Knowledge

Recombination hotspot

Source 📝

981:"Despite 99% DNA similarity between humans and our nearest relative, chimpanzees, the locations of DNA swapping between chr</ref> omosomes, known as recombination hotspots, are almost entirely different. The surprising finding is reported in a paper published in Science by Oxford University statisticians and US and Dutch geneticists." 96:
Recombination hotspots do not seem to be solely caused by DNA sequence arrangements or chromosome structure. Alternatively, initiation sites of recombination hotspots can be coded for in the genome. Through the comparison of recombination between different mouse strains, locus Dsbc1 was identified as
84:
repeats: CGG-CCG, GAG-CTG, GAA-TTC, and GCN-NGC. These fragile sites are conserved in mammals and in yeast, suggesting that the instability is caused by something inherent to the molecular structure of DNA and is associated with DNA-repeat instability. These fragile sites are thought to form hairpin
133:
Homologous recombination is very frequent in RNA viruses. Recombination frequently occurs among very similar viruses, where crossover sites may occur anywhere across the genome, but after selection pressure these sites tend to localize in certain regions/hotspots. For example, in Enteroviruses,
88:
Recombination hotspots are also thought to arise due to higher-order chromosome structure that make some areas of the chromosome more accessible to recombination than others. A double stranded-break initiation site was identified in mice and yeast, located at a common chromatin feature: the
71:
Recombination can also occur due to errors in DNA replication that lead to genomic rearrangements. These events are often associated with pathology. However, genomic rearrangement is also thought to be a driving force in evolutionary development as it gives rise to novel gene combinations.
58:
Meiotic recombination through crossing over is thought to be a mechanism by which a cell promotes correct segregation of homologous chromosomes and the repair of DNA damages. Crossing over requires a DNA double-stranded break followed by strand invasion of the homolog and subsequent repair.
121:, as observed in a range of different organisms. Transcription associated recombination appears to be due, at least in part, to the ability of transcription to open the DNA structure and enhance accessibility of DNA to exogenous chemicals and internal metabolites that cause recombinogenic 817:
Nikolaidis, Marios; Mimouli, Kalliopi; Kyriakopoulou, Zaharoula; Tsimpidis, Michail; Tsakogiannis, Dimitris; Markoulatos, Panayotis; Amoutzias, Grigoris D. (January 2019). "Large-scale genomic analysis reveals recurrent patterns of intertypic recombination in human enteroviruses".
63:. Linkage disequilibrium has identified more than 30,000 hotspots within the human genome. In humans, the average number of crossover recombination events per hotspot is one crossover per 1,300 meioses, and the most extreme hotspot has a crossover frequency of one per 110 meioses. 105:
in the Dsbc1 region, providing evidence of a non-random, genetic basis for recombination initiation sites in mice. Rapid evolution of the PRDM9 gene explains the observation that human and chimpanzees share few recombination hotspots, despite a high level of sequence identity.
97:
a locus that contributes to the specification of initiation sites in the genome in at least two recombination hotspot locations. Additional crossing over mapping located the Dsbc1 locus to the 12.2 to 16.7-Mb region of mouse chromosome 17, which contains the PRDM9 gene. The
134:
recombination hotspots have been identified at the 5'UTR-capsid region junction, and at the beginning of the P2 region. These two hotspots flank the P1 region that encodes for the capsid. In coronaviruses, the Spike genomic region is a recombination hotspot.
85:
structures on the lagging strand during replication from single-stranded DNA base-pairing with itself in the trinucleotide repeat region. These hairpin structures cause DNA breaks that lead to a higher frequency of recombination at these sites.
72:
Recombination hotspots may arise from the interaction of the following selective forces: the benefit of driving genetic diversity through genomic rearrangement coupled with selection acting to maintain favorable gene combinations.
608:"Recombinogenic effects of DNA-damaging agents are synergistically increased by transcription in Saccharomyces cerevisiae. New insights into transcription-associated recombination" 38:
relative to a neutral expectation. The recombination rate within hotspots can be hundreds of times that of the surrounding region. Recombination hotspots result from higher
173:
Jeffreys AJ, Kauppi L, Neumann R (October 2001). "Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex".
80:
DNA contains "fragile sites" within the sequence that are more prone to recombination. These fragile sites are associated with the following
50:
cells. This appellation can refer to recombination events resulting from the uneven distribution of programmed meiotic double-strand breaks.
