Knowledge (XXG)

Reaction–diffusion system

Source 📝

2104: 719: 1790: 2940: 2099:{\displaystyle {\begin{pmatrix}\partial _{t}{\tilde {u}}_{\boldsymbol {k}}(t)\\\partial _{t}{\tilde {v}}_{\boldsymbol {k}}(t)\end{pmatrix}}=-k^{2}{\begin{pmatrix}D_{u}{\tilde {u}}_{\boldsymbol {k}}(t)\\D_{v}{\tilde {v}}_{\boldsymbol {k}}(t)\end{pmatrix}}+{\boldsymbol {R}}^{\prime }{\begin{pmatrix}{\tilde {u}}_{\boldsymbol {k}}(t)\\{\tilde {v}}_{\boldsymbol {k}}(t)\end{pmatrix}}.} 1628: 2310: 33: 2640: 3034:. The above-mentioned patterns (fronts, spirals, targets, hexagons, stripes and dissipative solitons) can be found in various types of reaction–diffusion systems in spite of large discrepancies e.g. in the local reaction terms. It has also been argued that reaction–diffusion processes are an essential basis for processes connected to 1779: 1406: 3021:
It is known that systems with more components allow for a variety of phenomena not possible in systems with one or two components (e.g. stable running pulses in more than one spatial dimension without global feedback). An introduction and systematic overview of the possible phenomena in dependence on
2493: 170: 3038:
in biology and may even be related to animal coats and skin pigmentation. Other applications of reaction–diffusion equations include ecological invasions, spread of epidemics, tumour growth, dynamics of fission waves, wound healing and visual hallucinations. Another reason for the interest in
2139: 2935:{\displaystyle {\begin{aligned}q_{\text{n}}^{H}(k):&{}\quad {\frac {1}{\tau }}+\left(d_{u}^{2}+{\frac {1}{\tau }}d_{v}^{2}\right)k^{2}&=f^{\prime }(u_{h}),\\q_{\text{n}}^{T}(k):&{}\quad {\frac {\kappa }{1+d_{v}^{2}k^{2}}}+d_{u}^{2}k^{2}&=f^{\prime }(u_{h}).\end{aligned}}} 1000: 3058:
Aside from these generic examples, it has turned out that under appropriate circumstances electric transport systems like plasmas or semiconductors can be described in a reaction–diffusion approach. For these systems various experiments on pattern formation have been carried out.
1372:
When going from one to more space dimensions, a number of statements from one-dimensional systems can still be applied. Planar or curved wave fronts are typical structures, and a new effect arises as the local velocity of a curved front becomes dependent on the local
1643: 1342: 1623:{\displaystyle {\begin{pmatrix}\partial _{t}u\\\partial _{t}v\end{pmatrix}}={\begin{pmatrix}D_{u}&0\\0&D_{v}\end{pmatrix}}{\begin{pmatrix}\partial _{xx}u\\\partial _{xx}v\end{pmatrix}}+{\begin{pmatrix}F(u,v)\\G(u,v)\end{pmatrix}}} 726:
In systems with more than one stationary homogeneous solution, a typical solution is given by travelling fronts connecting the homogeneous states. These solutions move with constant speed without changing their shape and are of the form
1124: 2329: 87: 3246:
Kolmogorov, A., Petrovskii, I. and Piskunov, N. (1937) Study of a Diffusion Equation That Is Related to the Growth of a Quality of Matter and Its Application to a Biological Problem. Moscow University Mathematics Bulletin, 1,
768:
is the speed of the travelling wave. Note that while travelling waves are generically stable structures, all non-monotonous stationary solutions (e.g. localized domains composed of a front-antifront pair) are unstable. For
2305:{\displaystyle {\begin{pmatrix}+&-\\+&-\end{pmatrix}},\quad {\begin{pmatrix}+&+\\-&-\end{pmatrix}},\quad {\begin{pmatrix}-&+\\-&+\end{pmatrix}},\quad {\begin{pmatrix}-&-\\+&+\end{pmatrix}}.} 662: 511: 2558:
When an activator-inhibitor system undergoes a change of parameters, one may pass from conditions under which a homogeneous ground state is stable to conditions under which it is linearly unstable. The corresponding
1171:, and all other eigenfunctions can be sorted according to an increasing number of nodes with the magnitude of the corresponding real eigenvalue increases monotonically with the number of zeros. The eigenfunction 2991: 826: 2957:), spiral waves and target patterns. These three solution types are also generic features of two- (or more-) component reaction–diffusion equations in which the local dynamics have a stable limit cycle 2645: 2319:
after its first representative: close to the ground state, one component stimulates the production of both components while the other one inhibits their growth. Its most prominent representative is the
3828:
Gupta, Ankur; Chakraborty, Saikat (January 2009). "Linear stability analysis of high- and low-dimensional models for describing mixing-limited pattern formation in homogeneous autocatalytic reactors".
324: 2334: 2620: 2588: 1774:{\displaystyle {\tilde {\boldsymbol {q}}}_{\boldsymbol {k}}({\boldsymbol {x}},t)={\begin{pmatrix}{\tilde {u}}(t)\\{\tilde {v}}(t)\end{pmatrix}}e^{i{\boldsymbol {k}}\cdot {\boldsymbol {x}}}} 2604: 46:
are mathematical models that correspond to several physical phenomena. The most common is the change in space and time of the concentration of one or more chemical substances: local
3047:
Well-controllable experiments in chemical reaction–diffusion systems have up to now been realized in three ways. First, gel reactors or filled capillary tubes may be used. Second,
1215: 538: 2582:
Subcritical Turing bifurcation: formation of a hexagonal pattern from noisy initial conditions in the above two-component reaction–diffusion system of Fitzhugh–Nagumo type.
4805: 4311:
Lee, Kyoung-Jin; McCormick, William D.; Pearson, John E.; Swinney, Harry L. (1994). "Experimental observation of self-replicating spots in a reaction–diffusion system".
2967: 2979: 330: 3760:
Schenk, C. P.; Or-Guil, M.; Bode, M.; Purwins, H.-G. (May 12, 1997). "Interacting Pulses in Three-Component Reaction-Diffusion Systems on Two-Dimensional Domains".
2634:
For the Fitzhugh–Nagumo example, the neutral stability curves marking the boundary of the linearly stable region for the Turing and Hopf bifurcation are given by
1030: 4686: 2990: 2488:{\displaystyle {\begin{aligned}\partial _{t}u&=d_{u}^{2}\,\nabla ^{2}u+f(u)-\sigma v,\\\tau \partial _{t}v&=d_{v}^{2}\,\nabla ^{2}v+u-v\end{aligned}}} 1389:
Two-component systems allow for a much larger range of possible phenomena than their one-component counterparts. An important idea that was first proposed by
165:{\displaystyle \partial _{t}{\boldsymbol {q}}={\underline {\underline {\boldsymbol {D}}}}\,\nabla ^{2}{\boldsymbol {q}}+{\boldsymbol {R}}({\boldsymbol {q}}),} 3965:
Holmes, E. E.; Lewis, M. A.; Banks, J. E.; Veit, R. R. (1994). "Partial Differential Equations in Ecology: Spatial Interactions and Population Dynamics".
3039:
reaction–diffusion systems is that although they are nonlinear partial differential equations, there are often possibilities for an analytical treatment.
1365:
with the damping coefficient c which allows for a rather illustrative access to the construction of different types of solutions and the determination of
3108: 3075:
numerical solution methods are proposed. To highest degree of detail reaction-diffusion systems are described with particle based simulation tools like
2578:
to a globally patterned state with a dominant finite wave number. The latter in two spatial dimensions typically leads to stripe or hexagonal patterns.
4762:
Fröhner, Christoph, and Frank Noé. "Reversible interacting-particle reaction dynamics." The Journal of Physical Chemistry B 122.49 (2018): 11240-11250.
3165: 546: 78: 456: 4640:
Isaacson, Samuel A.; Peskin, Charles S. (2006). "Incorporating Diffusion in Complex Geometries into Stochastic Chemical Kinetics Simulations".
450:
The dynamics of one-component systems is subject to certain restrictions as the evolution equation can also be written in the variational form
220:
accounts for all local reactions. The solutions of reaction–diffusion equations display a wide range of behaviours, including the formation of
4301:
B. S. Kerner and V. V. Osipov, Autosolitons. A New Approach to Problems of Self-Organization and Turbulence, Kluwer Academic Publishers (1994)
3949: 3811: 3148: 995:{\displaystyle \partial _{t}{\tilde {u}}=D\partial _{x}^{2}{\tilde {u}}-U(x){\tilde {u}},\qquad U(x)=-R^{\prime }(u){\Big |}_{u=u_{0}(x)}.} 4110:
Sherratt, J. A.; Nowak, M. A. (June 22, 1992). "Oncogenes, anti-oncogenes and the immune response to cancer : a mathematical model".
