Knowledge (XXG)

Regular dodecahedron

Source 📝

3664: 315: 463: 600:, which still has all the rotation symmetry of the icosahedron (i.e. the icosahedral group), although it has lost the reflections. By reflecting this figure in any plane of symmetry of the icosahedron, we obtain the complementary set of five tetrahedra. These two sets of five tetrahedra are enantiomorphous, i.e. not directly congruent, but related like a pair of shoes. a figure which possesses no plane of symmetry (so that it is enantiomorphous to its mirror-image) is said to be 556: 300: 1914: 958: 1935: 2056: 169: 1813: 2067: 446:, the last book (Book XIII) of which is devoted to their properties. Propositions 13–17 in Book XIII describe the construction of the tetrahedron, octahedron, cube, icosahedron, and dodecahedron in that order. For each solid, Euclid finds the ratio of the diameter of the circumscribed sphere to the edge length. In Proposition 18 he argues that there are no further convex regular polyhedra. 1957: 424: 523:, it occupies more of the sphere's volume (66.49%) than an icosahedron inscribed in the same sphere (60.55%). The resulting of both spheres' volumes initially began from the problem by ancient Greeks, determining which of two shapes has a larger volume: an icosahedron inscribed in a sphere, or a dodecahedron inscribed in the same sphere. The problem was solved by 1595: 29: 2153:, where the vertices of a decagon are connected to those of two pentagons, one pentagon connected to odd vertices of the decagon and the other pentagon connected to the even vertices. Geometrically, this can be visualized as the ten-vertex equatorial belt of the dodecahedron connected to the two 5-vertex polar regions, one on each side. 2042:'s 1954 short story "The Mathematician's Nightmare: The Vision of Professor Squarepunt", the number 5 said: "I am the number of fingers on a hand. I make pentagons and pentagrams. And but for me dodecahedra could not exist; and, as everyone knows, the universe is a dodecahedron. So, but for me, there could be no universe." 1281: 1403: 563:
As two opposing tetrahedra can be inscribed in a cube, and five cubes can be inscribed in a dodecahedron, ten tetrahedra in five cubes can be inscribed in a dodecahedron: two opposing sets of five, with each set covering all 20 vertices and each vertex in two tetrahedra (one from each set, but not
1768:. It is a set of polyhedrons containing hexagonal and pentagonal faces. Other than two Platonic solids—tetrahedron and cube—the regular dodecahedron is the initial of Goldberg polyhedron construction, and the next polyhedron is resulted by truncating all of its edges, a process called 546:
may also related to both regular icosahedron and regular dodecahedron. The regular icosahedron can be constructed by intersecting three golden rectangles perpendicularly, arranged in two-by-two orthogonal, and connecting each of the golden rectangle's vertices with a segment line. There are 12
572:"Just as a tetrahedron can be inscribed in a cube, so a cube can be inscribed in a dodecahedron. By reciprocation, this leads to an octahedron circumscribed about an icosahedron. In fact, each of the twelve vertices of the icosahedron divides an edge of the octahedron according to the " 418:
by using the Platonic solids setting into another one and separating them with six spheres resembling the six planets. The ordered solids started from the innermost to the outermost: regular octahedron, regular icosahedron, regular dodecahedron, regular tetrahedron, and cube.
627:
of a matrix denotes the number of each element that appears in a polyhedron, whereas the non-diagonal of a matrix denotes the number of the column's elements that occur in or at the row's element. The regular dodecahedron can be represented in the following matrix:
1100: 355:, a dialogue of Plato, Plato hypothesized that the classical elements were made of the five uniform regular solids. Plato described the regular dodecahedron, obscurely remarked, "...the god used for arranging the constellations on the whole heaven". 953: 3620: 706: 516:. The regular dodecahedron has ten three-fold axes passing through pairs of opposite vertices, six five-fold axes passing through the opposite faces centers, and fifteen two-fold axes passing through the opposite sides midpoints. 1590:{\displaystyle {\begin{aligned}r_{u}&={\frac {\phi {\sqrt {3}}}{2}}a\approx 1.401a,\\r_{i}&={\frac {\phi ^{2}}{2{\sqrt {3-\phi }}}}a\approx 1.114a,\\r_{m}&={\frac {\phi ^{2}}{2}}a\approx 1.309a.\end{aligned}}} 2104:, meaning that, whenever a graph with more than three vertices, and two of the vertices are removed, the edges remain connected. The skeleton of a regular dodecahedron can be represented as a graph, and it is called the 539:
discovered the curious result that the ratio of volumes of these two shapes is the same as the ratio of their surface areas. Both volumes have formulas involving the golden ratio but are taken to different powers.
