 479:0 474:0 469:0 464:0 459:0 454:0 447:3 439:3 434:2 429:5 424:1 416:3 408:8 403:1 393:1 388:2 380:4 372:8 364:3 359:4 354:6 346:2 336:1 328:0 323:1 315:2 307:1 302:1 297:1 289:1 279:2 271:0 266:0 261:2 253:0 248:1 240:3 235:1 226:( 221:= 218:A 204:Q 192:A 188:A 184:K 168:v 159:v 154:v 146:B 142:A 137:B 133:A 121:F 113:F 98:F 90:A 86:A 78:B 74:A 70:A 66:F 54:F 47:A 20:)

Index

Rational canonical form
linear algebra
square matrix
field
canonical form
matrices
similar
extending
Ferdinand Georg Frobenius
factorization of polynomials
companion matrix
Chinese remainder theorem
invariant factors
minimal polynomial
characteristic polynomial
dimensional
vector space
companion matrix
characteristic polynomial
module
monic polynomials
units
structure theorem for finitely generated modules over a principal ideal domain
free module
elementary divisors
Jordan normal form
invariant factors
Cayley-Hamilton theorem
companion matrix
basis

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.