2619: 2587: 3584:
Vanag, Vladimir K.; Epstein, Irving R. (March 24, 2004). "Stationary and Oscillatory Localized Patterns, and Subcritical Bifurcations".
3138: 3231: 2953:
region where the pattern coexists with the ground state. Other frequently encountered structures comprise pulse trains (also known as
3007: 2603: 384: 4556:
Bode, M.; Purwins, H.-G. (1995). "Pattern formation in reaction-diffusion systems - dissipative solitons in physical systems".
2114: 257: 4800: 3750:
H.-G. Purwins et al. in: Dissipative Solitons, Lectures Notes in Physics, Ed. N. Akhmediev and A. Ankiewicz, Springer (2005)
3635:
Lobanova, E. S.; Ataullakhanov, F. I. (August 26, 2004). "Running Pulses of Complex Shape in a Reaction-Diffusion Model".
3093: 2321: 4810: 3213: 3872:
Duran-Nebreda, Salva; Pla, Jordi; Vidiella, Blai; Piñero, Jordi; Conde-Pueyo, Nuria; Solé, Ricard (January 15, 2021).
333:. If the reaction term vanishes, then the equation represents a pure diffusion process. The corresponding equation is 3055:
have been investigated. Third, the propagation of running nerve pulses is modelled using reaction–diffusion systems.
4283:
P. Grindrod, Patterns and Waves: The Theory and Applications of Reaction-Diffusion Equations, Clarendon Press (1991)
4270: 2966: 4016:
Murray, James D.; Stanley, E. A.; Brown, D. L. (November 22, 1986). "On the spatial spread of rabies among foxes".
2978: 3170: 3006:
For a variety of systems, reaction–diffusion equations with more than two components have been proposed, e.g. the
3123: 2954: 3317:
Segel, Lee A. (August 14, 1969). "Distant side-walls cause slow amplitude modulation of cellular convection".
1337:{\displaystyle D\partial _{\xi }^{2}{\hat {u}}(\xi )+c\partial _{\xi }{\hat {u}}(\xi )+R({\hat {u}}(\xi ))=0.} 4411:
Rotermund, H. H.; Jakubith, S.; von Oertzen, A.; Ertl, G. (June 10, 1991). "Solitons in a surface reaction".
4598:
E. Schöll, Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors, Cambridge University Press (2001)
3223: 1130: 4657: 4499:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 61:. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in 4462:
Graham, Michael D.; Lane, Samuel L.; Luss, Dan (1993). "Temperature pulse dynamics on a catalytic ring".
4075:
Chaplain, M. A. J. (1995). "Reaction–diffusion prepatterning and its potential role in tumour invasion".
3266:
Newell, Alan C.; Whitehead, J. A. (September 3, 1969). "Finite bandwidth, finite amplitude convection".
3068: 1195:
should have at least one zero, and for a non-monotonic stationary solution the corresponding eigenvalue
718: 209: 1133:
where negative eigenvalues result in the instability of the solution. Due to translational invariance
4649: 4565: 4420: 4375: 4320: 4183: 4025: 3769: 3699: 3644: 3593: 3486: 3434: 3326: 3275: 3160: 2946: 519: 357: 4662: 3128: 3052: 239:". Each function, for which a reaction diffusion differential equation holds, represents in fact a 232: 3030:
In recent times, reaction–diffusion systems have attracted much interest as a prototype model for
2961:
Other patterns found in the above two-component reaction–diffusion system of Fitzhugh–Nagumo type.
4344: 4252: 4201: 4143: 4057: 3998: 3990: 3350: 3299: 3118: 3103: 2560: 1400:
A linear stability analysis however shows that when linearizing the general two-component system
37: 4745: 4727: 4705: 4581: 4538: 4520: 4479: 4444: 4436: 4393: 4336: 4244: 4236: 4135: 4127: 4092: 4049: 4041: 3982: 3945: 3939: 3911: 3893: 3845: 3807: 3785: 3733: 3725: 3668: 3660: 3617: 3609: 3566: 3522: 3504: 3452: 3342: 3291: 3227: 3113: 3098: 3031: 2110: 1378: 1209:
of a moving front, one may go to a moving coordinate system and look at stationary solutions:
228: 225: 47: 4735: 4717: 4667: 4573: 4528: 4510: 4471: 4428: 4383: 4328: 4228: 4191: 4119: 4084: 4033: 3974: 3901: 3885: 3837: 3777: 3715: 3707: 3652: 3601: 3558: 3512: 3494: 3442: 3334: 3283: 3217: 2564: 2522: 422: 3076: 3071:. There are existing several numerical treatments in research literature. Also for complex 3549:
Kopell, N.; Howard, L. N. (1973). "Plane Wave Solutions to Reaction-Diffusion Equations".
3408:
A. S. Mikhailov, Foundations of Synergetics I. Distributed Active Systems, Springer (1990)
1393:
is that a state that is stable in the local system can become unstable in the presence of
221: 205: 1119:{\displaystyle {\hat {H}}\psi =\lambda \psi ,\qquad {\hat {H}}=-D\partial _{x}^{2}+U(x),} 4653: 4569: 4424: 4379: 4324: 4187: 4029: 3773: 3703: 3648: 3597: 3490: 3438: 3427:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
3330: 3279: 820:
is an infinitesimally perturbed solution, linear stability analysis yields the equation
251:
The simplest reaction–diffusion equation is in one spatial dimension in plane geometry,
4740: 4533: 4498: 3906: 3873: 3517: 3474: 3209: 3143: 3011: 236: 4364:"Excitation waves in reaction-diffusion media with non-monotonic dispersion relations" 3499: 3079:
or ReaDDy which employ for example reversible interacting-particle reaction dynamics.
4794: 4706:"Simulation tools for particle-based reaction-diffusion dynamics in continuous space" 4687:"Numerical methods for solving the reactive diffusion equation in complex geometries" 4577: 4219:
Sherratt, J. A.; Murray, J. D. (July 23, 1990). "Models of epidermal wound healing".
4205: 4061: 3804:
Dissipative Solitons in Reaction Diffusion Systems. Mechanism, Dynamics, Interaction.
3354: 3205: 3035: 3015: 1158: 334: 4388: 4363: 4256: 4147: 4002: 3303: 4515: 4348: 3196: 388: 3862:
L.G. Harrison, Kinetic Theory of Living Pattern, Cambridge University Press (1993)
3656: 3605: 36:
A simulation of two virtual chemicals reacting and diffusing on a Torus using the
32: 17: 3393: 3377: 4780: 4432: 3781: 3418: 3048: 1390: 4196: 4171: 3806:
Volume 70 of Springer Series in Synergetics, Springer, Berlin Heidelberg 2013,
4722: 4088: 3889: 3841: 3338: 3287: 3192: 2950: 1634: 1162: 426: 361: 4731: 4585: 4524: 4483: 4440: 4397: 4340: 4240: 4131: 4096: 4045: 3986: 3897: 3874:"Synthetic Lateral Inhibition in Periodic Pattern Forming Microbial Colonies" 3849: 3789: 3729: 3664: 3613: 3570: 3508: 3456: 3346: 3295: 1394: 1374: 657:{\displaystyle {\mathfrak {L}}=\int _{-\infty }^{\infty }\left\,{\text{d}}x} 58: 51: 4749: 4542: 4448: 4232: 4123: 4037: 3928:
H. Meinhardt, Models of Biological Pattern Formation, Academic Press (1982)
3915: 3737: 3672: 3621: 3562: 3526: 3475:"Impulses and Physiological States in Theoretical Models of Nerve Membrane" 3447: 3422: 3367:
Y. B. Zeldovich and D. A. Frank-Kamenetsky, Acta Physicochim. 9 (1938): 341
4248: 4139: 4053: 2133:
is supposed to be the most unstable one, the Jacobian must have the signs
506:{\displaystyle \partial _{t}u=-{\frac {\delta {\mathfrak {L}}}{\delta u}}} 77:. Mathematically, reaction–diffusion systems take the form of semi-linear 4786:
RD Tool: an interactive web application for reaction-diffusion simulation
4704:
Schöneberg, Johannes; Ullrich, Alexander; Noé, Frank (October 24, 2014).
4292:
J. Smoller, Shock Waves and Reaction Diffusion Equations, Springer (1994)
4018:
Proceedings of the Royal Society of London. Series B. Biological Sciences
3088: 3072: 4475: 2567:
to a globally oscillating homogeneous state with a dominant wave number
1381:). This phenomenon leads to the so-called curvature-driven instability. 3994: 3687: 74: 70: 66: 62: 4785: 4775:
Reaction–Diffusion by the Gray–Scott Model: Pearson's parameterization
4671: 3720: 3711: 4781:
A thesis on reaction–diffusion patterns with an overview of the field
4777:
a visual map of the parameter space of Gray–Scott reaction diffusion.