3267:; Jeff Weeks; Alain Riazuelo; Roland Lehoucq; Jean-Phillipe Uzan (2003-10-09). "Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background". 772: 379:, adding that there is a fifth solid pattern which, though commonly associated with the regular dodecahedron, is never directly mentioned as such; "this God used in the delineation of the universe." 1408: 1105: 846: 514: 125: 2971: 2931: 2891: 4100: 631: 3328:
Roukema, Boudewijn; Zbigniew Buliński; Agnieszka Szaniewska; Nicolas E. Gaudin (2008). "A test of the Poincaré dodecahedral space topology hypothesis with the WMAP CMB data".
1739: 3485: 1276:{\displaystyle {\begin{aligned}(\pm 1,\pm 1,\pm 1),&\qquad (0,\pm \phi ,\pm 1/\phi ),\\(\pm 1/\phi ,0,\pm \phi ),&\qquad (\pm \phi ,\pm 1/\phi ,0).\end{aligned}}} 1772:. This process can be continuously repeated, resulting in more new Goldberg's polyhedrons. These polyhedrons are classified as the first class of a Goldberg polyhedron. 2151: 2994: 1697: 1673: 1646: 1622: 1398: 1364: 1337: 3242: 1303: 841: 821: 798: 1941: 4093: 436:
gave a mathematical description of all five and may have been responsible for the first known proof that no other convex regular polyhedra exist.
3159:
Kai Wu; Jonathan Nitschke (2023). "Systematic construction of progressively larger capsules from a fivefold linking pyrrole-based subcomponent".
2481: 258:, the children's story, toys, and painting arts. It can also be found in nature and supramolecules, as well as the shape of the universe. The 3518: 3034: 2617: 2464: 2399: 2324: 2031:, a positively curved space consisting of a regular dodecahedron whose opposite faces correspond (with a small twist). This was proposed by 216:. However, the regular dodecahedron, including the other Platonic solids, has already been described by other philosophers since antiquity. 4086: 1896:, the regular dodecahedron appears as a character in the land of Mathematics. Each face of the regular dodecahedron describes the various 2434: 3707: 2456: 1867:
based his entire artistic oeuvre on the regular dodecahedron and the pentagon, presented as a new art movement coined as Pentagonism.
774:. The golden ratio can be applied to the regular dodecahedron's metric properties, as well as to construct the regular dodecahedron. 3575: 3469: 3430: 3399: 3193:
Hagino, K., Onuma, R., Kawachi, M. and Horiguchi, T. (2013) "Discovery of an endosymbiotic nitrogen-fixing cyanobacterium UCYN-A in
2804: 2582: 2555: 2491: 2372: 2297: 89: 1859: 479: 3225: 726: 2685: 2661: 2633: 4005: 1783:. The first stellation of a regular dodecahedron is constructed by attaching its layer with pentagonal pyramids, forming a 333:
The regular dodecahedron is a polyhedron with twelve pentagonal faces, thirty edges, and twenty vertices. It is one of the
3422: 3391: 2509: 1780: 2089: 1796: 1784: 454:, a Pythagorean, perished in the sea, because he boasted that he first divulged "the sphere with the twelve pentagons". 263: 719:
is the ratio between two numbers equal to the ratio of their sum to the larger of the two quantities. It is one of two
4502: 4299: 4240: 3250: 597: 4329: 4289: 3895: 3453: 3118: 2693: 2116: 1849: 623:
in which the rows and columns correspond to the elements of a polyhedron as in the vertices, edges, and faces. The
593: 577: 433: 384: 314: 4324: 4319: 2645: 2227: 2220: 2157: 1985: 1924: 488: 99: 2973:, Coxeter's notation for the circumradius, midradius, and inradius, respectively, also noting that Coxeter uses 2936: 2896: 2856: 4512: 3889: 2665: 2101: 410: 228: 1097:
define the twenty vertices of a regular dodecahedron centered at the origin and suitably scaled and oriented:
4430: 4425: 4304: 4210: 4017: 3945: 3865: 3700: 1843: 1795:. The third stellation is by attaching the great dodecahedron with the sharp triangular pyramids, forming a 1750: 478:. One property of the dual polyhedron generally is that the original polyhedron and its dual share the same 220: 44: 432:
Many antiquity philosophers described the regular dodecahedron, including the rest of the Platonic solids.
