Knowledge (XXG)

Reaction rate constant

Source 📝

1861:, the energy needed to overcome the activation barrier, has a slightly different meaning in each theory. In practice, experimental data does not generally allow a determination to be made as to which is "correct" in terms of best fit. Hence, it must be remembered that all three are conceptual frameworks that make numerous assumptions, both realistic and unrealistic, in their derivations. As a result, they are capable of providing different insights into a system. 1534: 1626:, in which reactants are viewed as hard spheres with a particular cross-section, provided yet another common way to rationalize and model the temperature dependence of the rate constant, although this approach has gradually fallen into disuse. The equation for the rate constant is similar in functional form to both the Arrhenius and Eyring equations: 1283: 1618:
The biggest difference between the two theories is that Arrhenius theory attempts to model the reaction (single- or multi-step) as a whole, while transition state theory models the individual elementary steps involved. Thus, they are not directly comparable, unless the reaction in question involves
568:
There are few examples of elementary steps that are termolecular or higher order, due to the low probability of three or more molecules colliding in their reactive conformations and in the right orientation relative to each other to reach a particular transition state. There are, however, some
1937:
Rate constant can be calculated for elementary reactions by molecular dynamics simulations. One possible approach is to calculate the mean residence time of the molecule in the reactant state. Although this is feasible for small systems with short residence times, this approach is not widely
353:
is a unimolecular rate constant. Since a reaction requires a change in molecular geometry, unimolecular rate constants cannot be larger than the frequency of a molecular vibration. Thus, in general, a unimolecular rate constant has an upper limit of
1954:
The theory is based on the assumption that the reaction can be described by a reaction coordinate, and that we can apply Boltzmann distribution at least in the reactant state. A new, especially reactive segment of the reactant, called the
1529:{\displaystyle k(T)=\kappa {\frac {k_{\mathrm {B} }T}{h}}(c^{\ominus })^{1-M}e^{-\Delta G^{\ddagger }/RT}=\left(\kappa {\frac {k_{\mathrm {B} }T}{h}}(c^{\ominus })^{1-M}\right)e^{\Delta S^{\ddagger }/R}e^{-\Delta H^{\ddagger }/RT},} 1916:
Calculation of rate constants of the processes of generation and relaxation of electronically and vibrationally excited particles are of significant importance. It is used, for example, in the computer simulation of processes in
1243:, or frequency factor (not to be confused here with the reactant A) takes into consideration the frequency at which reactant molecules are colliding and the likelihood that a collision leads to a successful reaction. Here, 796: 2025: 961: 569:
termolecular examples in the gas phase. Most involve the recombination of two atoms or small radicals or molecules in the presence of an inert third body which carries off excess energy, such as O +
1182: 1839: 1080: 2048:
is the rate constant from the saddle domain. The first can be simply calculated from the free energy surface, the latter is easily accessible from short molecular dynamics simulations
452:
is a bimolecular rate constant. Bimolecular rate constants have an upper limit that is determined by how frequently molecules can collide, and the fastest such processes are limited by
1694: 695: 864: 830: 2219:→ 2 NOCl, etc.) have also been suggested as examples of termolecular elementary processes. However, other authors favor a two-step process, each of which is bimolecular: (NO + 641:
For a first-order reaction (including a unimolecular one-step process), there is a direct relationship between the unimolecular rate constant and the half-life of the reaction:
1749: 174: 2576:
West, Anthony M.A.; Elber, Ron; Shalloway, David (2007). "Extending molecular dynamics time scales with milestoning: Example of complex kinetics in a solvated peptide".
633:. In cases where a termolecular step might plausibly be proposed, one of the reactants is generally present in high concentration (e.g., as a solvent or diluent gas). 1964: 536: 423: 324: 214:
the reaction is taking place throughout the volume of the solution. (For a reaction taking place at a boundary, one would use moles of A or B per unit area instead.)
563: 450: 351: 1938:
applicable as reactions are often rare events on molecular scale. One simple approach to overcome this problem is Divided Saddle Theory. Such other methods as the
728: 800:
a quantity that can be regarded as the free energy change needed to reach the transition state. In particular, this energy barrier incorporates both enthalpic
198: 51: 2113: 1574:. In effect, the free energy of activation takes into account both the activation energy and the likelihood of successful collision, while the factor 734: 876: 2560: 2270: 2156: 1089: 988:) of approximately 2 hours. For a one-step process taking place at room temperature, the corresponding Gibbs free energy of activation (Δ 1772: 2428: 2123: 2403: 2378: 2342: 1017: 1595:) ensures the dimensional correctness of the rate constant when the transition state in question is bimolecular or higher. Here, 1857:, and 1 give Arrhenius theory, collision theory, and transition state theory, respectively, although the imprecise notion of Δ 1631: 2516:
Chandler, David (1978). "Statistical mechanics of isomerization dynamics in liquids and the transition state approximation".