4774: 4617: 4332: 3133: 1347:
This equation has a nice mechanical analogue as the motion of a mass
3978: 54:
which causes the substances to spread out over a surface in space.
3539:
J. Nagumo et al., Proc. Inst. Radio Engin. Electr. 50 (1962): 2061
717: 516:
and therefore describes a permanent decrease of the "free energy"
31: 2125:
of the reaction function. In particular, if a finite wave vector
447:
that is sometimes referred to as the Zeldovich equation as well.
360:
that was originally used to describe the spreading of biological
3686:
Osborne, A. G.; Recktenwald, G. D.; Deinert, M. R. (June 2012).
2945:
If the bifurcation is subcritical, often localized structures (
3067:
A reaction–diffusion system can be solved by using methods of
4172:"Stability instability and Hopf bifurcation in fission waves" 50:
in which the substances are transformed into each other, and
4160:
R.A. Gatenby and E.T. Gawlinski, Cancer Res. 56 (1996): 5745
2904: 2766: 2012: 939: 3944:. Springer Science & Business Media. pp. 436–450. 3378:
Travelling Waves in Nonlinear Diffusion Convection Reaction
4607:
S.Tang et al., J.Austral.Math.Soc. Ser.B 35(1993): 223–243
3692:
Chaos: An Interdisciplinary Journal of Nonlinear Science
1202:
cannot be the lowest one, thereby implying instability.
319:{\displaystyle \partial _{t}u=D\partial _{x}^{2}u+R(u),} 231:
like stripes, hexagons or more intricate structure like
4221:
Proceedings of the Royal Society B: Biological Sciences
4112:
Proceedings of the Royal Society B: Biological Sciences
722:
A travelling wave front solution for Fisher's equation.
3394:
Mathematical Aspects of Reacting and Diffusing Systems
3002:
Three- and more-component reaction–diffusion equations
2268: 2228: 2188: 2148: 2022: 1911: 1799: 1691: 1569: 1514: 1464: 1415: 584: 4170:
Osborne, Andrew G.; Deinert, Mark R. (October 2021).
3022:
the properties of the underlying system is given in.
2643: 2332: 2142: 1793: 1646: 1409: 1218: 1033: 829: 549: 522: 459: 260: 90: 1784:
of the stationary homogeneous solution will satisfy
57:
Reaction–diffusion systems are naturally applied in
4470:(29). American Chemical Society (ACS): 7564–7571. 4419:(23). American Physical Society (APS): 3083–3086. 3768:(19). American Physical Society (APS): 3781–3784. 2934: 2487: 2304: 2098: 1773: 1622: 1336: 1118: 994: 656: 532: 505: 318: 164: 4497:Hodgkin, A. L.; Huxley, A. F. (August 28, 1952). 4362:Hamik, Chad T; Steinbock, Oliver (June 6, 2003). 2996:Stationary localized pulse (dissipative soliton). 956: 776:, there is a simple proof for this statement: if 3325:(1). Cambridge University Press (CUP): 203–224. 3274:(2). Cambridge University Press (CUP): 279–303. 429:theory, and its particular degenerate case with 3592:(12). American Physical Society (APS): 128301. 4083:(4). World Scientific Pub Co Pte Lt: 929–936. 3643:(9). American Physical Society (APS): 098303. 81:. They can be represented in the general form 2113:of systems characterized by the signs of the 8: 3468: 3466: 3404: 3402: 2109:Turing's idea can only be realized in four 364:, the Newell–Whitehead-Segel equation with 4271:"A Math Theory for Why People Hallucinate" 3109:Autocatalytic reactions and order creation 1385:Two-component reaction–diffusion equations 247:One-component reaction–diffusion equations 4739: 4721: 4661: 4532: 4514: 4387: 4195: 3905: 3719: 3516: 3498: 3446: 2916: 2903: 2888: 2878: 2873: 2857: 2847: 2842: 2826: 2823: 2803: 2798: 2778: 2765: 2750: 2735: 2730: 2716: 2707: 2702: 2680: 2677: 2657: 2652: 2644: 2642: 2460: 2455: 2449: 2444: 2424: 2377: 2372: 2366: 2361: 2341: 2333: 2331: 2263: 2223: 2183: 2143: 2141: 2070: 2059: 2058: 2038: 2027: 2026: 2017: 2011: 2006: 1979: 1968: 1967: 1960: 1937: 1926: 1925: 1918: 1906: 1900: 1867: 1856: 1855: 1848: 1825: 1814: 1813: 1806: 1794: 1792: 1764: 1756: 1752: 1720: 1719: 1695: 1694: 1686: 1669: 1660: 1649: 1648: 1645: 1564: 1541: 1521: 1509: 1495: 1471: 1459: 1439: 1422: 1410: 1408: 1305: 1304: 1275: 1274: 1268: 1238: 1237: 1231: 1226: 1217: 1092: 1087: 1063: 1062: 1035: 1034: 1032: 972: 961: 955: 954: 938: 901: 900: 874: 873: 867: 862: 841: 840: 834: 828: 646: 645: 619: 605: 583: 572: 564: 551: 550: 548: 524: 523: 521: 486: 485: 479: 464: 458: 289: 284: 265: 259: 224:and wave-like phenomena as well as other 151: 143: 135: 129: 124: 109: 101: 95: 89: 4806:Parabolic partial differential equations 3688:"Propagation of a solitary fission wave" 194:represents the unknown vector function, 79:parabolic partial differential equations 3184: 2959: 2580: 2071: 2039: 2007: 1980: 1938: 1868: 1826: 1765: 1757: 1670: 1661: 1651: 152: 144: 136: 112: 102: 3388: 3386: 331:Kolmogorov–Petrovsky–Piskunov equation 3823: 3821: 3819: 3423:"The chemical basis of morphogenesis" 3256:R. A. Fisher, Ann. Eug. 7 (1937): 355 7: 4118:(1323). The Royal Society: 261–271. 4024:(1255). The Royal Society: 111–150. 3166:Zeldovich–Frank-Kamenetskii equation 3149:Multi-state modeling of biomolecules 1024:we arrive at the eigenvalue problem 389:Zeldovich–Frank-Kamenetskii equation 3139:The Chemical Basis of Morphogenesis 552: 525: 487: 4319:(6477). Springer Nature: 215–218. 4227:(1300). The Royal Society: 29–36. 3938:Murray, James D. (March 9, 2013). 2457: 2421: 2374: 2338: 1845: 1803: 1538: 1518: 1436: 1419: 1265: 1223: 1084: 859: 831: 602: 573: 568: 461: 281: 262: 235:. Such patterns have been dubbed " 126: 92: 25: 4464:The Journal of Physical Chemistry 3433:(641). The Royal Society: 37–72. 