4507: 4294: 4235: 4225: 4170: 3951: 2264: 2192: 2161: 4314: 4230: 4185: 2254: 1892: 1754: 1094: 581: 559:
Five tetrahedra inscribed in a dodecahedron. Five opposing tetrahedra (not shown) can also be inscribed.
351: 342: 224: 2096:
of a polyhedron; roughly speaking, a framework of a polyhedron. Such a graph has two properties. It is
2085: 2027:
Various models have been proposed for the global geometry of the universe. These proposals include the
948:{\displaystyle A={\frac {15\phi }{\sqrt {3-\phi }}}a^{2},\qquad V={\frac {5\phi ^{3}}{6-2\phi }}a^{3}.} 462: 2100:, meaning the edges of a graph are connected to every vertex without crossing other edges. It is also 1887:
twisty puzzle is shaped like a regular dodecahedron alongside its larger and smaller order analogues.
4517: 4274: 4200: 3414: 3347: 3286: 3168: 2833: 2641: 2236: 2016: 1709: 1310: 620: 528: 483: 441: 94: 3652: 2156:
The high degree of symmetry of the polygon is replicated in the properties of this graph, which are
555: 482:. In the case of the regular dodecahedron, it has the same symmetry as the regular icosahedron, the 4440: 4309: 4284: 4269: 4205: 4153: 3264: 2188: 2093: 2035:
and colleagues in 2003, and an optimal orientation on the sky for the model was estimated in 2008.
2032: 1996:, has a calcium carbonate shell with a regular dodecahedral structure about 10 micrometers across. 1765: 536: 475: 372: 360: 279: 259: 240: 232: 49: 584:. (The reciprocal compound, of five cubes whose vertices belong to a dodecahedron, is a stellated 4455: 4420: 4279: 4174: 4123: 4062: 3939: 3933: 3693: 3660:
K.J.M. MacLean, A Geometric Analysis of the Five Platonic Solids and Other Semi-Regular Polyhedra
3630: 3479: 3363: 3337: 3310: 3276: 3138: 3091: 2768: 2760: 2724: 2671: 2526: 2169: 1876: 1816: 1792: 1769: 720: 524: 368: 356: 255: 153: 3381: 1966:
dodecahedron reported by Kai Wu, Jonathan Nitschke and co-workers at University of Cambridge in
1822:
Regular dodecahedra have been used as dice and probably also as divinatory devices. During the
1339:(one that touches the regular dodecahedron at all vertices), the radius of an inscribed sphere 299: 4435: 4245: 4220: 4164: 4052: 3976: 3928: 3901: 3871: 3594: 3571: 3559: 3535: 3514: 3465: 3426: 3395: 3302: 3130: 3083: 3053: 3030: 3014: 3010: 2821: 2800: 2613: 2578: 2551: 2545: 2487: 2460: 2418: 2395: 2368: 2364: 2320: 2314: 2293: 2259: 2204: 2196: 2184: 1897: 1827: 588:.) Another stellated icosahedron can at once be deduced, by stellating each octahedron into a 376: 275: 197: 79: 3500: 3447: 2599: 2572: 2450: 2358: 2287: 2121: 4374: 4057: 4037: 3859: 3506: 3457: 3385: 3355: 3351: 3294: 3206: 3176: 3122: 3075: 3022: 2976: 2752: 2716: 2605: 2518: 2039: 1948: 1854: 1834: 1830:
were made and have been found in various Roman ruins in Europe. Its purpose is not certain.
