Knowledge (XXG)

Rayleigh wave

Source 📝

81: 903: 223: 73: 887:, respectively, and are termed body waves. Rayleigh waves are generated by the interaction of P- and S- waves at the surface of the earth, and travel with a velocity that is lower than the P-, S-, and Love wave velocities. Rayleigh waves emanating outward from the epicenter of an earthquake travel along the surface of the earth at about 10 times the 894:
Due to their higher speed, the P- and S-waves generated by an earthquake arrive before the surface waves. However, the particle motion of surface waves is larger than that of body waves, so the surface waves tend to cause more damage. In the case of Rayleigh waves, the motion is of a rolling nature,
970:
of Rayleigh waves and on the solution of an inverse problem on the basis of seismic data collected on the ground surface using active sources (falling weights, hammers or small explosions, for example) or by recording microtremors. Rayleigh ground waves are important also for environmental noise and
850:
of pressure, temperature, humidity, etc. Operation of SAW devices is based on the transformation of the initial electric signal into a surface wave that, after achieving the required changes to the spectrum of the initial electric signal as a result of its interaction with different types of surface
816:
Rayleigh waves are widely used for materials characterization, to discover the mechanical and structural properties of the object being tested – like the presence of cracking, and the related shear modulus. This is in common with other types of surface waves. The Rayleigh waves used for this purpose
202:
is the radial distance. Surface waves therefore decay more slowly with distance than do bulk waves, which spread out in three dimensions from a point source. This slow decay is one reason why they are of particular interest to seismologists. Rayleigh waves can circle the globe multiple times after a
147:
Rayleigh waves have a speed slightly less than shear waves by a factor dependent on the elastic constants of the material. The typical speed of Rayleigh waves in metals is of the order of 2–5 km/s, and the typical Rayleigh speed in the ground is of the order of 50–300 m/s for shallow waves
92:
that travel near the surface of solids. Rayleigh waves include both longitudinal and transverse motions that decrease exponentially in amplitude as distance from the surface increases. There is a phase difference between these component motions.
1024:
may use vocalizations to generate Rayleigh waves. Since Rayleigh waves decay slowly, they should be detectable over long distances. Note that these Rayleigh waves have a much higher frequency than Rayleigh waves generated by earthquakes.
824:
They are used at different length scales because they are easily generated and detected on the free surface of solid objects. Since they are confined in the vicinity of the free surface within a depth (~ the wavelength) linked to the
203:
large earthquake and still be measurably large. There is a difference in the behavior (Rayleigh wave velocity, displacements, trajectories of the particle motion, stresses) of Rayleigh surface waves with positive and negative
376: 837:
Rayleigh waves propagating at high ultrasonic frequencies (10–1000 MHz) are used widely in different electronic devices. In addition to Rayleigh waves, some other types of surface acoustic waves (SAW), e.g.
851:
inhomogeneity, is transformed back into a modified electric signal. The transformation of the initial electric energy into mechanical energy (in the form of SAW) and back is usually accomplished via the use of
796:. The displacement of long wavelength waves penetrates more deeply into the Earth than short wavelength waves. Since the speed of waves in the Earth increases with increasing depth, the longer wavelength ( 732: 148:
less than 100-m depth and 1.5–4 km/s at depths greater than 1 km. Since Rayleigh waves are confined near the surface, their in-plane amplitude when generated by a point source decays only as
1020:, which are in the joints, although people do not seem to consciously respond to the signals. Some animals seem to use Rayleigh waves to communicate. In particular, some biologists theorize that 437: 637: 530: 485: 764:
The elastic constants often change with depth, due to the changing properties of the material. This means that the velocity of a Rayleigh wave in practice becomes dependent on the
566: 180: 108:
in planes normal to the surface and parallel to the direction of propagation – the major axis of the ellipse is vertical. At the surface and at shallow depths this motion is
596: 663: 253: 759: 273: 1466:
Viktorov, I.A. (2013) "Rayleigh and Lamb Waves: Physical Theory and Applications", Springer; Reprint of the original 1st 1967 edition by Plenum Press, New York.