3201:Turing's theory of morphogenesis 2989: 2977: 2965: 2618: 2602: 2586: 2825: 2679: 2525:travels through a nerve. Here, 2315:This class of systems is named 2262: 2222: 2182: 1061: 915: 533:{\displaystyle {\mathfrak {L}}} 73:(neutron diffusion theory) and 4558:Physica D: Nonlinear Phenomena 4516:10.1113/jphysiol.1952.sp004764 3551:Studies in Applied Mathematics 3376:B. H. Gilding and R. Kersner, 2922: 2909: 2815: 2809: 2784: 2771: 2669: 2663: 2398: 2392: 2082: 2076: 2064: 2050: 2044: 2032: 1991: 1985: 1973: 1949: 1943: 1931: 1879: 1873: 1861: 1837: 1831: 1819: 1737: 1731: 1725: 1712: 1706: 1700: 1680: 1666: 1654: 1609: 1597: 1587: 1575: 1377:(this can be seen by going to 1325: 1322: 1316: 1310: 1301: 1292: 1286: 1280: 1255: 1249: 1243: 1110: 1104: 1068: 1040: 984: 978: 950: 944: 925: 919: 906: 897: 891: 879: 846: 637: 631: 310: 304: 156: 148: 1: 4176:Cell Reports Physical Science 4077:Journal of Biological Systems 3657:10.1103/physrevlett.93.098303 3606:10.1103/physrevlett.92.128301 3500:10.1016/s0006-3495(61)86902-6 3094:Diffusion-controlled reaction 3026:Applications and universality 3008:Belousov–Zhabotinsky reaction 790:is a stationary solution and 4622:, GollyGang, August 20, 2024 4578:10.1016/0167-2789(95)00087-k 3830:Chemical Engineering Journal 2593:Noisy initial conditions at 1357:in the course of the "time" 4564:(1–2). Elsevier BV: 53–63. 4433:10.1103/physrevlett.66.3083 3782:10.1103/physrevlett.78.3781 3485:(6). Elsevier BV: 445–466. 329:is also referred to as the 4827: 4197:10.1016/j.xcrp.2021.100588 3473:FitzHugh, Richard (1961). 3319:Journal of Fluid Mechanics 3268:Journal of Fluid Mechanics 3014:, fission waves or planar 2625:Almost converged state at 2317:activator-inhibitor system 1205:To determine the velocity 385:Rayleigh–Bénard convection 44:Reaction–diffusion systems 27:Type of mathematical model 4723:10.1186/s13628-014-0011-5 4503:The Journal of Physiology 4389:10.1088/1367-2630/5/1/358 4374:(1). IOP Publishing: 58. 4089:10.1142/s0218339095000824 3890:10.1021/acssynbio.0c00318 3842:10.1016/j.cej.2008.08.025 3339:10.1017/s0022112069000127 3288:10.1017/s0022112069000176 2955:periodic travelling waves 2949:) can be observed in the 4685:Linker, Patrick (2016). 3216:; Sprevak, Mark (2017). 3124:Periodic travelling wave 2555:are positive constants. 2322:FitzHugh–Nagumo equation 540:given by the functional 4413:Physical Review Letters 3762:Physical Review Letters 3637:Physical Review Letters 3586:Physical Review Letters 3224:Oxford University Press 2609:State of the system at 2521:which describes how an 4368:New Journal of Physics 4233:10.1098/rspb.1990.0061 4124:10.1098/rspb.1992.0071 4038:10.1098/rspb.1986.0078 3563:10.1002/sapm1973524291 3448:10.1098/rstb.1952.0012 2936: 2489: 2306: 2100: 1775: 1624: 1338: 1120: 996: 723: 658: 534: 507: 320: 241:concentration variable 210:diffusion coefficients 166: 40: 4801:Mathematical modeling 4509:(4). Wiley: 500–544. 3878:ACS Synthetic Biology 3557:(4). Wiley: 291–328. 3171:FitzHugh–Nagumo model 3069:numerical mathematics 2937: 2490: 2307: 2101: 1776: 1625: 1339: 1121: 997: 721: 659: 535: 508: 321: 167: 35: 3941:Mathematical Biology 3063:Numerical treatments 2947:dissipative solitons 2641: 2330: 2140: 1791: 1644: 1407: 1216: 1031: 827: 547: 520: 457: 258: 233:dissipative solitons 88: 4811:Reaction mechanisms 4654:2006SJSC...28...47I 4642:SIAM J. Sci. Comput 4570:1995PhyD...86...53B 4476:10.1021/j100131a028 4425:1991PhRvL..66.3083R 4380:2003NJPh....5...58H 4325:1994Natur.369..215L 4188:2021CRPS....200588O 4030:1986RSPSB.229..111M 3973:(1). Wiley: 17–29. 3774:1997PhRvL..78.3781S 3704:2012Chaos..22b3148O 3649:2004PhRvL..93i8303L 3598:2004PhRvL..92l8301V 3491:1961BpJ.....1..445F 3479:Biophysical Journal 3439:1952RSPTB.237...37T 3421:(August 14, 1952). 3380:, Birkhäuser (2004) 3331:1969JFM....38..203S 3280:1969JFM....38..279N 3129:Stochastic geometry 2883: 2852: 2808: 2740: 2712: 2662: 2454: 2371: 2111:equivalence classes 1375:radius of curvature 1236: 1097: 872: 577: 387:, the more general 294: 3210:Bowen, Jonathan P. 3119:Patterns in nature 3104:Phase space method 3053:catalytic surfaces 2932: 2930: 2869: 2838: 2794: 2726: 2698: 2648: 2576:Turing bifurcation 2485: 2483: 2440: 2357: 2302: 2293: 2253: 2213: 2173: 2096: 2087: 1996: 1884: 1771: 1742: 1620: 1614: 1555: 1503: 1450: 1334: 1222: 1116: 1083: 992: 858: 724: 654: 593: 560: 530: 503: 316: 280: 162: 122: 118: 48:chemical reactions 41: 18:Reaction diffusion 4672:10.1137/040605060 3951:978-3-662-08539-4 3812:978-3-642-31250-2 3712:10.1063/1.4729927 3396:, Springer (1979) 3206:Copeland, B. Jack 3161:Fisher's equation 3114:Pattern formation 3099:Chemical kinetics 3032:pattern formation 2972:Rotating spiral. 2864: 2801: 2724: 2688: 2655: 2629: = 100. 2613: = 10. 2067: 2035: 1976: 1934: 1864: 1822: 1728: 1703: 1657: 1379:polar coordinates 1313: 1283: 1246: 1071: 1043: 909: 882: 849: 667:with a potential 649: 592: 501: 425:) that arises in 358:Fisher's equation 335:Fick's second law 111: 110: 16:(Redirected from 4818: 4763: 4760: 4754: 4753: 4743: 4725: 4701: 4695: 4694: 4682: 4676: 4675: 4665: 4637: 4631: 4630: 4629: 4627: 4614: 4608: 4605: 4599: 4596: 4590: 4589: 4553: 4547: 4546: 4536: 4518: 4494: 4488: 4487: 4459: 4453: 4452: 4408: 4402: 4401: 4391: 4359: 4353: 4352: 4333:10.1038/369215a0 4308: 4302: 4299: 4293: 4290: 4284: 4281: 4275: 4274: 4273:. July 30, 2018. 4267: 4261: 4260: 4216: 4210: 4209: 4199: 4167: 4161: 4158: 4152: 4151: 4107: 4101: 4100: 4072: 4066: 4065: 4013: 4007: 4006: 3962: 3956: 3955: 3935: 3929: 3926: 3920: 3919: 3909: 3869: 3863: 3860: 3854: 3853: 3825: 3814: 3800: 3794: 3793: 3757: 3751: 3748: 3742: 3741: 3723: 3683: 3677: 3676: 3632: 3626: 3625: 3581: 3575: 3574: 3546: 3540: 3537: 3531: 3530: 3520: 3502: 3470: 3461: 3460: 3450: 3415: 3409: 3406: 3397: 3390: 3381: 3374: 3368: 3365: 3359: 3358: 3314: 3308: 3307: 3263: 3257: 3254: 3248: 3244: 3238: 3237: 3219:The Turing Guide 3189: 2993: 2984:Target pattern. 2981: 2969: 2941: 2939: 2938: 2933: 2931: 2921: 2920: 2908: 2907: 2893: 2892: 2882: 2877: 2865: 2863: 2862: 2861: 2851: 2846: 2827: 2824: 2807: 2802: 2799: 2783: 2782: 2770: 2769: 2755: 2754: 2745: 2741: 2739: 2734: 2725: 2717: 2711: 2706: 2689: 2681: 2678: 2661: 2656: 2653: 2622: 2606: 2597: = 0. 