1788: 1761:. Here, the regular dodecahedron is constructed by truncating the pentagonal trapezohedron. 701:{\displaystyle {\begin{bmatrix}20&3&3\\2&30&2\\5&5&12\end{bmatrix}}} 589: 576:". Given the icosahedron, the circumscribed octahedron can be chosen in five ways, giving a 543: 404: 338: 160: 62: 2316:
Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory
1913: 1682: 1651: 1631: 1600: 1376: 1342: 1315: 4011: 3923: 3918: 3883: 3838: 3828: 3818: 3813: 3229: 2232: 2165: 2028: 1990: 1981: 1920: 1823: 585: 471: 399: 364: 320: 306: 244: 213: 201: 190: 69: 56: 3613: 3597: 3222: 2507:
Buker, W. E.; Eggleton, R. B. (1969). "The Platonic Solids (Solution to problem E2053)".
547:
regular icosahedron vertices, considered as the center of 12 regular dodecahedron faces.
3290: 3172: 2837: 2389: 4195: 4118: 4067: 3970: 3833: 3823: 3563: 3538: 3006: 2829: 2637: 2430: 2177: 2173: 2109: 1879:, the regular dodecahedron is often used as a twelve-sided die, one of the more common 1703: 1288: 826: 806: 783: 616: 596:. Further, we can choose one tetrahedron from each stella octangula, so as to derive a 573: 334: 271: 135: 131: 39: 3659: 3642: 957: 359:, as a personage of Plato's dialogue, associates the other four Platonic solids— 345:
and the same number of faces meet at a vertex. This set of polyhedrons is named after
250:
The regular dodecahedron's metric properties and construction are associated with the
4496: 4400: 4256: 4190: 3988: 3982: 3877: 3808: 3798: 3142: 3095: 2772: 2248: 2239: 2012: 1758: 624: 1934: 408:
sketched each of the Platonic solids, one of them is a regular dodecahedron. In his
235:
because it is the initial polyhedron to construct new polyhedrons by the process of
3803: 3367: 3314: 2796: 2743:
Peters, J. M. H. (1978). "An Approximate Relation between π and the Golden Ratio".
2200: 2097: 2076: 2000: 1944: 1864: 1838: 778: 716: 415: 324: 283: 251: 209: 186: 2191:
visits all of its vertices exactly once. The name of this property is named after
1812: 3359: 3210: 2790: 4133: 3843: 3777: 3767: 3757: 3752: 3675: 3636: 3026: 2786: 168: 3180: 2223:(4D polytope whose surface consists of a hundred and twenty dodecahedral cells) 2066: 2055: 383:
also postulated that the heavens were made of a fifth element, which he called
4465: 4353: 4143: 4110: 4028: 3782: 3772: 3762: 3747: 3737: 3716: 3625: 3510: 3126: 3079: 2650:. Vol. 6. University of Toronto Studies (Mathematical Series). p. 4. 2609: 2003:
and cages have dodecahedral shape (see figure). Some regular crystals such as
1787:. The second stellation is by attaching the small stellated dodecahedron with 1776: 447: 193: 149: 3134: 3087: 2707:
Schielack, Vincent P. (1987). "The Fibonacci Sequence and the Golden Ratio".
4460: 4450: 4395: 4379: 4215: 4042: 3602: 3543: 3449:
The Mathematics of Finite Networks: An Introduction to Operator Graph Theory
1371: 532: 380: 3306: 1956: 3461: 2733:
This source contains an elementary derivation of the golden ratio's value.
423: 247:. Other new polyhedrons can be constructed by using regular dodecahedron. 28: 4346: 3742: 3281: 2720: 2216: 1884: 1706:
of a regular dodecahedron between every two adjacent pentagonal faces is
451: 3298: 3109:
Hill, Christopher (1994). "Gallo-Roman Dodecahedra: A Progress Report".
