Knowledge (XXG)

Regular category

Source šŸ“

25: 591: 689: 1098: 702:, if it preserves finite limits and coequalizers of kernel pairs. A functor is regular if and only if it preserves finite limits and exact sequences. For this reason, regular functors are sometimes called 900: 781: 1230: 519: 1262: 1175: 940: 920: 825: 805: 1149: 543: 599: 1541: 1440: 1268:
if it arises as a kernel pair. An equivalence relation is effective if and only if it has a coequalizer and it is the kernel pair of this.
46: 1013: 259: 176: 1513: 1461: 68: 382: 373: 113:, without requiring additivity. At the same time, regular categories provide a foundation for the study of a fragment of 1426: 1278: 828: 388: 345: 1286:, if every equivalence relation is effective. (Note that the term "exact category" is also used differently, for the 849: 730: 39: 33: 1119:
Up to equivalence any small regular category arises in this way as the classifying category of some regular theory.
1505: 1342: 840: 186: 141: 1003: 1183: 50: 492: 1322: 1235: 990:
regular categories and regular functors to small categories. It is an important result that for each theory
90: 455: 307: 1128: 692: 417: 1489: 1308: 530: 325: 1177:
that satisfies the interpretations of the conditions for reflexivity, symmetry and transitivity.
843:. Such formulae can be interpreted in a regular category, and the interpretation is a model of a 836: 358: 335: 329: 320: 106: 1154: 1509: 1457: 1436: 719: 378: 339: 303: 114: 1519: 1451: 1430: 1352: 1315: 1300: 534: 298: 925: 905: 810: 790: 1523: 1473:"A note on the exact completion of a regular category, and its infinitary generalizations" 526: 82: 1472: 586:{\displaystyle R\;{\overset {r}{\underset {s}{\rightrightarrows }}}\;X\xrightarrow {f} Y} 1287: 1134: 987: 832: 393: 525:
if it is both a coequalizer and a kernel pair. The terminology is a generalization of
1535: 1502:
Categorical foundations. Special topics in order, topology, algebra, and sheaf theory
432: 413: 684:{\displaystyle 0\to R{\xrightarrow {(r,s)}}X\oplus X{\xrightarrow {(f,-f)}}Y\to 0} 258: 175: 1329: 425: 409: 351: 273: 226: 94: 1504:. Encyclopedia of Mathematics and Its Applications. Vol. 97. Cambridge: 284:
is an epimorphism that appears as a coequalizer of some pair of morphisms.
1307:. Every equivalence relation has a coequalizer, which is found by taking 160: 105:
conditions. In that way, regular categories recapture many properties of
844: 397: 650: 617: 574: 1347: 1304: 1093:{\displaystyle \mathbf {Mod} (T,C)\cong \mathbf {RegCat} (R(T),C)} 314: 1388: 225:. Being a pullback, the kernel pair is unique up to a unique 18: 706:. Functors that preserve finite limits are often said to be 1131:
is a regular theory. An equivalence relation on an object
1435:. Lecture Notes in Mathematics. Vol. 236. Springer. 16:
Mathematical category with finite limits and coequalizers
1500:
Pedicchio, Maria Cristina; Tholen, Walter, eds. (2004).