2590: 2573: 2565:Hopf bifurcation 2563:may be either a 2554: 2548: 2523:action potential 2520: 2494: 2492: 2491: 2486: 2484: 2465: 2464: 2453: 2448: 2429: 2428: 2382: 2381: 2370: 2365: 2346: 2345: 2311: 2309: 2308: 2303: 2298: 2297: 2258: 2257: 2218: 2217: 2178: 2177: 2132: 2124: 2105: 2103: 2102: 2097: 2092: 2091: 2075: 2074: 2069: 2068: 2060: 2043: 2042: 2037: 2036: 2028: 2016: 2015: 2010: 2001: 2000: 1984: 1983: 1978: 1977: 1969: 1965: 1964: 1942: 1941: 1936: 1935: 1927: 1923: 1922: 1905: 1904: 1889: 1888: 1872: 1871: 1866: 1865: 1857: 1853: 1852: 1830: 1829: 1824: 1823: 1815: 1811: 1810: 1780: 1778: 1777: 1772: 1770: 1769: 1768: 1760: 1747: 1746: 1730: 1729: 1721: 1705: 1704: 1696: 1673: 1665: 1664: 1659: 1658: 1650: 1629: 1627: 1626: 1621: 1619: 1618: 1560: 1559: 1549: 1548: 1529: 1528: 1508: 1507: 1500: 1499: 1476: 1475: 1455: 1454: 1444: 1443: 1427: 1426: 1368: 1364: 1361:under the force 1360: 1356: 1350: 1343: 1341: 1340: 1335: 1315: 1314: 1306: 1285: 1284: 1276: 1273: 1272: 1248: 1247: 1239: 1235: 1230: 1208: 1201: 1194: 1170: 1156: 1131:Schrödinger type 1125: 1123: 1122: 1117: 1096: 1091: 1073: 1072: 1064: 1045: 1044: 1036: 1023: 1005:With the ansatz 1001: 999: 998: 993: 988: 987: 977: 976: 960: 959: 943: 942: 911: 910: 902: 884: 883: 875: 871: 866: 851: 850: 842: 839: 838: 819: 789: 775: 767: 763: 749: 715: 713: 711: 710: 704: 701: 677: 663: 661: 660: 655: 650: 647: 644: 640: 624: 623: 618: 614: 610: 609: 594: 585: 576: 571: 556: 555: 539: 537: 536: 531: 529: 528: 512: 510: 509: 504: 502: 500: 492: 491: 490: 480: 469: 468: 446: 423:Zeldovich number 420: 409: 382: 355: 325: 323: 322: 317: 293: 288: 270: 269: 222:travelling waves 219: 203: 202: 193: 171: 169: 168: 163: 155: 147: 139: 134: 133: 123: 105: 100: 99: 38:Gray–Scott model 21: 4826: 4825: 4821: 4820: 4819: 4817: 4816: 4815: 4791: 4790: 4771: 4766: 4761: 4757: 4703: 4702: 4698: 4684: 4683: 4679: 4663:10.1.1.105.2369 4639: 4638: 4634: 4625: 4623: 4619:GollyGang/ready 4616: 4615: 4611: 4606: 4602: 4597: 4593: 4555: 4554: 4550: 4496: 4495: 4491: 4461: 4460: 4456: 4410: 4409: 4405: 4361: 4360: 4356: 4310: 4309: 4305: 4300: 4296: 4291: 4287: 4282: 4278: 4269: 4268: 4264: 4218: 4217: 4213: 4169: 4168: 4164: 4159: 4155: 4109: 4108: 4104: 4074: 4073: 4069: 4015: 4014: 4010: 3979:10.2307/1939378 3964: 3963: 3959: 3952: 3937: 3936: 3932: 3927: 3923: 3871: 3870: 3866: 3861: 3857: 3827: 3826: 3817: 3801: 3797: 3759: 3758: 3754: 3749: 3745: 3685: 3684: 3680: 3634: 3633: 3629: 3583: 3582: 3578: 3548: 3547: 3543: 3538: 3534: 3472: 3471: 3464: 3417: 3416: 3412: 3407: 3400: 3391: 3384: 3375: 3371: 3366: 3362: 3316: 3315: 3311: 3265: 3264: 3260: 3255: 3251: 3245: 3241: 3234: 3204: 3191:Wooley, T. E., 3190: 3186: 3182: 3157: 3085: 3065: 3045: 3028: 3004: 2997: 2994: 2985: 2982: 2973: 2970: 2929: 2928: 2912: 2899: 2894: 2884: 2853: 2831: 2821: 2791: 2790: 2774: 2761: 2756: 2746: 2697: 2693: 2675: 2639: 2638: 2630: 2623: 2614: 2607: 2598: 2591: 2568: 2550: 2538: 2531: 2526: 2499: 2482: 2481: 2456: 2433: 2420: 2414: 2413: 2373: 2350: 2337: 2328: 2327: 2292: 2291: 2286: 2280: 2279: 2274: 2264: 2252: 2251: 2246: 2240: 2239: 2234: 2224: 2212: 2211: 2206: 2200: 2199: 2194: 2184: 2172: 2171: 2166: 2160: 2159: 2154: 2144: 2138: 2137: 2126: 2117: 2086: 2085: 2057: 2054: 2053: 2025: 2018: 2005: 1995: 1994: 1966: 1956: 1953: 1952: 1924: 1914: 1907: 1896: 1883: 1882: 1854: 1844: 1841: 1840: 1812: 1802: 1795: 1789: 1788: 1748: 1741: 1740: 1716: 1715: 1687: 1647: 1642: 1641: 1613: 1612: 1591: 1590: 1565: 1554: 1553: 1537: 1534: 1533: 1517: 1510: 1502: 1501: 1491: 1489: 1483: 1482: 1477: 1467: 1460: 1449: 1448: 1435: 1432: 1431: 1418: 1411: 1405: 1404: 1387: 1366: 1362: 1358: 1352: 1348: 1264: 1214: 1213: 1206: 1196: 1188: 1181: 1172: 1165: 1150: 1143: 1134: 1029: 1028: 1006: 968: 953: 934: 830: 825: 824: 801: 791: 783: 777: 770: 765: 751: 728: 705: 702: 691: 690: 688: 679: 668: 601: 600: 596: 595: 582: 578: 545: 544: 518: 517: 493: 481: 460: 455: 454: 430: 411: 392: 365: 338: 261: 256: 255: 249: 237:Turing patterns 213: 206:diagonal matrix 196: 195: 176: 125: 91: 86: 85: 28: 23: 22: 15: 12: 11: 5: 4824: 4822: 4814: 4813: 4808: 4803: 4793: 4792: 4789: 4788: 4783: 4778: 4770: 4769:External links 4767: 4765: 4764: 4755: 4710:BMC Biophysics 4696: 4677: 4632: 4609: 4600: 4591: 4548: 4489: 4454: 4403: 4354: 4303: 4294: 4285: 4276: 4262: 4211: 4182:(10): 100588. 4162: 4153: 4102: 4067: 4008: 3957: 3950: 3930: 3921: 3884:(2): 277–285. 3864: 3855: 3836:(3): 399–411. 3815: 3795: 3752: 3743: 3678: 3627: 3576: 3541: 3532: 3462: 3410: 3398: 3382: 3369: 3360: 3309: 3258: 3249: 3239: 3233:978-0198747826 3232: 3199:, Chapter 34, 3183: 3181: 3178: 3177: 3176: 3173: 3168: 3163: 3156: 3153: 3152: 3151: 3146: 3144:Turing pattern 3141: 3136: 3131: 3126: 3121: 3116: 3111: 3106: 3101: 3096: 3091: 3084: 3081: 3064: 3061: 3044: 3041: 3027: 3024: 3012:blood clotting 3003: 3000: 2999: 2998: 2995: 2988: 2986: 2983: 2976: 2974: 2971: 2964: 2962: 2943: 2942: 2927: 2924: 2919: 2915: 2911: 2906: 2902: 2898: 2895: 2891: 2887: 2881: 2876: 2872: 2868: 2860: 2856: 2850: 2845: 2841: 2837: 2834: 2830: 2822: 2820: 2817: 2814: 2811: 2806: 2797: 2793: 2792: 2789: 2786: 2781: 2777: 2773: 2768: 2764: 2760: 2757: 2753: 2749: 2744: 2738: 2733: 2729: 2723: 2720: 2715: 2710: 2705: 2701: 2696: 2692: 2687: 2684: 2676: 2674: 2671: 2668: 2665: 2660: 2651: 2647: 2646: 2632: 2631: 2624: 2617: 2615: 2608: 2601: 2599: 2592: 2585: 2583: 2536: 2529: 2496: 2495: 2480: 2477: 2474: 2471: 2468: 2463: 2459: 2452: 2447: 2443: 2439: 2436: 2434: 2432: 2427: 2423: 2419: 2416: 2415: 2412: 2409: 2406: 2403: 2400: 2397: 2394: 2391: 2388: 2385: 2380: 2376: 2369: 2364: 2360: 2356: 2353: 2351: 2349: 2344: 2340: 2336: 2335: 2313: 2312: 2301: 2296: 2290: 2287: 2285: 2282: 2281: 2278: 2275: 2273: 2270: 2269: 2267: 2261: 2256: 2250: 2247: 2245: 2242: 2241: 2238: 2235: 2233: 2230: 2229: 