2728: 4470: 4445: 4047: 3680: 3669: 2792:
The Golden Ratio: The Story of Phi, the World's Most Astonishing Number
2764: 2530: 2075:
The dodecahedral graph's Hamiltonian property and the mathematical toy
2008: 1676: 1367: 236: 282:
visits all of its vertices exactly once, can be found in a toy called
2004: 1306: 801: 602: 520: 437: 2756: 2522: 4078: 3394:, vol. 221 (2nd ed.), Springer-Verlag, pp. 235–244, 2343:, Jowett translation ; the Greek word translated as delineation is 239:. It has a relation with other Platonic solids, one of them is the 3342: 2242: 1811: 961:
Cartesian coordinates of a regular dodecahedron in the following:
956: 554: 461: 421: 346: 254:. The regular dodecahedron can be found in many popular cultures: 205: 3621:
Editable printable net of a dodecahedron with interactive 3D view
4138: 3648: 1993: 1880: 1625: 4082: 3689: 440:
completely mathematically described the Platonic solids in the
3681:
The Greek, Indian, and Chinese Elements – Seven Element Theory
3066:
Guggenberger, Michael (2013). "The Gallo-Roman Dodecahedron".
3685: 1597:
Note that, given a regular dodecahedron of edge length one,
3672:: Software used to create some of the images on this page. 2483:
The Penguin Dictionary of Curious and Interesting Geometry
2360:
John Philoponus' Criticism of Aristotle's Theory of Aether
1753:. It is the set of polyhedrons that can be constructed by 767:{\textstyle \phi ={\frac {1+{\sqrt {5}}}{2}}\approx 1.618} 565: 3417:(1995). "Chapter 4: Steinitz' Theorem for 3-Polytopes". 1900:, swiveling to the front as required to match his mood. 2292:. Wooden Books. Bloomsbury Publishing USA. p. 55. 466:
The regular icosahedron inside the regular dodecahedron
1779:
of the regular dodecahedron make up three of the four
1370:
to each of the regular dodecahedron's faces), and the
729: 640: 3074:(4). Springer Science and Business Media LLC: 56–60. 2979: 2939: 2899: 2859: 2124: 1712: 1685: 1654: 1634: 1603: 1406: 1379: 1345: 1318: 1291: 1103: 849: 829: 809: 786: 634: 491: 102: 3425:. Vol. 152. Springer-Verlag. pp. 103–126. 2574:
Calculus Gems: Brief Lives and Memorable Mathematics
2172:
has order a hundred and twenty. The vertices can be
262:
of a regular dodecahedron can be represented as the
4413: 4388: 4363: 4338: 4254: 4162: 4117: 4027: 3998: 3963: 3911: 3852: 3791: 3730: 2577:. Mathematical Association of America. p. 50. 1863:(1955), the room is a hollow regular dodecahedron. 1764:The regular dodecahedron can be interpreted as the 159: 145: 130: 88: 78: 68: 55: 35: 21: 2988: 2965: 2925: 2885: 2145: 1733: 1691: 1667: 1640: 1616: 1589: 1392: 1358: 1331: 1297: 1275: 947: 835: 815: 792: 766: 700: 508: 119: 16:Convex polyhedron with 12 regular pentagonal faces 2949: 2909: 2869: 2853:Table I(i), pp. 292–293. See the columns labeled 2795:(First trade paperback ed.). New York City: 1749:The regular dodecahedron can be interpreted as a 1624:is the radius of a circumscribing sphere about a 3676:How to make a dodecahedron from a Styrofoam cube 2550:. Courier Dover Publications. pp. 138–140. 1400:(one that touches the middle of each edge) are: 1285:If the edge length of a regular dodecahedron is 398:Following its attribution with nature by Plato, 3154: 3152: 570: 3484:: CS1 maint: DOI inactive as of August 2024 ( 519:When a regular dodecahedron is inscribed in a 337:, a set of polyhedrons in which the faces are 4094: 3701: 3499:Pisanski, Tomaž; Servatius, Brigitte (2013). 