861:
Nikolaidis, Marios; Markoulatos, Panayotis; Van de Peer, Yves; Oliver, Stephen G; Amoutzias, Grigorios D (2021-10-12). Hepp, Crystal (ed.).
863:"The neighborhood of the Spike gene is a hotspot for modular intertypic homologous and non-homologous recombination in Coronavirus genomes" 59:
Initiation sites for recombination are usually identified by mapping crossing over events through pedigree analysis or through analysis of
125:. These findings suggest that transcription-associated recombination may contribute significantly to recombination hotspot formation. 331:
Myers S, Spencer CC, Auton A, et al. (August 2006). "The distribution and causes of meiotic recombination in the human genome".
122: 218:"Initiation of meiotic homologous recombination: flexibility, impact of histone modifications, and chromatin remodeling" 1004: 507:"The strong ADH1 promoter stimulates mitotic and meiotic recombination at the ADE6 gene of Schizosaccharomyces pombe" 862: 375:
Aguilera, A.; Gomez-Gonzalez, B. (2008). "Genome Instability: A Mechanistic View of Its Causes and Consequences".
102: 984: 114: 35: 118: 60: 153: 920:"Characterizing Transcriptional Regulatory Sequences in Coronaviruses and Their Role in Recombination" 81: 843: 400: 198: 957: 939: 918:
Yang, Yiyan; Yan, Wei; Hall, A Brantley; Jiang, Xiaofang (2021-04-13). Rasmus, Nielsen (ed.).
900: 882: 835: 796: 778: 739: 721: 682: 637: 585: 536: 487: 438: 392: 348: 313: 255: 237: 190: 947: 931: 890: 874: 827: 786: 770: 729: 713: 672: 664: 627: 619: 575: 567: 526: 518: 477: 469: 430: 384: 340: 303: 295: 245: 229: 182: 668: 919: 952: 895: 791: 758: 734: 701: 632: 607: 482: 457: 308: 283: 250: 217: 580: 555: 531: 506: 456:
Auton, Adam; Fledel-Alon, Adi; Pfeifer, Susanne; Venn, Oliver; Ségurel, Laure (2012).
17: 998: 774: 759:"Random nature of coronavirus RNA recombination in the absence of selection pressure" 556:"Transcription enhances intrachromosomal homologous recombination in mammalian cells" 847: 404: 202: 434: 284:"Prdm9 Is a Major Determinant of Meiotic Recombination Hotspots in Humans and Mice" 623: 831: 655:
Gaillard H, Aguilera A (2016). "Transcription as a Threat to Genome Integrity".
233: 943: 935: 886: 878: 782: 725: 241: 473: 299: 148: 961: 904: 839: 743: 686: 641: 571: 491: 396: 352: 317: 259: 194: 978: 800: 589: 540: 442: 988: 522: 421:
Lichten, M.; Goldman, A. S. H. (1995). "Meiotic Recombination Hotspots".
143: 717: 677: 344: 186: 90: 47: 43: 979:
Researchers find surprising difference between human and chimp genomes
31: 388: 606:
García-Rubio M, Huertas P, González-Barrera S, Aguilera A (2003).
98: 216:
Székvölgyi, Lóránt; Ohta, Kunihiro; Nicolas, Alain (2015-05-01).
458:"A fine-scale chimpanzee genetic map from population sequencing" 39: 700:
Simon-Loriere, Etienne; Holmes, Edward C. (August 2011).