2227: 2221: 2216: 2210: 2207: 2205: 2202: 2201: 2198: 2195: 2193: 2190: 2189: 2187: 2181: 2176: 2170: 2167: 2165: 2162: 2161: 2158: 2155: 2153: 2150: 2149: 2147: 2107: 2106: 2095: 2090: 2084: 2081: 2078: 2073: 2066: 2063: 2056: 2055: 2052: 2049: 2046: 2041: 2034: 2031: 2024: 2023: 2021: 2014: 2009: 2004: 1999: 1993: 1990: 1987: 1982: 1975: 1972: 1963: 1959: 1955: 1954: 1951: 1948: 1945: 1940: 1933: 1930: 1921: 1917: 1913: 1912: 1910: 1903: 1899: 1895: 1892: 1887: 1881: 1878: 1875: 1870: 1863: 1860: 1851: 1847: 1843: 1842: 1839: 1836: 1833: 1828: 1821: 1818: 1809: 1805: 1801: 1800: 1798: 1782: 1781: 1767: 1763: 1759: 1755: 1751: 1745: 1739: 1736: 1733: 1727: 1724: 1718: 1717: 1714: 1711: 1708: 1702: 1699: 1693: 1692: 1690: 1685: 1682: 1679: 1676: 1672: 1668: 1663: 1656: 1653: 1631: 1630: 1617: 1611: 1608: 1605: 1602: 1599: 1596: 1593: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1570: 1568: 1563: 1558: 1552: 1547: 1544: 1540: 1536: 1535: 1532: 1527: 1524: 1520: 1516: 1515: 1513: 1506: 1498: 1494: 1490: 1488: 1485: 1484: 1481: 1478: 1474: 1470: 1466: 1465: 1463: 1458: 1453: 1447: 1442: 1438: 1434: 1433: 1430: 1425: 1421: 1417: 1416: 1414: 1386: 1383: 1351:with position 1345: 1344: 1333: 1330: 1327: 1324: 1321: 1318: 1312: 1309: 1303: 1300: 1297: 1294: 1291: 1288: 1282: 1279: 1271: 1267: 1263: 1260: 1257: 1254: 1251: 1245: 1242: 1234: 1229: 1225: 1221: 1186: 1177: 1148: 1139: 1127: 1126: 1115: 1112: 1109: 1106: 1103: 1100: 1095: 1090: 1086: 1082: 1079: 1076: 1070: 1067: 1060: 1057: 1054: 1051: 1048: 1042: 1039: 1003: 1002: 991: 986: 983: 980: 975: 971: 967: 964: 958: 952: 949: 946: 941: 937: 933: 930: 927: 924: 921: 918: 914: 908: 905: 899: 896: 893: 890: 887: 881: 878: 870: 865: 861: 857: 854: 848: 845: 837: 833: 799: 781: 665: 664: 653: 643: 639: 636: 633: 630: 627: 622: 617: 613: 608: 604: 599: 591: 588: 581: 575: 570: 567: 563: 559: 554: 527: 514: 513: 499: 496: 489: 484: 478: 475: 472: 467: 463: 327: 326: 315: 312: 309: 306: 303: 300: 297: 292: 287: 283: 279: 276: 273: 268: 264: 248: 245: 226:self-organized 173: 172: 161: 158: 154: 150: 146: 142: 138: 132: 128: 121: 117: 114: 108: 104: 98: 94: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4823: 4812: 4809: 4807: 4804: 4802: 4799: 4798: 4796: 4787: 4784: 4782: 4779: 4776: 4773: 4772: 4768: 4759: 4756: 4751: 4747: 4742: 4737: 4733: 4729: 4724: 4719: 4715: 4711: 4707: 4700: 4697: 4692: 4688: 4681: 4678: 4673: 4669: 4664: 4659: 4655: 4651: 4647: 4643: 4636: 4633: 4621: 4620: 4613: 4610: 4604: 4601: 4595: 4592: 4587: 4583: 4579: 4575: 4571: 4567: 4563: 4559: 4552: 4549: 4544: 4540: 4535: 4530: 4526: 4522: 4517: 4512: 4508: 4504: 4500: 4493: 4490: 4485: 4481: 4477: 4473: 4469: 4465: 4458: 4455: 4450: 4446: 4442: 4438: 4434: 4430: 4426: 4422: 4418: 4414: 4407: 4404: 4399: 4395: 4390: 4385: 4381: 4377: 4373: 4369: 4365: 4358: 4355: 4350: 4346: 4342: 4338: 4334: 4330: 4326: 4322: 4318: 4314: 4307: 4304: 4298: 4295: 4289: 4286: 4280: 4277: 4272: 4266: 4263: 4258: 4254: 4250: 4246: 4242: 4238: 4234: 4230: 4226: 4222: 4215: 4212: 4207: 4203: 4198: 4193: 4189: 4185: 4181: 4177: 4173: 4166: 4163: 4157: 4154: 4149: 4145: 4141: 4137: 4133: 4129: 4125: 4121: 4117: 4113: 4106: 4103: 4098: 4094: 4090: 4086: 4082: 4078: 4071: 4068: 4063: 4059: 4055: 4051: 4047: 4043: 4039: 4035: 4031: 4027: 4023: 4019: 4012: 4009: 4004: 4000: 3996: 3992: 3988: 3984: 3980: 3976: 3972: 3968: 3961: 3958: 3953: 3947: 3943: 3942: 3934: 3931: 3925: 3922: 3917: 3913: 3908: 3903: 3899: 3895: 3891: 3887: 3883: 3879: 3875: 3868: 3865: 3859: 3856: 3851: 3847: 3843: 3839: 3835: 3831: 3824: 3822: 3820: 3816: 3813: 3809: 3805: 3802:A. W. Liehr: 3799: 3796: 3791: 3787: 3783: 3779: 3775: 3771: 3767: 3763: 3756: 3753: 3747: 3744: 3739: 3735: 3731: 3727: 3722: 3717: 3713: 3709: 3705: 3701: 3698:(2): 023148. 3697: 3693: 3689: 3682: 3679: 3674: 3670: 3666: 3662: 3658: 3654: 3650: 3646: 3642: 3638: 3631: 3628: 3623: 3619: 3615: 3611: 3607: 3603: 3599: 3595: 3591: 3587: 3580: 3577: 3572: 3568: 3564: 3560: 3556: 3552: 3545: 3542: 3536: 3533: 3528: 3524: 3519: 3514: 3510: 3506: 3501: 3496: 3492: 3488: 3484: 3480: 3476: 3469: 3467: 3463: 3458: 3454: 3449: 3444: 3440: 3436: 3432: 3428: 3424: 3420: 3419:Turing, A. M. 3414: 3411: 3405: 3403: 3399: 3395: 3389: 3387: 3383: 3379: 3373: 3370: 3364: 3361: 3356: 3352: 3348: 3344: 3340: 3336: 3332: 3328: 3324: 3320: 3313: 3310: 3305: 3301: 3297: 3293: 3289: 3285: 3281: 3277: 3273: 3269: 3262: 3259: 3253: 3250: 3243: 3240: 3235: 3229: 3225: 3221: 3220: 3215: 3214:Wilson, Robin 3211: 3207: 3202: 3198: 3194: 3188: 3185: 3179: 3175:Wrinkle paint 3174: 3172: 3169: 3167: 3164: 3162: 3159: 3158: 3154: 3150: 3147: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3115: 3112: 3110: 3107: 3105: 3102: 3100: 3097: 3095: 3092: 3090: 3087: 3086: 3082: 3080: 3078: 3074: 3070: 3062: 3060: 3056: 3054: 3050: 3042: 3040: 3037: 3036:morphogenesis 3033: 3025: 3023: 3019: 3017: 3016:gas discharge 3013: 3009: 3001: 2992: 2987: 2980: 2975: 2968: 2963: 2960: 2958: 2956: 2952: 2948: 2925: 2917: 2913: 2900: 2896: 2889: 2885: 2879: 2874: 2870: 2866: 2858: 2854: 2848: 2843: 2839: 2835: 2832: 2828: 2818: 2812: 2804: 2795: 2787: 2779: 2775: 2762: 2758: 2751: 2747: 2742: 2736: 2731: 2727: 2721: 2718: 2713: 2708: 2703: 2699: 2694: 2690: 2685: 2682: 2672: 2666: 2658: 2649: 2637: 2636: 2635: 2628: 2621: 2616: 2612: 2605: 2600: 2596: 2589: 2584: 2581: 2579: 2577: 2571: 2566: 2562: 2556: 2553: 2547: 2543: 2539: 2532: 2524: 2519: 2515: 2511: 2507: 2503: 2478: 2475: 2472: 2469: 2466: 2461: 2450: 2445: 2441: 2437: 2435: 2430: 2425: 2417: 2410: 2407: 2404: 2401: 2395: 2389: 2386: 2383: 2378: 2367: 2362: 2358: 2354: 2352: 2347: 2342: 2326: 2325: 2324: 2323: 2318: 2299: 2294: 2288: 2283: 2276: 2271: 2265: 2259: 2254: 2248: 2243: 2236: 2231: 2225: 2219: 2214: 2208: 2203: 2196: 2191: 2185: 2179: 2174: 2168: 2163: 2156: 2151: 2145: 