210:
In seismology, Rayleigh waves (called "ground roll") are the most important type of surface wave, and can be produced (apart from earthquakes), for example, by
200: 1394:
O’Connell-Rodwell, C.E.; Arnason, B.T.; Hart, L.A. (14 September 2000). "Seismic properties of Asian elephant (Elephas maximus) vocalizations and locomotion".
84:
Comparison of the Rayleigh wave speed with shear and longitudinal wave speeds for an isotropic elastic material. The speeds are shown in dimensionless units.
1032:, some people have speculated that Rayleigh waves served as a warning to animals to seek higher ground, allowing them to escape the more slowly traveling 112:, that is the in-plane motion of a particle is counterclockwise when the wave travels from left to right. At greater depths the particle motion becomes 808:
recorded at distant earthquake recording stations. It is also possible to observe Rayleigh wave dispersion in thin films or multi-layered structures.
1525:
Sugawara, Y.; Wright, O. B.; Matsuda, O.; Takigahira, M.; Tanaka, Y.; Tamura, S.; Gusev, V. E. (18 April 2002). "Watching Ripples on Crystals".
780:
shape. Rayleigh waves on ideal, homogeneous and flat elastic solids show no dispersion, as stated above. However, if a solid or structure has a
1156:
Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S. (2014). "Rayleigh and Love surface waves in isotropic media with negative Poisson's ratio".
1519: 1378: 1318: 1266: 1122: 281: 120:
changes as the depth into the material increases. The depth of significant displacement in the solid is approximately equal to the acoustic
934:
Local geologic structure can serve to focus or defocus Rayleigh waves, leading to significant differences in shaking over short distances.
788:
that varies with depth, Rayleigh waves become dispersive. One example is Rayleigh waves on the Earth's surface: those waves with a higher
1471: 1353: 1291: 1504: 1486: 792:
travel more slowly than those with a lower frequency. This occurs because a Rayleigh wave of lower frequency has a relatively long
668: 876:(focus). However, large earthquakes may generate Rayleigh waves that travel around the Earth several times before dissipating. 1438: 37:
that travel along the surface of solids. They can be produced in materials in many ways, such as by a localized impact or by
1036:. At this time, evidence for this is mostly anecdotal. Other animal early warning systems may rely on an ability to sense 1029: 384: 601: 490: 117: 442: 80: 959: 572:
giving rise to Rayleigh waves are dispersionless. An interesting special case is the Poisson solid, for which
1492: 45: 41: 1611: 569: 535: 1084: 34: 1534: 1403: 1208: 1165: 151: 899:. The intensity of Rayleigh wave shaking at a particular location is dependent on several factors: 1606: 967: 773: 575: 1201:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
1601: 1232: 1181: 1017: 896: 872:
of such waves generated by an earthquake generally decreases exponentially with the depth of the
642: 137: 855:
materials for both generation and reception of Rayleigh waves as well as for their propagation.
829:
of the wave, different frequencies can be used for characterization at different length scales.
233: 204: 1568: 1560: 1515: 1500: 1482: 1467: 1419: 1374: 1349: 1314: 1308: 1287: 1262: 1224: 1118: 1112: 1054: 1049: 972: 843: 238: 1550: 1542: 1411: 1341: 1216: 1173: 1144: 38: 737: 1254: 924: 842:, are also used for this purpose. Examples of electronic devices using Rayleigh waves are 258: 1538: 1407: 1212: 1169: 902: 1616: 1514:
Series: CISM International Centre for Mechanical Sciences, Number 481, Springer, Wien,
888: 801: 785: 222: 185: 1595: 1199:
Longuet-Higgins, M. S. (27 September 1950). "A Theory of the Origin of Microseisms".