2475: 2625: 101: 117: 1939: 1608: 1012:
at which a reaction proceeds. The rate constant as a function of thermodynamic temperature is then given by:
1275: 698: 644: 1240: 1221: 839: 805: 2337:. Treichel, Paul., Townsend, John R. (7th ed.). Belmont, Calif.: Thomson Brooks/ Cole. p. 703. 1543: 1267: 981:. As useful rules of thumb, a first-order reaction with a rate constant of 10 s will have a half-life ( 1713: 2585: 2525: 2453: 2299: 2062: 1925:. First-principle based models should be used for such calculation. It can be done with the help of 2087: 1926: 1877: 203: 1943: 1599:
is the standard concentration, generally chosen based on the unit of concentration used (usually
1001: 978: 273: 242: 226: 276:. Almost all elementary steps are either unimolecular or bimolecular. For a unimolecular step 1607:
is the molecularity of the transition state. Lastly, κ, usually set to unity, is known as the
2601: 2556: 2498: 2434: 2424: 2399: 2374: 2348: 2338: 2315: 2266: 2258: 2152: 2129: 2119: 1870: 1194: 1005: 56: 20: 1004:
is an elementary treatment that gives the quantitative basis of the relationship between the
475: 373: 285: 2593: 2533: 2490: 2366: 2307: 1922: 1918: 1623: 541: 428: 329: 1271: 970: 869: 704: 630: 2589: 2529: 2303: 211: 183: 36: 1542:
is the free energy of activation, a parameter that incorporates both the enthalpy and
2619: 2057: 1009: 265: 109: 2067: 1612: 1202: 791:{\displaystyle {\Delta G^{\ddagger }=\Delta H^{\ddagger }-T\Delta S^{\ddagger }}} 2020:{\displaystyle k=k_{\mathrm {SD} }\cdot \alpha _{\mathrm {RS} }^{\mathrm {SD} }} 1214: 207: 1213:
are experimentally determined partial orders in and , respectively. Since at
2352: 2319: 2118:. Richardson, Kathleen Schueller (3rd ed.). New York: Harper & Row. 2041:
is the conversion factor between the reactant state and saddle domain, while
1546:
change needed to reach the transition state. The temperature dependence of Δ
202:
is the reaction rate constant that depends on temperature, and and are the
55:) is a proportionality constant which quantifies the rate and direction of a 2133: 956:{\textstyle k(T)={\frac {k_{\mathrm {B} }T}{h}}e^{-\Delta G^{\ddagger }/RT}} 453: 2605: 2502: 2438: 272:
a relationship between stoichiometry and rate law, as determined by the
2265:. Comprehensive Chemical Kinetics. Vol. 6. Elsevier. p. 174. 1710:
is energy input required to overcome the activation barrier. Of note,
1224:, one can expect the proportion of collisions with energy greater than 456:. Thus, in general, a bimolecular rate constant has an upper limit of 2597: 2494: 2394:
Steinfeld, Jeffrey I.; Francisco, Joseph S.; Hase, William L. (1999).
2311: 2537: 2259:"5. Reactions of the Oxides of Nitrogen §5.5 Reactions with Chlorine" 868:
changes that need to be achieved for the reaction to take place: The
2553:
Algorithms for Chemical Computations, ACS Symposium Series No. 46
2476:"Divided Saddle Theory: A New Idea for Rate Constant Calculation" 1550:
is used to compute these parameters, the enthalpy of activation Δ
1904:
For order three, the rate constant has units of L·mol·s (or M·s)
1907:
For order four, the rate constant has units of L·mol·s (or M·s)
1895:
For order zero, the rate constant has units of mol·L·s (or M·s)
1266:
Another popular model that is derived using more sophisticated
617:. One well-established example is the termolecular step 2 I + 1901:
For order two, the rate constant has units of L·mol·s (or M·s)
62:
For a reaction between reactants A and B to form a product C,
2257:
Compton, R.G.; Bamford, C. H.; Tipper, C.F.H., eds. (2014) .
2171:
The reactions of nitric oxide with the diatomic molecules
1946:
have also been developed for rate constant calculations.
1763:
All three theories model the temperature dependence of
1755:
different from both the Arrhenius and Eyring models.
879: 647: 1967: 1869:
The units of the rate constant depend on the overall
1775: 1716: 1634: 1286: 1092: 1020: 842: 808: 737: 707: 544: 478: 431: 376: 332: 288: 186: 120: 39: 1959:, is introduced, and the rate constant is factored: 1177:{\displaystyle r=Ae^{-E_{\mathrm {a} }/RT}^{m}^{n},} 59:
by relating it with the concentration of reactants.