117:
in functional regions of DNA is strongly stimulated by
42:
break formation in these regions, and apply to both
601: 599: 8: 985:What's so hot about recombination hotspots? 757:Banner, L. R.; Lai, M. M. (November 1991). 505:Grimm C, Schaer P, Munz P, Kohli J (1991). 370: 368: 366: 364: 362: 222:Cold Spring Harbor Perspectives in Biology 89:trimethylation of lysine 4 of histone H3 ( 951: 894: 790: 733: 676: 631: 579: 530: 481: 416: 414: 307: 249: 277: 275: 273: 271: 269: 165: 987:A primer on recombination hotspots by 110:Transcription associated recombination 812: 810: 669:10.1146/annurev-biochem-060815-014908 7: 25: 282:Baudat, F.; et al. (2010). 924:Molecular Biology and Evolution 867:Molecular Biology and Evolution 702:"Why do RNA viruses recombine?" 34:that exhibit elevated rates of 435:10.1146/annurev.genet.29.1.423 1: 775:10.1016/0042-6822(91)90795-d 129:Viral recombination hotspots 832:10.1016/j.virol.2018.10.006 706:Nature Reviews Microbiology 234:10.1101/cshperspect.a016527 1021: 624:10.1093/genetics/165.2.457 423:Annual Review of Genetics 103:histone methyltransferase 115:Homologous recombination 474:10.1126/science.1216872 377:Nature Reviews Genetics 300:10.1126/science.1183439 936:10.1093/molbev/msaa281 879:10.1093/molbev/msab292 572:10.1128/mcb.12.12.5311 67:Genomic rearrangements 61:linkage disequilibrium 28:Recombination hotspots 18:Recombination hotspots 554:Nickoloff JA (1992). 154:Genetic recombination 54:Meiotic recombination 523:10.1128/mcb.11.1.289 718:10.1038/nrmicro2614 333:Biochem. Soc. Trans 1005:Molecular genetics 657:Annu. Rev. Biochem 345:10.1042/BST0340526 187:10.1038/ng1001-217 468:(6078): 193–198. 30:are regions in a 16:(Redirected from 1012: 991:in PLoS Biology 966: 965: 955: 930:(4): 1241–1248. 915: 909: 908: 898: 858: 852: 851: 814: 805: 804: 794: 754: 748: 747: 737: 697: 691: 690: 680: 652: 646: 645: 635: 603: 594: 593: 583: 551: 545: 544: 534: 502: 496: 495: 485: 453: 447: 446: 418: 409: 408: 372: 357: 356: 339:(Pt 4): 526–30. 328: 322: 321: 311: 294:(5967): 836–40. 279: 264: 263: 253: 213: 207: 206: 170: 76:Initiation sites 21: 1020: 1019: 1015: 1014: 1013: 1011: 1010: 1009: 995: 994: 975: 973:Further reading 970: 969: 917: 916: 912: 860: 859: 855: 816: 815: 808: 756: 755: 751: 699: 698: 694: 654: 653: 649: 605: 604: 597: 560:Mol. Cell. Biol 553: 552: 548: 511:Mol. Cell. Biol 504: 503: 499: 455: 454: 450: 420: 419: 412: 389:10.1038/nrg2268 374: 373: 360: 330: 329: 325: 281: 280: 267: 215: 214: 210: 172: 171: 167: 162: 140: 131: 112: 101:gene encodes a 78: 69: 56: 23: 22: 15: 12: 11: 5: 1018: 1016: 1008: 1007: 997: 996: 993: 992: 982: 974: 971: 968: 967: 910: 853: 806: 769:(1): 441–445. 749: 712:(8): 617–626. 692: 647: 595: 566:(12): 5311–8. 546: 497: 448: 410: 358: 323: 265: 228:(5): a016527. 208: 164: 163: 161: 158: 157: 156: 151: 146: 139: 136: 130: 127: 111: 108: 77: 74: 68: 65: 55: 52: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1017: 1006: 1003: 1002: 1000: 990: 986: 983: 980: 977: 976: 972: 963: 959: 954: 949: 945: 941: 937: 933: 929: 925: 921: 914: 911: 906: 902: 897: 892: 888: 884: 880: 876: 872: 868: 864: 857: 854: 849: 845: 841: 837: 833: 829: 825: 821: 813: 811: 807: 802: 798: 793: 788: 784: 780: 776: 772: 768: 764: 760: 753: 750: 745: 741: 736: 731: 727: 723: 719: 715: 711: 707: 703: 696: 693: 688: 684: 679: 674: 670: 666: 662: 658: 651: 648: 643: 639: 634: 629: 625: 621: 618:(2): 457–66. 617: 613: 609: 602: 600: 596: 591: 587: 582: 577: 573: 569: 565: 561: 557: 550: 547: 542: 538: 533: 528: 524: 520: 517:(1): 289–98. 