1185: 1146:"On Waves Propagated along the Plane Surface of an ElasticSolid", Lord Rayleigh, 1885 997: 852: 797: 214:, by explosions, by railway trains and ground vehicles, or by a sledgehammer impact. 97: 1236: 89: 49: 1546: 1000:(< 20 Hz) Rayleigh waves are inaudible, yet they can be detected by many 1586: 943: 141: 57: 1512:
Surface Waves in Geomechanics: Direct and Inverse Modelling for Soils and Rocks
1250: 1177: 1079: 1037: 988: 955: 947: 873: 839: 818: 805: 793: 777: 765: 227: 121: 61: 17: 1564: 1228: 1059: 869: 826: 789: 769: 211: 133: 129: 125: 101: 1572: 1423: 1220: 72: 971:
vibration control since they make a major contribution to traffic-induced
1021: 1033: 992: 847: 781: 371:{\displaystyle \zeta ^{3}-8\zeta ^{2}+8\zeta (3-2\eta )-16(1-\eta )=0,} 105: 27:
Type of surface acoustic wave which travels along the surface of solids
1415: 1555: 1074: 1069: 1064: 1013: 1009: 1001: 884: 880: 1016:. Humans should be able to detect such Rayleigh waves through their 124:. Rayleigh waves are distinct from other types of surface or guided 1369:
Biryukov, S.V.; Gulyaev, Y.V.; Krylov, V.V.; Plessky, V.P. (1995).
1111:
Telford, William Murray; Geldart, L. P.; Robert E. Sheriff (1990).
598:, since this gives a frequency-independent phase velocity equal to 976: 951: 901: 221: 79: 71: 53: 275:, Rayleigh waves have a speed given by solutions to the equation 1005: 954:'s interior. In intermediate ranges, Rayleigh waves are used in 963: 1310:
Review of progress in quantitative nondestructive evaluation
639:. For linear elastic materials with positive Poisson ratio ( 136:, both being types of guided waves supported by a layer, or 727:{\displaystyle c_{R}=c_{S}{\frac {0.862+1.14\nu }{1+\nu }}} 226:
Dispersion of Rayleigh waves in a thin gold film on glass.
104:
solids these waves cause the surface particles to move in
96:
The existence of Rayleigh waves was predicted in 1885 by
1261:(3rd ed.). Oxford, England: Butterworth Heinemann. 966:
deposits. These applications are based on the geometric
879:
In seismology longitudinal and shear waves are known as
804:) waves. Rayleigh waves thus often appear spread out on 800:) waves can travel faster than the shorter wavelength ( 1307:
Thompson, Donald O.; Chimenti, Dale E. (1 June 1997).
64:, Rayleigh–Lamb waves, or generalized Rayleigh waves. 48:
for detecting defects. Rayleigh waves are part of the
740: 671: 645: 604: 578: 538: 493: 445: 387: 284: 261: 241: 188: 154: 232:
In isotropic, linear elastic materials described by