233:generally equal to the stoichiometric coefficients 2286:Sullivan, John H. (1967-01-01). "Mechanism of the 2019: 1892:), the rate constant has units of mol·L·s (or M·s) 1833: 1743: 1688: 1528: 1176: 1074: 955: 858: 824: 790: 722: 689: 557: 530: 444: 417: 345: 318: 192: 168: 45: 2551:Bennett, C. H. (1977). Christofferson, R. (ed.). 1834:{\displaystyle k(T)=CT^{\alpha }e^{-\Delta E/RT}} 1588:gives the frequency of molecular collision. 2555:. Washington, D.C.: American Chemical Society. 2373:(3rd ed.). Harper & Row. p. 113. 1898:For order one, the rate constant has units of s 701:gives a relationship between the rate constant 1075:{\displaystyle k(T)=Ae^{-E_{\mathrm {a} }/RT}} 2263:Reactions of Non-metallic Inorganic Compounds 1611:, a parameter which essentially serves as a " 8: 2421:Determination of organic reaction mechanisms 2398:(2nd ed.). Prentice Hall. p. 301. 2151:(3rd ed.). John Wiley. pp. 226–7. 1880:of mol·L (sometimes abbreviated as M), then 1220:the molecules have energies according to a 256:) is called the overall order of reaction. 2147:Moore, John W.; Pearson, Ralph G. (1981). 1702:is the steric (or probability) factor and 16:Coefficient of rate of a chemical reaction 2115:Mechanism and theory in organic chemistry 2007: 2006: 1997: 1996: 1979: 1978: 1966: 1818: 1808: 1798: 1774: 1731: 1727: 1715: 1670: 1660: 1633: 1510: 1504: 1493: 1479: 1473: 1465: 1444: 1434: 1411: 1410: 1403: 1379: 1373: 1362: 1346: 1336: 1313: 1312: 1305: 1285: 1165: 1156: 1147: 1138: 1122: 1115: 1114: 1106: 1091: 1059: 1052: 1051: 1043: 1019: 940: 934: 923: 903: 902: 895: 878: 850: 841: 816: 807: 781: 762: 746: 738: 736: 706: 669: 656: 652: 646: 549: 543: 520: 509: 498: 489: 477: 436: 430: 407: 396: 387: 375: 337: 331: 308: 299: 287: 185: 160: 151: 142: 133: 119: 38: 1689:{\displaystyle k(T)=PZe^{-\Delta E/RT},} 730:and the Gibbs free energy of activation 2079: 1751:, making the temperature dependence of 690:{\textstyle t_{1/2}={\frac {\ln 2}{k}}} 245:and can be determined experimentally. 2474:Daru, János; Stirling, András (2014). 2469: 2467: 7: 859:{\displaystyle \Delta S^{\ddagger }} 825:{\displaystyle \Delta H^{\ddagger }} 2335:Chemistry & chemical reactivity 870:result from transition state theory 2011: 2008: 2001: 1998: 1983: 1980: 1812: 1664: 1615:" for transition state theory. 1497: 1466: 1412: 1366: 1314: 1235:. The constant of proportionality 1157: 1139: 1116: 1053: 927: 904: 843: 809: 774: 755: 739: 521: 510: 499: 472:the reaction rate is described by 408: 397: 370:the reaction rate is described by 309: 282:the reaction rate is described by 152: 134: 14: 1706:is the collision frequency, and Δ 1558:, based on the defining formula Δ 565:is a termolecular rate constant. 112:is often found to have the form: 1876:If concentration is measured in 1744:{\displaystyle Z\propto T^{1/2}} 992:) is approximately 23 kcal/mol. 637:Relationship to other parameters 2578:The Journal of Chemical Physics 2292:The Journal of Chemical Physics 1619:only a single elementary step. 1554:and the entropy of activation Δ 1247:has the same dimensions as an ( 1084:The reaction rate is given by: 2396:Chemical Kinetics and Dynamics 1785: 1779: 1767:using an equation of the form 1644: 1638: 1441: 1427: 1343: 1329: 1296: 1290: 1162: 1153: 1144: 1135: 1030: 1024: 889: 883: 717: 711: 525: 517: 514: 506: 503: 495: 412: 404: 401: 393: 313: 305: 157: 148: 139: 130: 1: 241:. Instead they depend on the 210:per unit volume of solution, 2419:Carpenter, Barry K. (1984). 