1495:. University of Aarhus. BRICS Lectures Series LS-95-1. 1429:; Grillet, Pierre A.; van Osdol, Donovan H. (2006) . 1238: 1186: 1157: 1137: 1016: 928: 908: 852: 813: 793: 733: 602: 546: 495: 1264:. Conversely, an equivalence relation is said to be 442:. The factorization is unique in the sense that if 1303:is exact in this sense, and so is any (elementary) 1256: 1224: 1169: 1143: 1092: 934: 914: 894: 819: 799: 775: 683: 585: 513: 942:. This gives for each theory (set of sequents) 133:if it satisfies the following three properties: 1413: 1401: 1371: 895:{\displaystyle \forall x(\phi (x)\to \psi (x))} 776:{\displaystyle \forall x(\phi (x)\to \psi (x))} 698:A functor between regular categories is called 344:More generally, the category of models of any 1151:of a regular category is a monomorphism into 489:In a regular category, a diagram of the form 8: 354:, with morphisms given by the order relation 1456:. Vol. 2. Cambridge University Press. 1432:Exact Categories and Categories of Sheaves 1225:{\displaystyle p_{0},p_{1}:R\rightarrow X} 566: 550: 1237: 1204: 1191: 1185: 1156: 1136: 1046: 1017: 1015: 927: 907: 851: 812: 792: 732: 645: 612: 601: 551: 545: 514:{\displaystyle R\rightrightarrows X\to Y} 494: 69:Learn how and when to remove this message 1288:exact categories in the sense of Quillen 722:that can express statements of the form 293:Examples of regular categories include: 32:This article includes a list of general 1364: 1389:"Regular Categories and Regular Logic" 1382: 1380: 1257:{\displaystyle R\rightarrow X\times X} 998:, such that for each regular category 922:factors through the interpretation of 596:is exact in this sense if and only if 1477:Theory and Applications of Categories 966:. This construction gives a functor 280:is a regular epimorphism as well. A 7: 714:Regular logic and regular categories 485:Exact sequences and regular functors 1325:over the category of sets is exact. 446:is another regular epimorphism and 408:In a regular category, the regular- 853: 734: 450:is another monomorphism such that 38:it lacks sufficient corresponding 14: 1271:A regular category is said to be 718:Regular logic is the fragment of 424:can be factorized into a regular 313:More generally, every elementary 1391:. BRICS Lectures Series LS-98-2. 1232:defines an equivalence relation 1062: 1059: 1056: 1053: 1050: 1047: 1024: 1021: 1018: 257: 174: 23: 1453:Handbook of Categorical Algebra 1115:category of the regular theory 1242: 1216: 1087: 1078: 1072: 1066: 1040: 1028: 946:and for each regular category 889: 886: 880: 874: 871: 865: 859: 770: 767: 761: 755: 752: 746: 740: 675: 666: 651: 630: 618: 606: 554: 505: 499: 97:of a pair of morphisms called 1: 1542:Categories in category theory 835:, the truth constant, binary 364:The following categories are 1294:Examples of exact categories 1123:Exact (effective) categories 994:there is a regular category 831:i.e. formulae built up from 1414:Pedicchio & Tholen 2004 1402:Pedicchio & Tholen 2004 1372:Pedicchio & Tholen 2004 902:, if the interpretation of 1558: 1506:Cambridge University Press 1343:Allegory (category theory) 1332:is regular, but not exact. 