208:in his dialogues, and it was used as part of 8: 2822:"Exact Dihedral Metric for Common Polyhedra" 2015:, but this statement actually refers to the 2547:A Mathematical History of the Golden Number 2313:Herrmann, Diane L.; Sally, Paul J. (2013). 509:{\displaystyle \mathrm {I} _{\mathrm {h} }} 120:{\displaystyle \mathrm {I} _{\mathrm {h} }} 4367: 4101: 4087: 4079: 3708: 3694: 3686: 2966:{\displaystyle {}_{2}\!\mathrm {R} /\ell } 2926:{\displaystyle {}_{1}\!\mathrm {R} /\ell } 2886:{\displaystyle {}_{0}\!\mathrm {R} /\ell } 2394:. Cambridge University Press. p. 57. 2115:This graph can also be constructed as the 219:The regular dodecahedron is the family of 167: 27: 3614:"3D convex uniform polyhedra o3o5x – doe" 3341: 3280: 2978: 2955: 2950: 2943: 2941: 2938: 2915: 2910: 2903: 2901: 2898: 2875: 2870: 2863: 2861: 2858: 2176:with 3 colors, as can the edges, and the 2123: 1711: 1684: 1659: 1653: 1633: 1608: 1602: 1557: 1551: 1538: 1499: 1489: 1483: 1470: 1434: 1428: 1415: 1407: 1405: 1384: 1378: 1350: 1344: 1323: 1317: 1290: 1249: 1197: 1170: 1104: 1102: 936: 909: 899: 883: 856: 848: 828: 823:of a regular dodecahedron of edge length 808: 785: 745: 736: 728: 635: 633: 499: 498: 493: 490: 110: 109: 104: 101: 3502:Configuration from a Graphical Viewpoint 3049: 2281: 2279: 2011:are also said to exhibit "dodecahedral" 3021:(2nd ed.). Springer. p. 127. 2850: 2601:A Ludic Journey into Geometric Topology 2275: 3639:– 3-d model that works in your browser 3477: 2486:. Penguin Books. p. 57–58. 580:, which comes under our definition of 18: 2414: 2319:. Taylor & Francis. p. 252. 1837:, dodecahedra appears in the work of 1679:of a regular pentagon of edge length 7: 1989:(see figure), a unicellular coastal 204:, described as cosmic stellation by 3384:(2003), "13.1 Steinitz's theorem", 2457:Mathematical Association of America 2207:along the edges of a dodecahedron. 551:Relation to the regular tetrahedron 458:Relation to the regular icosahedron 3725:Listed by number of faces and type 3633:– Models made with Modular Origami 2951: 2911: 2871: 2203:. The game's object was to find a 500: 494: 428:3D model of a regular dodecahedron 111: 105: 14: 3243:"Is The Universe A Dodecahedron?" 2289:Platonic & Archimedean Solids 1942:Holmium–magnesium–zinc (Ho-Mg-Zn) 1928:goes back a hundred million years 564:the opposing pair). As quoted by 305:Regular dodecahedron painting by 2664:(1973) . "§1.8 Configurations". 2347:, painting in semblance of life. 2065: 2054: 1973:, DOI:10.1038/s44160-023-00276-9 1955: 1933: 1912: 1860:The Sacrament of the Last Supper 480:three-dimensional symmetry group 313: 298: 1745:Other related geometric objects 1734:{\displaystyle 2\arctan(\phi )} 1230: 1145: 892: 3645:The Encyclopedia of Polyhedra 3568:Graph Theory with Applications 3068:The Mathematical Intelligencer 2996:as the edge length (see p. 2). 2604:. Cham: Springer. p. 23. 2140: 2128: 1728: 1722: 1263: 1231: 1220: 1188: 1178: 1146: 1135: 1108: 723:of a polynomial, expressed as 1: 3936:(two infinite groups and 75) 3665:Dodecahedron 3D Visualization 3570:, North Holland, p. 53, 3423:Graduate Texts in Mathematics 3392:Graduate Texts in Mathematics 2544:Herz-Fischler, Roger (2013). 2510:American Mathematical Monthly 968:: the orange vertices lie at 196:faces, three meeting at each 4481:Degenerate polyhedra are in 3954:(two infinite groups and 50) 3670:Stella: Polyhedron Navigator 3211:10.1371/journal.pone.0081749 2357:Wildberg, Christian (1988). 