2290:Hydrogen—Iodine Reaction". 169:{\displaystyle r=k^{m}^{n}} 102:stoichiometric coefficients 2642: 1940:Bennett Chandler procedure 1933:Rate constant calculations 248:Sum of m and n, that is, ( 2112:Lowry, Thomas H. (1987). 2088:"Chemical Kinetics Notes" 996:Dependence on temperature 206:of substances A and B in 29:reaction rate coefficient 2454:"Differential Rate Laws" 1609:transmission coefficient 631:hydrogen-iodine reaction 466:For a termolecular step 1276:transition state theory 1255:)-order rate constant ( 699:Transition state theory 531:{\displaystyle r=k_{3}} 418:{\displaystyle r=k_{2}} 364:For a bimolecular step 319:{\displaystyle r=k_{1}} 2483:J. Chem. Theory Comput 2333:Kotz, John C. (2009). 2149:Kinetics and Mechanism 2021: 1835: 1745: 1690: 1622:Finally, in the past, 1603:= 1 mol L = 1 M), and 1530: 1270:considerations is the 1268:statistical mechanical 1241:pre-exponential factor 1222:Boltzmann distribution 1178: 1076: 957: 860: 826: 792: 724: 691: 559: 532: 446: 419: 347: 320: 194: 170: 47: 25:reaction rate constant 2255:+ NO → 2 NOCl). See: 2022: 1950:Divided saddle theory 1836: 1746: 1691: 1531: 1179: 1077: 958: 861: 827: 793: 725: 692: 560: 558:{\displaystyle k_{3}} 533: 447: 445:{\displaystyle k_{2}} 420: 348: 346:{\displaystyle k_{1}} 321: 195: 171: 83:A and B are reactants 48: 2092:www.chem.arizona.edu 2063:Equilibrium constant 1965: 1773: 1759:Comparison of models 1714: 1632: 1284: 1090: 1018: 877: 840: 806: 735: 723:{\displaystyle k(T)} 705: 645: 542: 476: 429: 374: 330: 286: 204:molar concentrations 184: 118: 37: 2590:2007JChPh.126n5104W 2530:1978JChPh..68.2959C 2423:. New York: Wiley. 2304:1967JChPh..46...73S 2016: 1927:computer simulation 225:are called partial 2017: 1992: 1843:for some constant 1831: 1741: 1686: 1526: 1174: 1072: 1002:Arrhenius equation 979:molar gas constant 953: 856: 822: 788: 720: 687: 555: 528: 442: 415: 343: 316: 274:law of mass action 243:reaction mechanism 227:orders of reaction 190: 166: 43: 2626:Chemical kinetics 2598:10.1063/1.2716389 2562:978-0-8412-0371-6 2495:10.1021/ct400970y 2458:Chemical Kinetics 2371:Chemical Kinetics 2367:Laidler, Keith J. 2312:10.1063/1.1840433 2272:978-0-08-086801-1 2158:978-0-471-03558-9 1871:order of reaction 1425: 1327: 1195:activation energy 1006:activation energy 917: 685: 193:{\displaystyle k} 57:chemical reaction 46:{\displaystyle k} 21:chemical kinetics 2633: 2610: 2609: 2573: 2567: 2566: 2548: 2542: 2541: 2538:10.1063/1.436049 2513: 2507: 2506: 2489:(3): 1121–1127. 