841:existential quantification 189:, then the coequalizer of 117:, known as regular logic. 1488:van Oosten, Jaap (1995). 1450:Borceux, Francis (1994). 1170:{\displaystyle X\times X} 352:bounded meet-semilattice 109:, like the existence of 1490:"Basic Category Theory" 1321:Every category that is 454:, then there exists an 53:more precise citations. 1471:Lack, Stephen (1999). 1387:Butz, Carsten (1998). 1277:exact in the sense of 1258: 1226: 1171: 1145: 1094: 936: 916: 896: 821: 801: 777: 685: 587: 515: 404:Epi-mono factorization 268:is a pullback, and if 1259: 1227: 1172: 1146: 1129:equivalence relations 1095: 937: 935:{\displaystyle \psi } 917: 915:{\displaystyle \phi } 897: 822: 820:{\displaystyle \psi } 802: 800:{\displaystyle \phi } 778: 686: 588: 516: 101:, satisfying certain 1236: 1184: 1155: 1135: 1103:which is natural in 1014: 926: 906: 850: 811: 791: 731: 695:in the usual sense. 693:short exact sequence 600: 544: 493: 469:. The monomorphism 418:factorization system 383:continuous functions 1309:equivalence classes 669: 633: 578: 531:homological algebra 330:group homomorphisms 282:regular epimorphism 203:exists. The pair ( 89:is a category with 1254: 1222: 1180:Every kernel pair 1167: 1141: 1090: 982:from the category 932: 912: 892: 839:(conjunction) and 817: 797: 773: 681: 583: 560: 511: 392:, the category of 379:topological spaces 377:, the category of 340:ring homomorphisms 324:, the category of 302:, the category of 246:is a morphism in 107:abelian categories 1442:978-3-540-36999-8 1284:effective regular 1144:{\displaystyle X} 958:,C) of models of 720:first-order logic 670: 634: 579: 564: 553: 521:is said to be an 420:. Every morphism 142:finitely complete 115:first-order logic 79: 78: 71: 1549: 1527: 1496: 1494: 1484: 1467: 1446: 1417: 1411: 1405: 1399: 1393: 1392: 1384: 1375: 1369: 1353:Exact completion 1328:The category of 1316:abelian category 1301:category of sets 1263: 1261: 1260: 1255: 1231: 1229: 1228: 1223: 1209: 1208: 1196: 1195: 1176: 1174: 1173: 1168: 1150: 1148: 1147: 1142: 1099: 1097: 1096: 1091: 1065: 1027: 941: 939: 938: 933: 921: 919: 918: 913: 901: 899: 898: 893: 826: 824: 823: 818: 806: 804: 803: 798: 782: 780: 779: 774: 690: 688: 687: 682: 671: 646: 635: 613: 592: 590: 589: 584: 570: 565: 552: 535:abelian category 520: 518: 517: 512: 394:small categories 359:abelian category 334:The category of 310:between the sets 261: 217:) is called the 178: 87:regular category 74: 67: 63: 60: 54: 49:this article by 40:inline citations 27: 26: 19: 1557: 1556: 1552: 1551: 1550: 1548: 1547: 1546: 1532: 1531: 1530: 1516: 1499: 1492: 1487: 1470: 1464: 1449: 1443: 1425: 1421: 1420: 1412: 1408: 1400: 1396: 1386: 1385: 1378: 1370: 1366: 1361: 1339: 1296: 1234: 1233: 1200: 1187: 1182: 1181: 1153: 1152: 1133: 1132: 1125: 1101: 1012: 1011: 1008: 924: 923: 904: 903: 848: 847: 833:atomic formulae 809: 808: 789: 788: 786: 784: 729: 728: 725: 716: 598: 597: 542: 541: 527:exact sequences 491: 490: 487: 406: 291: 264: 262: 254: 216: 209: 202: 195: 181: 179: 171: 123: 83:category theory 75: 64: 58: 55: 45:Please help to 44: 28: 24: 17: 12: 11: 5: 1555: 1553: 1545: 1544: 1534: 1533: 1529: 1528: 1514: 1497: 1485: 1468: 