568:. Since this equation has no inherent scale, the 116:. In addition, the motion amplitude decays and the 753: 726: 665:), the Rayleigh wave speed can be approximated as 657: 631: 590: 560: 524: 479: 432:{\displaystyle \zeta =\omega ^{2}/k^{2}\beta ^{2}} 431: 370: 267: 247: 194: 174: 891:in air (0.340 km/s), that is ~3 km/s. 776:. Waves affected by dispersion have a different 632:{\displaystyle \omega /k=\beta {\sqrt {0.8453}}} 60:. When guided in layers they are referred to as 1533:(18). American Physical Society (APS): 185504. 525:{\displaystyle \rho \alpha ^{2}=\lambda +2\mu } 1499:. Cambridge, UK: Cambridge University Press. 942:Low frequency Rayleigh waves generated during 868:Because Rayleigh waves are surface waves, the 1371:Surface Acoustic Waves in Inhomogeneous Media 1106: 1104: 1102: 1100: 8: 480:{\displaystyle \eta =\beta ^{2}/\alpha ^{2}} 1117:. Cambridge University Press. p. 149. 1286:. Cambridge University Press. p. 83. 930:The rupture directivity of the earthquake. 1554: 1437:Kenneally, Christine (30 December 2004). 745: 739: 695: 689: 676: 670: 644: 622: 608: 603: 577: 546: 537: 501: 492: 471: 462: 456: 444: 423: 413: 404: 398: 386: 305: 289: 283: 260: 240: 187: 165: 160: 155: 153: 1510:Lai, C.G., Wilmanski, K. (Eds.) (2005). 1096: 993:Tsunami § Possible animal reaction 1481:(2nd ed.). University Science Books. 7: 1477:Aki, K. and Richards, P. G. (2002). 920:The geologic structure of the crust. 561:{\displaystyle \rho \beta ^{2}=\mu } 1587:Real-time imaging of Rayleigh waves 975:and the associated structure-borne 76:Particle motion of a Rayleigh wave. 25: 1040:waves traveling through the air. 989:Infrasound § Animal reaction 100:, after whom they were named. In 1207:(857). The Royal Society: 1–35. 914:The distance to the earthquake. 772:), a phenomenon referred to as 175:{\displaystyle {1}/{\sqrt {r}}} 356: 344: 335: 320: 1: 1547:10.1103/physrevlett.88.185504 591:{\displaystyle \lambda =\mu } 88:Rayleigh waves are a type of 44:, and are frequently used in 1030:2004 Indian Ocean earthquake 962:for the characterisation of 917:The depth of the earthquake. 761:is the shear-wave velocity. 911:The size of the earthquake. 864:Generation from earthquakes 846:, resonators, oscillators, 658:{\displaystyle \nu >0.3} 144:, that travel in the bulk. 1633: 1284:Dynamic Fracture Mechanics 986: 812:In non-destructive testing 1313:. Springer. p. 161. 1178:10.3103/S0025654414040074 52:that are produced on the 983:Possible animal reaction 960:geotechnical engineering 248:{\displaystyle \lambda } 1527:Physical Review Letters 1479:Quantitative Seismology 1439:"Surviving the Tsunami" 906:Rayleigh wave direction 46:non-destructive testing 1346:Acoustic Surface Waves 1221:10.1098/rsta.1950.0012 907: 755: 728: 659: 633: 592: 570:boundary value problem 562: 526: 481: 433: 372: 269: 249: 229: 196: 176: 85: 77: 1282:L. B. Freund (1998). 1085:Surface acoustic wave 987:Further information: 905: 833:In electronic devices 756: 754:{\displaystyle c_{S}} 729: 660: 634: 593: 563: 527: 482: 434: 373: 270: 250: 225: 197: 177: 83: 75: 35:surface acoustic wave 1259:Theory of Elasticity 950:to characterise the 738: 669: 643: 602: 576: 536: 491: 443: 385: 282: 268:{\displaystyle \mu } 259: 239: 218:Speed and dispersion 186: 152: 1539:2002PhRvL..88r5504S 1408:2000ASAJ..108.3066O 1213:1950RSPTA.243....1L 1170:2014MeSol..49..422G 1158:Mechanics of Solids 1018:Pacinian corpuscles 1396:J. Acoust. Soc. Am 1114:Applied geophysics 927:of the earthquake. 