2480: 2471: 2462: 2461: 2449: 2443: 2442: 2416: 2410: 2409: 2391: 2385: 2384: 2363: 2357: 2356: 2330: 2324: 2323: 2283: 2277: 2276: 2254: 2253: 2252: 2242: 2241: 2240: 2230: 2229: 2228: 2218: 2217: 2216: 2206: 2205: 2204: 2194: 2193: 2192: 2182: 2181: 2180: 2169: 2163: 2162: 2144: 2138: 2137: 2109: 2103: 2102: 2100: 2098: 2084: 2040: 2039: 2026: 2024: 2023: 2018: 2015: 2014: 2005: 2004: 1988: 1987: 1986: 1923:microelectronics 1919:plasma chemistry 1912:Plasma and gases 1856: 1855: 1851: 1840: 1838: 1837: 1832: 1830: 1829: 1822: 1803: 1802: 1750: 1748: 1747: 1742: 1740: 1739: 1735: 1695: 1693: 1692: 1687: 1682: 1681: 1674: 1624:collision theory 1535: 1533: 1532: 1527: 1522: 1521: 1514: 1509: 1508: 1488: 1487: 1483: 1478: 1477: 1460: 1456: 1455: 1454: 1439: 1438: 1426: 1421: 1417: 1416: 1415: 1404: 1391: 1390: 1383: 1378: 1377: 1357: 1356: 1341: 1340: 1328: 1323: 1319: 1318: 1317: 1306: 1183: 1181: 1180: 1175: 1170: 1169: 1160: 1152: 1151: 1142: 1134: 1133: 1126: 1121: 1120: 1119: 1081: 1079: 1078: 1073: 1071: 1070: 1063: 1058: 1057: 1056: 964: 962: 960: 959: 954: 952: 951: 944: 939: 938: 918: 913: 909: 908: 907: 896: 867: 865: 863: 862: 857: 855: 854: 833: 831: 829: 828: 823: 821: 820: 799: 797: 795: 794: 789: 787: 786: 785: 767: 766: 751: 750: 729: 727: 726: 721: 696: 694: 693: 688: 686: 681: 670: 665: 664: 660: 628: 627: 626: 616: 615: 614: 604: 603: 602: 592: 591: 590: 580: 579: 578: 564: 562: 561: 556: 554: 553: 537: 535: 534: 529: 524: 513: 502: 494: 493: 451: 449: 448: 443: 441: 440: 424: 422: 421: 416: 411: 400: 392: 391: 352: 350: 349: 344: 342: 341: 325: 323: 322: 317: 312: 304: 303: 260:Elementary steps 201: 199: 197: 196: 191: 175: 173: 172: 167: 165: 164: 155: 147: 146: 137: 54: 52: 50: 49: 44: 2641: 2640: 2636: 2635: 2634: 2632: 2631: 2630: 2616: 2615: 2614: 2613: 2575: 2574: 2570: 2563: 2550: 2549: 2545: 2515: 2514: 2510: 2478: 2473: 2472: 2465: 2452:Blauch, David. 2451: 2450: 2446: 2431: 2418: 2417: 2413: 2406: 2393: 2392: 2388: 2381: 2365: 2364: 2360: 2345: 2332: 2331: 2327: 2285: 2284: 2280: 2273: 2256: 2251: 2248: 2247: 2246: 2244: 2239: 2236: 2235: 2234: 2232: 2227: 2224: 2223: 2222: 2220: 2215: 2212: 2211: 2210: 2208: 2203: 2200: 2199: 2198: 2196: 2191: 2188: 2187: 2186: 2184: 2179: 2176: 2175: 2174: 2172: 2170: 2166: 2159: 2146: 2145: 2141: 2126: 2111: 2110: 2106: 2096: 2094: 2086: 2085: 2081: 2076: 2054: 2047: 2038: 2035: 2034: 2033: 1974: 1963: 1962: 1952: 1935: 1914: 1867: 1853: 1849: 1848: 1847:, where α = 0, 1804: 1794: 1771: 1770: 1761: 1723: 1712: 1711: 1656: 1630: 1629: 1580: 1500: 1489: 1469: 1461: 1440: 1430: 1406: 1405: 1399: 1395: 1369: 1358: 1342: 1332: 1308: 1307: 1282: 1281: 1272:Eyring equation 1230: 1192: 1161: 1143: 1110: 1102: 1088: 1087: 1047: 1039: 1016: 1015: 998: 987: 971:Planck constant 930: 919: 898: 897: 875: 874: 873: 846: 838: 837: 835: 812: 804: 803: 801: 777: 758: 742: 733: 732: 731: 703: 702: 671: 648: 643: 642: 639: 625: 622: 621: 620: 618: 613: 610: 609: 608: 606: 601: 598: 597: 596: 594: 589: 586: 585: 584: 582: 577: 574: 573: 572: 570: 545: 540: 539: 485: 474: 473: 470: 462: 432: 427: 426: 383: 372: 371: 368: 360: 333: 328: 327: 295: 284: 283: 280: 266:elementary step 262: 182: 181: 179: 156: 138: 116: 115: 77: 35: 34: 32: 17: 12: 11: 5: 2639: 2637: 2629: 2628: 2618: 2617: 2612: 2611: 2584:(14): 145104. 