516: 512: 508: 501: 498: 493: 489: 484: 479: 475: 471: 467: 463: 459: 452: 449: 444: 440: 436: 432: 428: 424: 417: 415: 411: 406: 402: 398: 394: 390: 386: 383:(3): 204–17. 382: 378: 371: 369: 367: 365: 363: 359: 354: 350: 346: 342: 338: 334: 327: 324: 319: 315: 310: 305: 301: 297: 293: 289: 285: 278: 276: 274: 272: 270: 266: 261: 257: 252: 247: 243: 239: 235: 231: 227: 223: 219: 212: 209: 204: 200: 196: 192: 188: 184: 181:(2): 217–22. 180: 176: 169: 166: 159: 155: 152: 150: 147: 145: 142: 141: 137: 135: 128: 126: 124: 120: 119:transcription 116: 109: 107: 104: 100: 94: 92: 86: 83: 82:trinucleotide 75: 73: 66: 64: 62: 53: 51: 49: 45: 41: 37: 36:recombination 33: 29: 19: 927: 923: 913: 870: 866: 856: 823: 819: 766: 762: 752: 709: 705: 695: 660: 656: 650: 615: 611: 563: 559: 549: 514: 510: 500: 465: 461: 451: 426: 422: 380: 376: 336: 332: 326: 291: 287: 225: 221: 211: 178: 174: 168: 132: 113: 95: 87: 79: 70: 57: 27: 26: 873:: msab292. 678:11441/78271 663:: 291–317. 123:DNA damages 429:: 423–44. 175:Nat. Genet 160:References 944:1537-1719 887:0737-4038 826:: 72–80. 783:0042-6822 726:1740-1526 242:1943-0264 149:Evolution 999:Category 989:Jody Hey 962:33146390 905:34638137 848:53115712 840:30366300 820:Virology 763:Virology 744:21725337 687:27023844 642:14573461 612:Genetics 492:22422862 405:14024154 397:18227811 353:16856851 318:20044539 260:25934010 203:23026001 195:11586303 144:Chi site 138:See also 953:7665640 896:8549283 801:1656597 792:7131166 735:3324781 633:1462770 590:1333040 541:1986226 483:3532813 462:Science 443:8825482 309:4295902 288:Science 251:4448624 91:H3K4me3 48:meiotic 44:mitotic 960:  950:  942:  903:  893:  885:  846:  838:  799:  789:  781:  742:  732:  724:  685:  640:  630:  588:  581:360468 578:  539:  532:359619 529:  490:  480:  441:  403:  395:  351:  316:  306:  258:  248:  240:  201:  193:  32:genome 844:S2CID 401:S2CID 199:S2CID 99:PRDM9 958:PMID 940:ISSN 901:PMID 883:ISSN 836:PMID 797:PMID 779:ISSN 740:PMID 722:ISSN 683:PMID 638:PMID 586:PMID 537:PMID 488:PMID 439:PMID 393:PMID 349:PMID 314:PMID 256:PMID 238:ISSN 191:PMID 46:and 948:PMC 932:doi 891:PMC 875:doi 828:doi 824:526 787:PMC 771:doi 767:185 730:PMC 714:doi 673:hdl 665:doi 628:PMC 620:doi 616:165 576:PMC 568:doi 527:PMC 519:doi 478:PMC 470:doi 466:336 431:doi 385:doi 341:doi 304:PMC 296:doi 292:327 246:PMC 230:doi 183:doi 93:). 40:DNA 1001:: 956:. 946:. 938:. 928:38 926:. 922:. 899:. 889:. 881:. 871:39 869:. 865:. 842:. 834:. 822:. 809:^ 795:. 785:. 777:. 765:. 761:. 738:. 728:. 720:. 708:. 704:. 681:. 671:. 661:85 659:. 636:. 626:. 614:. 610:. 598:^ 584:. 574:. 564:12 562:. 558:. 535:. 525:. 515:11 513:. 509:. 486:. 476:. 464:. 460:. 437:. 427:29 425:. 413:^ 399:. 391:. 379:. 361:^ 347:. 337:34 335:. 312:. 302:. 290:. 286:. 268:^ 254:. 244:. 236:. 224:. 220:. 197:. 189:. 179:29 177:. 964:. 934:: 907:. 877:: 850:. 830:: 803:. 773:: 746:. 716:: 710:9 689:. 675:: 667:: 644:. 622:: 592:. 570:: 543:. 521:: 494:. 472:: 445:. 433:: 407:. 387:: 381:9 355:. 343:: 320:. 298:: 262:. 232:: 226:7 205:. 185:: 20:)

Index

Recombination hotspots
genome
recombination
DNA
mitotic
meiotic
linkage disequilibrium
trinucleotide
H3K4me3
PRDM9
histone methyltransferase
Homologous recombination
transcription
DNA damages
Chi site
Evolution
Genetic recombination
doi
10.1038/ng1001-217
PMID
11586303
S2CID
23026001
"Initiation of meiotic homologous recombination: flexibility, impact of histone modifications, and chromatin remodeling"
doi
10.1101/cshperspect.a016527
ISSN
1943-0264
PMC
4448624

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.