908: 897:ocean surface wave 751: 724: 655: 629: 588: 558: 522: 477: 429: 368: 265: 245: 230: 192: 172: 86: 78: 1520:978-3-211-27740-9 1416:10.1121/1.1323460 1380:978-3-642-57767-3 1320:978-0-306-45597-1 1268:978-0-7506-2633-0 1124:978-0-521-33938-4 1055:Longitudinal wave 1050:Linear elasticity 973:ground vibrations 821:frequency range. 722: 627: 195:{\displaystyle r} 170: 16:(Redirected from 1624: 1576: 1558: 1493:Fowler, C. M. R. 1454: 1453: 1451: 1449: 1434: 1428: 1427: 1402:(6): 3066–3072. 1391: 1385: 1384: 1366: 1360: 1359: 1338: 1332: 1331: 1329: 1327: 1304: 1298: 1297: 1279: 1273: 1272: 1247: 1241: 1240: 1196: 1190: 1189: 1153: 1147: 1142: 1136: 1135: 1133: 1131: 1108: 760: 758: 757: 752: 750: 749: 733: 731: 730: 725: 723: 721: 710: 696: 694: 693: 681: 680: 664: 662: 661: 656: 638: 636: 635: 630: 628: 623: 612: 597: 595: 594: 589: 567: 565: 564: 559: 551: 550: 531: 529: 528: 523: 506: 505: 486: 484: 483: 478: 476: 475: 466: 461: 460: 438: 436: 435: 430: 428: 427: 418: 417: 408: 403: 402: 377: 375: 374: 369: 310: 309: 294: 293: 274: 272: 271: 266: 254: 252: 251: 246: 201: 199: 198: 193: 181: 179: 178: 173: 171: 166: 164: 159: 21: 1632: 1631: 1627: 1626: 1625: 1623: 1622: 1621: 1592: 1591: 1583: 1524: 1497:The Solid Earth 1463: 1461:Further reading 1458: 1457: 1447: 1445: 1436: 1435: 1431: 1393: 1392: 1388: 1381: 1368: 1367: 1363: 1356: 1340: 1339: 1335: 1325: 1323: 1321: 1306: 1305: 1301: 1294: 1281: 1280: 1276: 1269: 1255:Lifshitz, E. M. 1249: 1248: 1244: 1198: 1197: 1193: 1155: 1154: 1150: 1143: 1139: 1129: 1127: 1125: 1110: 1109: 1098: 1093: 1046: 995: 985: 940: 925:focal mechanism 866: 861: 835: 814: 768:(and therefore 741: 736: 735: 711: 697: 685: 672: 667: 666: 641: 640: 600: 599: 574: 573: 542: 534: 533: 497: 489: 488: 467: 452: 441: 440: 419: 409: 394: 383: 382: 301: 285: 280: 279: 257: 256: 237: 236: 234:Lamé parameters 220: 205:Poisson's ratio 184: 183: 150: 149: 70: 68:Characteristics 28: 23: 22: 15: 12: 11: 5: 1630: 1628: 1620: 1619: 1614: 1609: 1604: 1594: 1593: 1590: 1589: 1582: 1581:External links 1579: 1578: 1577: 1522: 1508: 1490: 1475: 1472:978-1489956835 1462: 1459: 1456: 1455: 1429: 1386: 1379: 1361: 1355:978-3540085751 1354: 1344:, ed. (1978). 1333: 1319: 1299: 1293:978-0521629225 1292: 1274: 1267: 1242: 1191: 1164:(4): 422–434. 1148: 1137: 1123: 1095: 1094: 1092: 1089: 1088: 1087: 1082: 1077: 1072: 1067: 1062: 1057: 1052: 1045: 1042: 984: 981: 979:in buildings. 