1462: 1447: 1441: 1422: 1419: 1418: 1406: 1394: 1376: 1363: 1362: 1360: 1357: 1356: 1355: 1350: 1345: 1338: 1335: 1334: 1333: 1326: 1319: 1312: 1295: 1292: 1253: 1250: 1247: 1244: 1241: 1221: 1218: 1215: 1212: 1207: 1203: 1199: 1194: 1190: 1166: 1163: 1160: 1140: 1127:The theory of 1124: 1121: 1111:is called the 1089: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1064: 1061: 1058: 1055: 1052: 1049: 1045: 1042: 1039: 1036: 1033: 1030: 1026: 1023: 1020: 1010: 931: 911: 891: 888: 885: 882: 879: 876: 873: 870: 867: 864: 861: 858: 855: 816: 796: 772: 769: 766: 763: 760: 757: 754: 751: 748: 745: 742: 739: 736: 727: 715: 712: 704:exact functors 680: 677: 674: 668: 665: 662: 659: 656: 653: 649: 644: 641: 638: 632: 629: 626: 623: 620: 616: 611: 608: 605: 594: 593: 582: 577: 573: 569: 563: 559: 556: 549: 523:exact sequence 510: 507: 504: 501: 498: 486: 483: 473:is called the 431:followed by a 405: 402: 401: 400: 385: 362: 361: 355: 348: 342: 332: 317: 311: 290: 287: 286: 285: 256: 252: 251: 231: 230: 214: 207: 200: 193: 173: 169: 168: 145: 122: 119: 77: 76: 59:September 2016 31: 29: 22: 15: 13: 10: 9: 6: 4: 3: 2: 1554: 1543: 1540: 1539: 1537: 1525: 1521: 1517: 1515:0-521-83414-7 1511: 1507: 1503: 1498: 1491: 1486: 1482: 1478: 1474: 1469: 1465: 1463:0-521-44179-X 1459: 1455: 1454: 1448: 1444: 1438: 1434: 1433: 1428: 1427:Barr, Michael 1424: 1423: 1416:, p. 179 1415: 1410: 1407: 1404:, p. 169 1403: 1398: 1395: 1390: 1383: 1381: 1377: 1374:, p. 177 1373: 1368: 1365: 1358: 1354: 1351: 1349: 1346: 1344: 1341: 1340: 1336: 1331: 1327: 1324: 1320: 1317: 1313: 1310: 1306: 1302: 1298: 1297: 1293: 1291: 1289: 1285: 1281: 1280: 1274: 1269: 1267: 1251: 1248: 1245: 1239: 1219: 1213: 1210: 1205: 1201: 1197: 1192: 1188: 1178: 1164: 1161: 1158: 1138: 1130: 1122: 1120: 1118: 1114: 1110: 1106: 1084: 1081: 1075: 1069: 1043: 1037: 1034: 1031: 1009: 1006: 1005: 1001: 997: 993: 989: 985: 981: 977: 973: 969: 965: 961: 957: 953: 949: 945: 929: 909: 883: 877: 868: 862: 856: 846: 842: 838: 834: 830: 814: 794: 764: 758: 749: 743: 737: 726: 723: 721: 713: 711: 709: 705: 701: 696: 694: 678: 672: 663: 660: 657: 654: 647: 642: 639: 636: 627: 624: 621: 614: 609: 603: 580: 575: 571: 567: 561: 557: 547: 540: 539: 538: 537:, a diagram 536: 532: 528: 524: 508: 502: 496: 484: 482: 480: 476: 472: 468: 464: 460: 457: 453: 449: 445: 441: 437: 434: 430: 427: 423: 419: 415: 414:monomorphisms 411: 403: 399: 395: 391: 390: 386: 384: 380: 376: 375: 371: 370: 369: 367: 360: 356: 353: 349: 347: 343: 341: 337: 333: 331: 327: 323: 322: 318: 316: 312: 309: 305: 301: 300: 296: 295: 294: 288: 283: 279: 275: 272:is a regular 271: 267: 266: 265: 260: 255: 249: 245: 242: ā†’  241: 238: :  237: 233: 232: 228: 224: 220: 213: 206: 199: 192: 188: 184: 183: 182: 177: 172: 166: 162: 158: 155: ā†’  154: 151: :  150: 146: 143: 139: 136: 135: 134: 132: 128: 120: 118: 116: 112: 108: 104: 100: 96: 92: 91:finite limits 88: 84: 73: 70: 62: 52: 48: 42: 41: 35: 30: 21: 20: 1501: 1480: 1476: 1452: 1431: 1409: 1397: 1367: 1330:Stone spaces 1283: 1276: 1272: 1270: 1265: 1179: 1126: 1116: 1112: 1108: 1104: 1102: 1007: 1002:there is an 999: 995: 991: 983: 979: 975: 971: 967: 963: 959: 955: 951: 947: 943: 827:are regular 785: 724: 717: 707: 703: 699: 697: 595: 522: 488: 478: 474: 470: 466: 462: 458: 451: 447: 443: 439: 435: 433:monomorphism 428: 421: 410:epimorphisms 407: 387: 372: 365: 363: 319: 297: 292: 281: 277: 269: 263: 253: 247: 243: 239: 235: 222: 218: 211: 204: 197: 190: 180: 170: 164: 156: 152: 148: 137: 130: 126: 124: 110: 102: 99:kernel pairs 98: 95:coequalizers 86: 80: 65: 56: 37: 1483:(3): 70ā€“80. 