2568: 2561: 2543: 2508: 2463: 2444: 2430:978-0471893691 2429: 2411: 2404: 2386: 2379: 2358: 2343: 2325: 2278: 2271: 2249: 2237: 2225: 2213: 2207:(e.g., 2 NO + 2201: 2189: 2177: 2164: 2157: 2139: 2125:978-0060440848 2124: 2104: 2078: 2077: 2075: 2072: 2071: 2070: 2065: 2060: 2053: 2050: 2045: 2036: 2013: 2010: 2003: 2000: 1995: 1991: 1985: 1982: 1977: 1973: 1970: 1951: 1948: 1934: 1931: 1913: 1910: 1909: 1908: 1905: 1902: 1899: 1896: 1893: 1866: 1863: 1828: 1825: 1821: 1817: 1814: 1811: 1807: 1801: 1797: 1793: 1790: 1787: 1784: 1781: 1778: 1760: 1757: 1738: 1734: 1730: 1726: 1722: 1719: 1685: 1680: 1677: 1673: 1669: 1666: 1663: 1659: 1655: 1652: 1649: 1646: 1643: 1640: 1637: 1578: 1525: 1520: 1517: 1513: 1507: 1503: 1499: 1496: 1492: 1486: 1482: 1476: 1472: 1468: 1464: 1459: 1453: 1450: 1447: 1443: 1437: 1433: 1429: 1424: 1420: 1414: 1409: 1402: 1398: 1394: 1389: 1386: 1382: 1376: 1372: 1368: 1365: 1361: 1355: 1352: 1349: 1345: 1339: 1335: 1331: 1326: 1322: 1316: 1311: 1304: 1301: 1298: 1295: 1292: 1289: 1228: 1190: 1173: 1168: 1164: 1159: 1155: 1150: 1146: 1141: 1137: 1132: 1129: 1125: 1118: 1113: 1109: 1105: 1101: 1098: 1095: 1069: 1066: 1062: 1055: 1050: 1046: 1042: 1038: 1035: 1032: 1029: 1026: 1023: 997: 994: 985: 950: 947: 943: 937: 933: 929: 926: 922: 916: 912: 906: 901: 894: 891: 888: 885: 882: 853: 849: 845: 819: 815: 811: 784: 780: 776: 773: 770: 765: 761: 757: 754: 749: 745: 741: 719: 716: 713: 710: 684: 680: 677: 674: 668: 663: 659: 655: 651: 638: 635: 629:→ 2 HI in the 623: 611: 599: 587: 575: 552: 548: 527: 523: 519: 516: 512: 508: 505: 501: 497: 492: 488: 484: 481: 468: 460: 439: 435: 414: 410: 406: 403: 399: 395: 390: 386: 382: 379: 366: 358: 340: 336: 315: 311: 307: 302: 298: 294: 291: 278: 261: 258: 217:The exponents 189: 163: 159: 154: 150: 145: 141: 136: 132: 129: 126: 123: 106: 105: 87: 86:C is a product 84: 64: 42: 15: 13: 10: 9: 6: 4: 3: 2: 2638: 2627: 2624: 2623: 2621: 2607: 2603: 2599: 2595: 2591: 2587: 2583: 2579: 2572: 2569: 2564: 2558: 2554: 2547: 2544: 2539: 2535: 2531: 2527: 2523: 2519: 2518:J. Chem. Phys 2512: 2509: 2504: 2500: 2496: 2492: 2488: 2484: 2477: 2470: 2468: 2464: 2459: 2455: 2448: 2445: 2440: 2436: 2432: 2426: 2422: 2415: 2412: 2407: 2405:0-13-737123-3 2401: 2397: 2390: 2387: 2382: 2380:0-06-043862-2 2376: 2372: 2368: 2362: 2359: 2354: 2350: 2346: 2344:9780495387039 2340: 2336: 2329: 2326: 2321: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2289: 2282: 2279: 2274: 2268: 2264: 2260: 2168: 2165: 2160: 2154: 2150: 2143: 2140: 2135: 2131: 2127: 2121: 2117: 2116: 2108: 2105: 2093: 2089: 2083: 2080: 2073: 2069: 2066: 2064: 2061: 2059: 2058:Reaction rate 2056: 2055: 2051: 2049: 2044: 2032: 2027: 1993: 1989: 1975: 1971: 1968: 1960: 1958: 1957:saddle domain 1949: 1947: 1945: 1941: 1932: 1930: 1928: 1924: 1920: 1911: 1906: 1903: 1900: 1897: 1894: 1891: 1887: 1883: 1882: 1881: 1879: 1874: 1872: 1864: 1862: 1860: 1846: 1841: 1826: 1823: 1819: 1815: 1809: 1805: 1799: 1795: 1791: 1788: 1782: 1776: 1768: 1766: 1758: 1756: 1754: 1736: 1732: 1728: 1724: 1720: 1717: 1709: 1705: 1701: 1696: 1683: 1678: 1675: 1671: 1667: 1661: 1657: 1653: 1650: 1647: 1641: 1635: 1627: 1625: 1620: 1616: 1614: 1610: 1606: 1602: 1598: 1594: 1589: 1587: 1583: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1536: 1523: 1518: 1515: 1511: 1505: 1501: 1494: 1490: 1484: 1480: 1474: 1470: 1462: 1457: 1451: 1448: 1445: 1435: 1431: 1422: 1418: 1407: 1400: 1396: 