939: 936: 932: 931: 928: 921: 918: 915: 912: 895:similar to an 889:speed of sound 865: 862: 860: 857: 834: 831: 813: 810: 802:high frequency 786:sound velocity 748: 744: 720: 717: 714: 709: 706: 703: 700: 692: 688: 684: 679: 675: 654: 651: 648: 626: 621: 618: 615: 611: 607: 587: 584: 581: 557: 554: 549: 545: 541: 521: 518: 515: 512: 509: 504: 500: 496: 474: 470: 465: 459: 455: 451: 448: 426: 422: 416: 412: 407: 401: 397: 393: 390: 379: 378: 367: 364: 361: 358: 355: 352: 349: 346: 343: 340: 337: 334: 331: 328: 325: 322: 319: 316: 313: 308: 304: 300: 297: 292: 288: 264: 244: 219: 216: 191: 169: 163: 158: 128:waves such as 69: 66: 39:piezo-electric 33:are a type of 31:Rayleigh waves 26: 24: 18:Rayleigh waves 14: 13: 10: 9: 6: 4: 3: 2: 1629: 1618: 1615: 1613: 1612:Surface waves 1610: 1608: 1605: 1603: 1600: 1599: 1597: 1588: 1585: 1584: 1580: 1574: 1570: 1566: 1562: 1557: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1523: 1521: 1517: 1513: 1509: 1506: 1505:0-521-38590-3 1502: 1498: 1494: 1491: 1488: 1487:0-935702-96-2 1484: 1480: 1476: 1473: 1469: 1465: 1464: 1460: 1444: 1443:www.slate.com 1440: 1433: 1430: 1425: 1421: 1417: 1413: 1409: 1405: 1401: 1397: 1390: 1387: 1382: 1376: 1372: 1365: 1362: 1357: 1351: 1347: 1343: 1337: 1334: 1322: 1316: 1312: 1311: 1303: 1300: 1295: 1289: 1285: 1278: 1275: 1270: 1264: 1260: 1256: 1252: 1246: 1243: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1202: 1195: 1192: 1187: 1183: 1179: 1175: 1171: 1167: 1163: 1159: 1152: 1149: 1145: 1141: 1138: 1126: 1120: 1116: 1115: 1107: 1105: 1103: 1101: 1097: 1090: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1047: 1043: 1041: 1039: 1035: 1031: 1026: 1023: 1019: 1015: 1011: 1007: 1003: 999: 998:Low frequency 994: 990: 982: 980: 978: 974: 969: 965: 961: 957: 953: 949: 945: 938:In seismology 937: 935: 929: 926: 922: 919: 916: 913: 910: 909: 904: 900: 898: 892: 890: 886: 882: 877: 875: 871: 863: 859:In geophysics 858: 856: 854: 853:piezoelectric 849: 845: 841: 832: 830: 828: 822: 820: 811: 809: 807: 803: 799: 798:low frequency 795: 791: 787: 783: 779: 775: 771: 767: 762: 746: 742: 718: 715: 712: 707: 704: 701: 698: 690: 686: 682: 677: 673: 652: 649: 646: 624: 619: 616: 613: 609: 605: 585: 582: 579: 571: 555: 552: 547: 543: 539: 519: 516: 513: 510: 507: 502: 498: 494: 472: 468: 463: 457: 453: 449: 446: 424: 420: 414: 410: 405: 399: 395: 391: 388: 365: 362: 359: 353: 350: 347: 341: 338: 332: 329: 326: 323: 317: 314: 311: 306: 302: 298: 295: 290: 286: 278: 277: 276: 262: 242: 235: 228: 224: 217: 215: 213: 208: 206: 189: 167: 161: 156: 145: 143: 139: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 98:Lord Rayleigh 94: 91: 82: 74: 67: 65: 63: 59: 55: 51: 50:seismic waves 47: 43: 40: 36: 32: 19: 1530: 1526: 1511: 1496: 1478: 1446:. Retrieved 1442: 1432: 1399: 1395: 1389: 1373:. Springer. 1370: 1364: 1348:. Springer. 