2136: 2135: 2134: 2131: 2130: 2122: 2121: 2116: 2112: 2093: 2088: 2079: 2061: 2047: 2029: 2019: 2002: 1997: 1988: 1970: 1961: 1957: 1946: 1928: 1919: 1915: 1908: 1901: 1897: 1893: 1890: 1885: 1876: 1858: 1849: 1834: 1816: 1807: 1796: 1787: 1786: 1785: 1761: 1753: 1749: 1743: 1734: 1722: 1709: 1697: 1688: 1683: 1677: 1674: 1640: 1639: 1638: 1637:perturbation 1636: 1615: 1606: 1603: 1600: 1594: 1584: 1581: 1578: 1572: 1566: 1561: 1556: 1550: 1545: 1542: 1530: 1525: 1522: 1511: 1504: 1496: 1492: 1486: 1479: 1472: 1468: 1461: 1456: 1451: 1445: 1440: 1428: 1423: 1412: 1403: 1402: 1401: 1398: 1396: 1392: 1384: 1382: 1380: 1376: 1370: 1355: 1331: 1328: 1319: 1307: 1298: 1295: 1289: 1277: 1269: 1261: 1258: 1252: 1240: 1232: 1227: 1219: 1212: 1211: 1210: 1203: 1199: 1192: 1185: 1180: 1175: 1168: 1164: 1160: 1159:eigenfunction 1157:is a neutral 1154: 1147: 1142: 1137: 1132: 1113: 1107: 1101: 1098: 1093: 1088: 1080: 1077: 1074: 1065: 1058: 1055: 1052: 1049: 1046: 1037: 1027: 1026: 1025: 1021: 1017: 1013: 1009: 989: 981: 973: 969: 965: 962: 947: 935: 931: 928: 922: 916: 912: 903: 894: 888: 885: 876: 868: 863: 855: 852: 843: 835: 823: 822: 821: 817: 813: 809: 805: 798: 794: 787: 780: 773: 762: 758: 754: 747: 743: 739: 735: 731: 720: 716: 709: 699: 695: 686: 682: 675: 671: 651: 641: 634: 628: 625: 620: 615: 611: 606: 597: 589: 586: 579: 565: 561: 557: 543: 542: 541: 497: 494: 482: 476: 473: 470: 465: 453: 452: 451: 448: 445: 441: 437: 433: 428: 424: 419: 415: 407: 403: 399: 395: 390: 386: 380: 376: 372: 368: 363: 359: 353: 349: 345: 341: 337:. The choice 336: 332: 313: 307: 301: 298: 295: 290: 285: 277: 274: 271: 266: 254: 253: 252: 246: 244: 242: 238: 234: 230: 227: 223: 218: 217: 211: 207: 201: 200: 191: 187: 186: 181: 180: 159: 140: 130: 119: 115: 106: 96: 84: 83: 82: 80: 76: 72: 68: 64: 60: 55: 53: 49: 45: 39: 34: 30: 19: 4758: 4713: 4709: 4699: 4691:The Winnower 4690: 4680: 4648:(1): 47–74. 4645: 4641: 4635: 4626:September 4, 4624:, retrieved 4618: 4612: 4603: 4594: 4561: 4557: 4551: 4506: 4502: 4492: 4467: 4463: 4457: 4416: 4412: 4406: 4371: 4367: 4357: 4316: 4312: 4306: 4297: 4288: 4279: 4265: 4224: 4220: 4214: 4179: 4175: 4165: 4156: 4115: 4111: 4105: 4080: 4076: 4070: 4021: 4017: 4011: 3970: 3966: 3960: 3940: 3933: 3924: 3881: 3877: 3867: 3858: 3833: 3829: 3803: 3798: 3765: 3761: 3755: 3746: 3695: 3691: 3681: 3640: 3636: 3630: 3589: 3585: 3579: 3554: 3550: 3544: 3535: 3482: 3478: 3430: 3426: 3413: 3392:P. C. Fife, 3372: 3363: 3322: 3318: 3312: 3271: 3267: 3261: 3252: 3242: 3218: 3200: 3197:Maini, P. K. 3193:Baker, R. E. 3187: 3066: 3057: 3046: 3029: 3020: 3005: 2944: 2633: 2626: 2610: 2594: 2575: 2569: 2557: 2551: 2545: 2541: 2534: 2527: 2517: 2513: 2509: 2505: 2501: 2497: 2316: 2314: 2128: 2127: 2119: 2118: 2108: 1783: 1632: 1399: 1388: 1371: 1353: 1346: 1204: 1197: 1190: 1183: 1178: 1173: 1166: 1152: 1145: 1140: 1135: 1128: 1019: 1015: 1011: 1007: 1004: 815: 811: 807: 803: 796: 792: 785: 778: 771: 760: 756: 752: 745: 741: 737: 733: 729: 725: 707: 697: 693: 684: 680: 673: 669: 666: 515: 449: 443: 439: 435: 431: 417: 413: 405: 401: 397: 393: 383:to describe 378: 374: 370: 366: 351: 347: 343: 339: 328: 250: 240: 215: 214: 198: 197: 189: 184: 183: 178: 177: 174: 56: 43: 42: 29: 3049:temperature 3043:Experiments 2561:bifurcation 1391:Alan Turing 362:populations 4795:Categories 3721:2152/43281 3180:References 3073:geometries 3051:pulses on 2951:hysteretic 1635:plane wave 1163:eigenvalue 678:such that 427:combustion 4732:2046-1682 4716:(1): 11. 4658:CiteSeerX 4586:0167-2789 4525:0022-3751 4484:0022-3654 4441:0031-9007 4398:1367-2630 4341:0028-0836 4241:0962-8452 4206:240589650 4132:0962-8452 4097:0218-3390 4062:129301761 4046:2053-9193 3987:0012-9658 3898:2161-5063 3850:1385-8947 3790:0031-9007 3730:1054-1500 3665:0031-9007 3614:0031-9007 3571:0022-2526 3509:0006-3495 3457:2054-0280 3355:122764449 3347:0022-1120 3296:0022-1120 3018:systems. 2905:′ 2829:κ 2767:′ 2722:τ 2686:τ 2476:− 2458:∇ 2422:∂ 2418:τ 2405:σ 2402:− 2375:∇ 2339:∂ 2277:− 2272:− 2244:− 2232:− 2209:− 2204:− 2169:− 2157:− 2065:~ 2033:~ 2013:′ 1974:~ 1932:~ 1894:− 1862:~ 1846:∂ 1820:~ 1804:∂ 1762:⋅ 1726:~ 1701:~ 1655:~ 1539:∂ 1519:∂ 1437:∂ 1420:∂ 1395:diffusion 1320:ξ 1311:^ 1290:ξ 1281:^ 1270:ξ 1266:∂ 1253:ξ 1244:^ 1228:ξ 1224:∂ 1161:with the 1085:∂ 1078:− 1069:^ 1056:ψ 1053:λ 1047:ψ 1041:^ 940:′ 932:− 907:~ 886:− 880:~ 860:∂ 847:~ 832:∂ 626:− 603:∂ 574:∞ 569:∞ 566:− 562:∫ 495:δ 483:δ 477:− 462:∂ 282:∂ 263:∂ 127:∇ 120:_ 116:_ 93:∂ 59:chemistry 52:diffusion 4750:25737778 4543:12991237 4449:10043694 4257:20717487 4148:11967813 4003:85421773 3916:33449631 3738:22757555 3673:15447151 3622:15089714 3527:19431309 3304:73620481 3155:Examples 3089:Autowave 3083:See also 2504: ( 2115:Jacobian 764:, where 229:patterns 4741:4347613 4650:Bibcode 4566:Bibcode 4534:1392413 4421:Bibcode 4376:Bibcode 4349:4257570 4321:Bibcode 4249:1978332 4184:Bibcode 4140:1354364 4054:2880348 4026:Bibcode 3995:1939378 3967:Ecology 3907:8486170 3770:Bibcode 3700:Bibcode 3645:Bibcode 3594:Bibcode 3518:1366333 3487:Bibcode 3435:Bibcode 3327:Bibcode 3276:Bibcode 2500:  1182:  1144:  712:⁠ 689:⁠ 412:0 < 356:yields 75:ecology 71:physics 67:geology 63:biology 4748:  4738:  4730:  4660:  4584:  4541:  4531:  4523:  4482:  4447:  4439:  4396:  4347:  4339:  4313:Nature 4255:  4247:  4239:  4204:  4146:  4138:  4130:  4095:  4060:  4052:  4044:  4001:  3993:  3985:  3948:  3914:  3904:  3896:  3848:  3810:  3788:  3736:  3728:  3671:  3663:  3620:  3612:  3569:  3525:  3515:  3507:  3455:  3353:  3345:  3302:  3294:  3230:  3134:MClone 3010:, for 1018:)exp(− 212:, and 175:where 4345:S2CID 4253:S2CID 4202:S2CID 4144:S2CID 4058:S2CID 3999:S2CID 3991:JSTOR 3351:S2CID 3300:S2CID 3247:1-26. 