1392: 1387: 1384: 1380: 1374: 1370: 1363: 1359: 1353: 1350: 1347: 1337: 1333: 1324: 1320: 1309: 1302: 1299: 1293: 1287: 1279: 1277: 1273: 1269: 1264: 1262: 1258: 1254: 1250: 1246: 1242: 1238: 1234: 1231:to vary with 1227: 1223: 1219: 1216: 1212: 1208: 1204: 1200: 1196: 1189: 1184: 1171: 1166: 1148: 1130: 1127: 1123: 1111: 1107: 1103: 1099: 1096: 1093: 1085: 1082: 1067: 1064: 1060: 1048: 1044: 1040: 1036: 1033: 1027: 1021: 1013: 1011: 1010:reaction rate 1007: 1003: 995: 993: 991: 984: 980: 976: 972: 968: 948: 945: 941: 935: 931: 924: 920: 914: 910: 899: 892: 886: 880: 871: 851: 847: 834:and entropic 817: 813: 782: 778: 771: 768: 763: 759: 752: 747: 743: 714: 708: 700: 682: 678: 675: 672: 666: 661: 657: 653: 649: 636: 634: 632: 566: 550: 546: 490: 486: 482: 479: 469:A + B + C → P 467: 464: 459: 455: 437: 433: 388: 384: 380: 377: 365: 362: 357: 338: 334: 300: 296: 292: 289: 277: 275: 271: 267: 259: 257: 255: 251: 246: 244: 240: 236: 232: 228: 224: 220: 215: 213: 209: 205: 187: 176: 161: 143: 127: 124: 121: 113: 111: 110:reaction rate 103: 99: 95: 91: 88: 85: 82: 81: 80: 75: 71: 67: 63: 60: 58: 40: 30: 26: 22: 2581: 2577: 2571: 2552: 2546: 2521: 2517: 2511: 2486: 2482: 2457: 2447: 2420: 2414: 2395: 2389: 2370: 2361: 2334: 2328: 2298:(1): 73–78. 2295: 2291: 2287: 2281: 2262: 2167: 2148: 2142: 2114: 2107: 2095:. Retrieved 2091: 2082: 2068:Molecularity 2042: 2030: 2028: 1961: 1956: 1953: 1936: 1915: 1889: 1885: 1875: 1868: 1858: 1844: 1842: 1769: 1764: 1762: 1752: 1707: 1703: 1699: 1697: 1628: 1621: 1617: 1613:fudge factor 1604: 1600: 1596: 1592: 1591:The factor ( 1590: 1585: 1581: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1539: 1537: 1280: 1265: 1260: 1256: 1252: 1248: 1244: 1236: 1232: 1225: 1217: 1210: 1206: 1203:gas constant 1198: 1187: 1185: 1086: 1083: 1014: 999: 989: 982: 974: 966: 640: 567: 471: 465: 463:≤ ~10 Ms. 457: 369: 363: 355: 281: 269: 263: 253: 249: 247: 238: 234: 230: 222: 218: 216: 177: 114: 107: 97: 93: 89: 78: 73: 69: 65: 61: 28: 24: 18: 2524:(6): 2959. 2288:Bimolecular 1944:Milestoning 1884:For order ( 1215:temperature 361:≤ ~10 s. 2074:References 1929:software. 72: B → 68: A + 2353:220756597 2320:0021-9606 1994:α 1990:⋅ 1813:Δ 1810:− 1800:α 1721:∝ 1665:Δ 1662:− 1506:‡ 1498:Δ 1495:− 1475:‡ 1467:Δ 1449:− 1436:⊖ 1401:κ 1375:‡ 1367:Δ 1364:− 1351:− 1338:⊖ 1303:κ 1108:− 1045:− 936:‡ 928:Δ 925:− 852:‡ 844:Δ 818:‡ 810:Δ 783:‡ 775:Δ 769:− 764:‡ 756:Δ 748:‡ 740:Δ 676:⁡ 454:diffusion 367:A + B → P 2620:Category 2606:17444753 2503:26580187 2369:(1987). 2134:14214254 2052:See also 1008:and the 538:, where 425:, where 326:, where 268:, there 229:and are 212:assuming 2586:Bibcode 2526:Bibcode 2439:9894996 2300:Bibcode 1852:⁄ 1544:entropy 1538:where Δ 1239:is the 1201:is the 1193:is the 969:is the 264:For an 200:⁠ 180:⁠ 76: C 53:⁠ 33:⁠ 2604:  2559:  2501:  2437:  2427:  2402:  2377:  2351:  2341:  2318:  2269:  2155:  2132:  2122:  2029:where 1942:, and 1698:where 1259:Units 1205:, and 1197:, and 1186:where 965:where 96:, and 79:where 2479:(PDF) 2097:5 May 1878:units 1865:Units 1274:from 1261:below 279:A → P 208:moles 178:Here 2602:PMID 2557:ISBN 2499:PMID 2435:OCLC 2425:ISBN 2400:ISBN 2375:ISBN 2349:OCLC 2339:ISBN 2316:ISSN 2267:ISBN 2245:NOCl 2233:NOCl 2153:ISBN 2130:OCLC 2120:ISBN 2099:2018 1209:and 1000:The 977:the 973:and 237:and 221:and 108:the 100:are 23:, a 2594:doi 2582:126 2534:doi 2491:doi 2308:doi 2195:or 1921:or 1562:= Δ 1263:). 