1345: 1342:Oliner, A.A. 1336: 1324:. Retrieved 1309: 1302: 1283: 1277: 1258: 1251:Landau, L.D. 1245: 1204: 1200: 1194: 1161: 1157: 1151: 1140: 1128:. Retrieved 1113: 1027: 996: 946:are used in 941: 933: 893: 878: 867: 836: 823: 815: 763: 380: 231: 209: 146: 138:longitudinal 118:eccentricity 113: 109: 95: 90:surface wave 87: 42:transduction 30: 29: 1448:26 November 944:earthquakes 817:are in the 806:seismograms 212:ocean waves 142:shear waves 58:earthquakes 1607:Seismology 1596:Categories 1091:References 1080:Seismology 1038:infrasonic 1028:After the 968:dispersion 956:geophysics 948:seismology 874:hypocenter 840:Love waves 819:ultrasonic 794:wavelength 778:wave train 774:dispersion 766:wavelength 134:Lamb waves 130:Love waves 122:wavelength 110:retrograde 62:Lamb waves 1602:Acoustics 1565:0031-9007 1556:2115/5791 1229:1364-503X 1186:121607244 1060:Love wave 1022:elephants 870:amplitude 827:frequency 790:frequency 770:frequency 719:ν 708:ν 647:ν 620:β 606:ω 586:μ 580:λ 556:μ 544:β 540:ρ 520:μ 511:λ 499:α 495:ρ 469:α 454:β 447:η 421:β 396:ω 389:ζ 354:η 351:− 339:− 333:η 327:− 318:ζ 303:ζ 296:− 287:ζ 263:μ 243:λ 102:isotropic 1573:12005696 1495:(1990). 1424:11144599 1257:(1986). 1237:31828394 1044:See also 734:, where 182:, where 126:acoustic 114:prograde 106:ellipses 1535:Bibcode 1404:Bibcode 1209:Bibcode 1166:Bibcode 1034:tsunami 1014:spiders 1010:insects 1002:mammals 885:S-waves 881:P-waves 848:sensors 844:filters 782:density 1571:  1563:  1518:  1503:  1485:  1470:  1422:  1377:  1352:  1326:8 June 1317:  1290:  1265:  1235:  1227:  1184:  1130:8 June 1121:  1075:S-wave 1070:Phonon 1065:P-wave 991:, and 625:0.8453 532:, and 381:where 1617:Waves 1233:S2CID 1182:S2CID 1006:birds 977:noise 952:Earth 699:0.862 54:Earth 1569:PMID 1561:ISSN 1516:ISBN 1501:ISBN 1483:ISBN 1468:ISBN 1450:2013 1420:PMID 1375:ISBN 1350:ISBN 1328:2011 1315:ISBN 1288:ISBN 1263:ISBN 1225:ISSN 1132:2011 1119:ISBN 1012:and 958:and 923:The 883:and 705:1.14 650:> 255:and 140:and 1551:hdl 1543:doi 1412:doi 1400:108 1217:doi 1205:243 1174:doi 964:oil 784:or 653:0.3 132:or 56:by 1598:: 1567:. 1559:. 1549:. 1541:. 1531:88 1529:. 1441:. 1418:. 1410:. 1398:. 1253:; 1231:. 1223:. 1215:. 1203:. 1180:. 1172:. 1162:49 1160:. 1099:^ 1008:, 1004:, 487:, 439:, 342:16 207:. 1575:. 1553:: 1545:: 1537:: 1507:. 1489:. 1474:. 1452:. 1426:. 1414:: 1406:: 1383:. 1358:. 1330:. 1296:. 1271:. 1239:. 1219:: 1211:: 1188:. 1176:: 1168:: 1134:. 747:S 743:c 716:+ 713:1 702:+ 691:S 687:c 683:= 678:R 674:c 617:= 614:k 610:/ 583:= 553:= 548:2 517:2 514:+ 508:= 503:2 473:2 464:/ 458:2 450:= 425:2 415:2 411:k 406:/ 400:2 392:= 366:, 363:0 360:= 357:) 348:1 345:( 336:) 330:2 324:3 321:( 315:8 312:+ 307:2 299:8 291:3 190:r 168:r 162:/ 157:1 20:)

Index

Rayleigh waves
surface acoustic wave
piezo-electric
transduction
non-destructive testing
seismic waves
Earth
earthquakes
Lamb waves


surface wave
Lord Rayleigh
isotropic
ellipses
eccentricity
wavelength
acoustic
Love waves
Lamb waves
longitudinal
shear waves
Poisson's ratio
ocean waves


Lamé parameters
boundary value problem
wavelength
frequency

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.