1113:classifying 1004:equivalence 950:a category 456:isomorphism 426:epimorphism 274:epimorphism 227:isomorphism 219:kernel pair 125:A category 51:introducing 1524:1034.18001 1359:References 708:left exact 461:such that 438:, so that 129:is called 121:Definition 34:references 1318:is exact. 1266:effective 1249:× 1243:→ 1217:→ 1162:× 1107:. Here, 1044:≅ 930:ψ 910:ϕ 878:ψ 875:→ 863:ϕ 854:∀ 815:ψ 795:ϕ 759:ψ 756:→ 744:ϕ 735:∀ 676:→ 661:− 640:⊕ 607:→ 555:⇉ 506:→ 500:⇉ 368:regular: 308:functions 103:exactness 1536:Category 1337:See also 829:formulae 648:→ 615:→ 572:→ 533:: in an 444:e':Xā†’E' 412:and the 398:functors 289:Examples 187:pullback 161:morphism 1323:monadic 845:sequent 700:regular 459:h:Eā†’E' 448:m':E'ā†’Y 416:form a 346:variety 276:, then 210:,  131:regular 47:improve 1522:  1512:  1460:  1439:  1314:Every 984:RegCat 976:RegCat 787:where 463:he=e' 452:f=m'e' 357:Every 350:Every 326:groups 111:images 36:, but 1493:(PDF) 1348:Topos 1305:topos 1282:, or 1275:, or 1273:exact 988:small 837:meets 691:is a 475:image 467:m'h=m 436:m:Eā†’Y 429:e:Xā†’E 422:f:Xā†’Y 336:rings 315:topos 250:, and 185:is a 167:, and 159:is a 1510:ISBN 1458:ISBN 1437:ISBN 1299:The 1279:Barr 1109:R(T) 996:R(T) 974:,-): 807:and 465:and 440:f=me 396:and 381:and 338:and 328:and 306:and 304:sets 163:in 93:and 85:, a 1520:Zbl 1290:.) 986:of 980:Cat 968:Mod 962:in 952:Mod 529:in 477:of 389:Cat 374:Top 366:not 321:Grp 299:Set 234:If 221:of 147:If 140:is 81:In 1538:: 1518:. 1508:. 1479:. 1475:. 1379:^ 1117:T. 710:. 481:. 196:, 1526:. 1481:5 1466:. 1445:. 1311:. 1252:X 1246:X 1240:R 1220:X 1214:R 1211:: 1206:1 1202:p 1198:, 1193:0 1189:p 1165:X 1159:X 1139:X 1105:C 1100:, 1088:) 1085:C 1082:, 1079:) 1076:T 1073:( 1070:R 1067:( 1063:t 1060:a 1057:C 1054:g 1051:e 1048:R 1041:) 1038:C 1035:, 1032:T 1029:( 1025:d 1022:o 1019:M 1000:C 992:T 978:ā†’ 972:T 970:( 964:C 960:T 956:T 954:( 948:C 944:T 890:) 887:) 884:x 881:( 872:) 869:x 866:( 860:( 857:x 783:, 771:) 768:) 765:x 762:( 753:) 750:x 747:( 741:( 738:x 679:0 673:Y 667:) 664:f 658:, 655:f 652:( 643:X 637:X 631:) 628:s 625:, 622:r 619:( 610:R 604:0 581:Y 576:f 568:X 562:r 558:s 548:R 509:Y 503:X 497:R 479:f 471:m 278:g 270:f 248:C 244:Y 240:X 236:f 229:. 223:f 215:1 212:p 208:0 205:p 201:1 198:p 194:0 191:p 165:C 157:Y 153:X 149:f 144:. 138:C 127:C 72:) 66:( 61:) 57:( 43:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message
category theory
finite limits
coequalizers
abelian categories
first-order logic
finitely complete
morphism

pullback
isomorphism

epimorphism
Set
sets
functions
topos
Grp
groups
group homomorphisms
rings
ring homomorphisms
variety
bounded meet-semilattice
abelian category
Top

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