1257:see 986:1/2 872:is 231:not 27:or 19:In 2622:: 2600:. 2592:. 2580:. 2532:. 2522:68 2520:. 2497:. 2487:10 2485:. 2481:. 2466:^ 2456:. 2433:. 2347:. 2314:. 2306:. 2296:46 2294:. 2261:. 2243:, 2231:⇄ 2221:Cl 2209:Cl 2185:Br 2183:, 2173:Cl 2128:. 2090:. 2046:SD 2037:RS 1888:+ 1873:. 1566:− 1278:: 1251:+ 697:. 673:ln 605:+ 593:→ 581:+ 270:is 252:+ 92:, 2608:. 2596:: 2588:: 2565:. 2540:. 2536:: 2528:: 2505:. 2493:: 2460:. 2441:. 2408:. 2383:. 2355:. 2322:. 2310:: 2302:: 2275:. 2250:2 2238:2 2226:2 2214:2 2202:2 2197:O 2190:2 2178:2 2161:. 2136:. 2101:. 2043:k 2031:α 2012:D 2009:S 2002:S 1999:R 1984:D 1981:S 1976:k 1972:= 1969:k 1890:n 1886:m 1859:E 1854:2 1850:1 1845:C 1827:T 1824:R 1820:/ 1816:E 1806:e 1796:T 1792:C 1789:= 1786:) 1783:T 1780:( 1777:k 1765:k 1753:k 1737:2 1733:/ 1729:1 1725:T 1718:Z 1708:E 1704:Z 1700:P 1684:, 1679:T 1676:R 1672:/ 1668:E 1658:e 1654:Z 1651:P 1648:= 1645:) 1642:T 1639:( 1636:k 1605:M 1601:c 1597:c 1593:c 1586:h 1584:/ 1582:T 1579:B 1576:k 1572:S 1570:Δ 1568:T 1564:H 1560:G 1556:S 1552:H 1548:G 1540:G 1524:, 1519:T 1516:R 1512:/ 1502:H 1491:e 1485:R 1481:/ 1471:S 1463:e 1458:) 1452:M 1446:1 1442:) 1432:c 1428:( 1423:h 1419:T 1413:B 1408:k 1397:( 1393:= 1388:T 1385:R 1381:/ 1371:G 1360:e 1354:M 1348:1 1344:) 1334:c 1330:( 1325:h 1321:T 1315:B 1310:k 1300:= 1297:) 1294:T 1291:( 1288:k 1253:n 1249:m 1245:A 1237:A 1233:e 1229:a 1226:E 1218:T 1211:n 1207:m 1199:R 1191:a 1188:E 1172:, 1167:n 1163:] 1158:B 1154:[ 1149:m 1145:] 1140:A 1136:[ 1131:T 1128:R 1124:/ 1117:a 1112:E 1104:e 1100:A 1097:= 1094:r 1068:T 1065:R 1061:/ 1054:a 1049:E 1041:e 1037:A 1034:= 1031:) 1028:T 1025:( 1022:k 990:G 983:t 975:R 967:h 963:, 949:T 946:R 942:/ 932:G 921:e 915:h 911:T 905:B 900:k 893:= 890:) 887:T 884:( 881:k 866:) 848:S 836:( 832:) 814:H 802:( 798:, 779:S 772:T 760:H 753:= 744:G 718:) 715:T 712:( 709:k 683:k 679:2 667:= 662:2 658:/ 654:1 650:t 624:2 619:H 612:2 607:N 600:3 595:O 588:2 583:N 576:2 571:O 551:3 547:k 526:] 522:C 518:[ 515:] 511:B 507:[ 504:] 500:A 496:[ 491:3 487:k 483:= 480:r 461:2 458:k 438:2 434:k 413:] 409:B 405:[ 402:] 398:A 394:[ 389:2 385:k 381:= 378:r 359:1 356:k 339:1 335:k 314:] 310:A 306:[ 301:1 297:k 293:= 290:r 254:n 250:m 239:b 235:a 223:n 219:m 188:k 162:n 158:] 153:B 149:[ 144:m 140:] 135:A 131:[ 128:k 125:= 122:r 104:, 98:c 94:b 90:a 74:c 70:b 66:a 41:k 31:(

Index

chemical kinetics
chemical reaction
stoichiometric coefficients
reaction rate
molar concentrations
moles
assuming
orders of reaction
reaction mechanism
elementary step
law of mass action
diffusion
hydrogen-iodine reaction
Transition state theory
result from transition state theory
Planck constant
molar gas constant
Arrhenius equation
activation energy
reaction rate
activation energy
gas constant
temperature
Boltzmann distribution
pre-exponential factor
statistical mechanical
Eyring equation
transition state theory
entropy
transmission coefficient

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.