3203:. In 3077:SRSim 2574:or a 2498:with 750:with 416:< 404:(1 − 391:with 377:(1 − 350:(1 − 204:is a 4746:PMID 4728:ISSN 4628:2024 4582:ISSN 4539:PMID 4521:ISSN 4480:ISSN 4445:PMID 4437:ISSN 4394:ISSN 4337:ISSN 4245:PMID 4237:ISSN 4136:PMID 4128:ISSN 4093:ISSN 4050:PMID 4042:ISSN 3983:ISSN 3946:ISBN 3912:PMID 3894:ISSN 3846:ISSN 3808:ISBN 3786:ISSN 3734:PMID 3726:ISSN 3669:PMID 3661:ISSN 3618:PMID 3610:ISSN 3567:ISSN 3523:PMID 3505:ISSN 3453:ISSN 3343:ISSN 3292:ISSN 3228:ISBN 2549:and 2508:) = 806:) + 740:) = 687:) = 438:) = 410:and 400:) = 373:) = 346:) = 69:and 4736:PMC 4718:doi 4668:doi 4574:doi 4529:PMC 4511:doi 4507:117 4472:doi 4429:doi 4384:doi 4329:doi 4317:369 4229:doi 4225:241 4192:doi 4120:doi 4116:248 4085:doi 4034:doi 4022:229 3975:doi 3902:PMC 3886:doi 3838:doi 3834:145 3778:doi 3716:hdl 3708:doi 3653:doi 3602:doi 3559:doi 3513:PMC 3495:doi 3443:doi 3431:237 3335:doi 3284:doi 2572:= 0 1200:= 0 1176:= ∂ 1169:= 0 1138:= ∂ 1129:of 774:= 0 208:of 4797:: 4744:. 4734:. 4726:. 4712:. 4708:. 4689:. 4666:. 4656:. 4646:28 4644:. 4580:. 4572:. 4562:86 4560:. 4537:. 4527:. 4519:. 4505:. 4501:. 4478:. 4468:97 4466:. 4443:. 4435:. 4427:. 4417:66 4415:. 4392:. 4382:. 4370:. 4366:. 4343:. 4335:. 4327:. 4315:. 4251:. 4243:. 4235:. 4223:. 4200:. 4190:. 4178:. 4174:. 4142:. 4134:. 4126:. 4114:. 4091:. 4081:03 4079:. 4056:. 4048:. 4040:. 4032:. 4020:. 3997:. 3989:. 3981:. 3971:75 3969:. 3910:. 3900:. 3892:. 3882:10 3880:. 3876:. 3844:. 3832:. 3818:^ 3784:. 3776:. 3766:78 3764:. 3732:. 3724:. 3714:. 3706:. 3696:22 3694:. 3690:. 3667:. 3659:. 3651:. 3641:93 3639:. 3616:. 3608:. 3600:. 3590:92 3588:. 3565:. 3555:52 3553:. 3521:. 3511:. 3503:. 3493:. 3481:. 3477:. 3465:^ 3451:. 3441:. 3429:. 3425:. 3401:^ 3385:^ 3349:. 3341:. 3333:. 3323:38 3321:. 3298:. 3290:. 3282:. 3272:38 3270:. 3226:. 3222:. 3212:; 3208:; 3195:, 2544:, 2540:, 2533:, 2516:− 2512:− 2510:λu 1633:a 1397:. 1369:. 1332:0. 1020:λt 1010:= 814:, 795:= 761:ct 759:− 755:= 736:, 442:− 408:)e 243:. 188:, 65:, 4752:. 4720:: 4714:7 4693:. 4674:. 4670:: 4652:: 4588:. 4576:: 4568:: 4545:. 4513:: 4486:. 4474:: 4451:. 4431:: 4423:: 4400:. 4386:: 4378:: 4372:5 4351:. 4331:: 4323:: 4259:. 4231:: 4208:. 4194:: 4186:: 4180:2 4150:. 4122:: 4099:. 4087:: 4064:. 4036:: 4028:: 4005:. 3977:: 3954:. 3918:. 3888:: 3852:. 3840:: 3792:. 3780:: 3772:: 3740:. 3718:: 3710:: 3702:: 3675:. 3655:: 3647:: 3624:. 3604:: 3596:: 3573:. 3561:: 3529:. 3497:: 3489:: 3483:1 3459:. 3445:: 3437:: 3357:. 3337:: 3329:: 3306:. 3286:: 3278:: 3236:. 2926:. 2923:) 2918:h 2914:u 2910:( 2901:f 2897:= 2890:2 2886:k 2880:2 2875:u 2871:d 2867:+ 2859:2 2855:k 2849:2 2844:v 2840:d 2836:+ 2833:1 2819:: 2816:) 2813:k 2810:( 2805:T 2800:n 2796:q 2788:, 2785:) 2780:h 2776:u 2772:( 2763:f 2759:= 2752:2 2748:k 2743:) 2737:2 2732:v 2728:d 2719:1 2714:+ 2709:2 2704:u 2700:d 2695:( 2691:+ 2683:1 2673:: 2670:) 2667:k 2664:( 2659:H 2654:n 2650:q 2627:t 2611:t 2595:t 2570:k 2552:λ 2546:σ 2542:τ 2537:v 2535:d 2530:u 2528:d 2518:κ 2514:u 2506:u 2502:f 2479:v 2473:u 2470:+ 2467:v 2462:2 2451:2 2446:v 2442:d 2438:= 2431:v 2426:t 2411:, 2408:v 2399:) 2396:u 2393:( 2390:f 2387:+ 2384:u 2379:2 2368:2 2363:u 2359:d 2355:= 2348:u 2343:t 2300:. 2295:) 2289:+ 2284:+ 2266:( 2260:, 2255:) 2249:+ 2237:+ 2226:( 2220:, 2215:) 2197:+ 2192:+ 2186:( 2180:, 2175:) 2164:+ 2152:+ 2146:( 2129:k 2123:′ 2120:R 2094:. 2089:) 2083:) 2080:t 2077:( 2072:k 2062:v 2051:) 2048:t 2045:( 2040:k 2030:u 2020:( 2008:R 2003:+ 1998:) 1992:) 1989:t 1986:( 1981:k 1971:v 1962:v 1958:D 1950:) 1947:t 1944:( 1939:k 1929:u 1920:u 1916:D 1909:( 1902:2 1898:k 1891:= 1886:) 1880:) 1877:t 1874:( 1869:k 1859:v 1850:t 1838:) 1835:t 1832:( 1827:k 1817:u 1808:t 1797:( 1766:x 1758:k 1754:i 1750:e 1744:) 1738:) 1735:t 1732:( 1723:v 1713:) 1710:t 1707:( 1698:u 1689:( 1684:= 1681:) 1678:t 1675:, 1671:x 1667:( 1662:k 1652:q 1616:) 1610:) 1607:v 1604:, 1601:u 1598:( 1595:G 1588:) 1585:v 1582:, 1579:u 1576:( 1573:F 1567:( 1562:+ 1557:) 1551:v 1546:x 1543:x 1531:u 1526:x 1523:x 1512:( 1505:) 1497:v 1493:D 1487:0 1480:0 1473:u 1469:D 1462:( 1457:= 1452:) 1446:v 1441:t 1429:u 1424:t 1413:( 1367:c 1363:R 1359:ξ 1354:û 1349:D 1329:= 1326:) 1323:) 1317:( 1308:u 1302:( 1299:R 1296:+ 1293:) 1287:( 1278:u 1262:c 1259:+ 1256:) 1250:( 1241:u 1233:2 1220:D 1207:c 1198:λ 1193:) 1191:x 1189:( 1187:0 1184:u 1179:x 1174:ψ 1167:λ 1155:) 1153:x 1151:( 1149:0 1146:u 1141:x 1136:ψ 1114:, 1111:) 1108:x 1105:( 1102:U 1099:+ 1094:2 1089:x 1081:D 1075:= 1066:H 1059:, 1050:= 1038:H 1022:) 1016:x 1014:( 1012:ψ 1008:ũ 990:. 985:) 982:x 979:( 974:0 970:u 966:= 963:u 957:| 951:) 948:u 945:( 936:R 929:= 926:) 923:x 920:( 917:U 913:, 904:u 898:) 895:x 892:( 889:U 877:u 869:2 864:x 856:D 853:= 844:u 836:t 818:) 816:t 812:x 810:( 808:ũ 804:x 802:( 800:0 797:u 793:u 788:) 786:x 784:( 782:0 779:u 772:c 766:c 757:x 753:ξ 748:) 746:ξ 744:( 742:û 738:t 734:x 732:( 730:u 714:. 708:u 706:d 703:/ 700:) 698:u 696:( 694:V 692:d 685:u 683:( 681:R 676:) 674:u 672:( 670:V 652:x 648:d 642:] 638:) 635:u 632:( 629:V 621:2 616:) 612:u 607:x 598:( 590:2 587:D 580:[ 558:= 553:L 526:L 498:u 488:L 474:= 471:u 466:t 444:u 440:u 436:u 434:( 432:R 421:( 418:∞ 414:β 406:u 402:u 398:u 396:( 394:R 381:) 379:u 375:u 371:u 369:( 367:R 354:) 352:u 348:u 344:u 342:( 340:R 314:, 311:) 308:u 305:( 302:R 299:+ 296:u 291:2 286:x 278:D 275:= 272:u 267:t 216:R 199:D 192:) 190:t 185:x 182:( 179:q 160:, 157:) 153:q 149:( 145:R 141:+ 137:q 131:2 113:D 107:= 103:q 97:t 20:)

Index

Reaction diffusion

Gray–Scott model
chemical reactions
diffusion
chemistry
biology
geology
physics
ecology
parabolic partial differential equations
diagonal matrix
diffusion coefficients
travelling waves
self-organized
patterns
dissipative solitons
Turing patterns
Kolmogorov–Petrovsky–Piskunov equation
Fick's second law
Fisher's equation
populations
Rayleigh–Bénard convection
Zeldovich–Frank-Kamenetskii equation
Zeldovich number
combustion

Schrödinger type
eigenfunction
eigenvalue

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.