1904:In nature and supramolecules 1797:great stellated dodecahedron 1785:small stellated dodecahedron 1757:the two axial vertices of a 1080:and form a rectangle on the 1042:and form a rectangle on the 1004:and form a rectangle on the 978:: the green vertices lie at 711:Relation to the golden ratio 323:Platonic solid model of the 223:because it is the result of 4300:pentagonal icositetrahedron 4241:truncated icosidodecahedron 3241:Dumé, Belle (Oct 8, 2003). 3027:10.1007/978-0-387-92714-5_9 2692:(2nd ed.). Cambridge: 2571:Simmons, George F. (2007). 2388:Cromwell, Peter R. (1997). 2029:Poincaré dodecahedral space 1871:In toys and popular culture 1054:: the pink vertices lie at 1016:: the blue vertices lie at 598:compound of five tetrahedra 414:, Kepler also proposed the 4534: 4330:pentagonal hexecontahedron 4290:deltoidal icositetrahedron 3454:Cambridge University Press 3360:10.1051/0004-6361:20078777 3330:Astronomy and Astrophysics 3223:Dodecahedral Crystal Habit 3181:10.1038/s44160-023-00276-9 3119:Cambridge University Press 2694:Cambridge University Press 2670:(3rd ed.). New York: 2183:The dodecahedral graph is 2117:generalized Petersen graph 2092:can be represented as the 1841:, such as his lithographs 1741:, approximately 116.565°. 594:compound of ten tetrahedra 578:compound of five octahedra 4479: 4370: 4325:disdyakis triacontahedron 4320:deltoidal hexecontahedron 4006:Kepler–Poinsot polyhedron 3723: 3643:Virtual Reality Polyhedra 3511:10.1007/978-0-8176-8364-1 3446:Rudolph, Michael (2022). 3195:Braarudosphaera bigelowii 3127:10.1017/s0003581500024458 3080:10.1007/s00283-013-9403-7 2690:Regular Complex Polytopes 2647:The Fifty-Nine Icosahedra 2610:10.1007/978-3-031-07442-4 2449:Erickson, Martin (2011). 2228:Braarudosphaera bigelowii 1986:Braarudosphaera bigelowii 1925:Braarudosphaera bigelowii 1919:The fossil record of the 474:of a dodecahedron is the 166: 26: 3505:. Springer. p. 81. 2824:. In Arvo, James (ed.). 2745:The Mathematical Gazette 2436:A History of Mathematics 2231:− A dodecahedron shaped 1890:In the children's novel 1781:Kepler–Poinsot polyhedra 411:Mysterium Cosmographicum 229:pentagonal trapezohedron 4431:gyroelongated bipyramid 4305:rhombic triacontahedron 4211:truncated cuboctahedron 4018:Uniform star polyhedron 3946:quasiregular polyhedron 3464:(inactive 2024-08-21). 3352:2008A&A...482..747L 3111:The Antiquaries Journal 2820:Paeth, Alan W. (1991). 2709:The Mathematics Teacher 2146:{\displaystyle G(10,2)} 1751:truncated trapezohedron 221:truncated trapezohedron 183:pentagonal dodecahedron 45:Truncated trapezohedron 4426:truncated trapezohedra 4295:disdyakis dodecahedron 4261:(duals of Archimedean) 4236:rhombicosidodecahedron 4226:truncated dodecahedron 3952:semiregular polyhedron 3598:"Regular Dodecahedron" 2990: 2989:{\displaystyle 2\ell } 2967: 2927: 2887: 2265:Truncated dodecahedron 2193:William Rowan Hamilton 2147: 1826:, small hollow bronze 1819: 1735: 1693: 1669: 1642: 1618: 1591: 1394: 1360: 1333: 1299: 1277: 1090: 949: 837: 817: 794: 768: 702: 608: 560: 510: 467: 429: 395:in American English). 274:. Its property of the 200:. It is an example of 121: 4315:pentakis dodecahedron 4231:truncated icosahedron 4186:truncated tetrahedron 3999:non-convex polyhedron 3626:The Uniform Polyhedra 3462:10.1007/9781316466919 3419:Lectures on Polytopes 3228:12 April 2009 at the 3197:(Prymnesiophyceae)". 2991: 2968: 2928: 2888: 2480:Weils, David (1991). 2452:Beautiful Mathematics 2286:Sutton, Daud (2002). 2255:Pentakis dodecahedron 2148: 2102:three-connected graph 2023:Shape of the universe 1962:Crystal structure of 1893:The Phantom Tollbooth 1815: 1736: 1694: 1692:{\displaystyle \phi } 1670: 1668:{\displaystyle r_{i}} 1643: 1641:{\displaystyle \phi } 1619: 1617:{\displaystyle r_{u}} 1592: 1395: 1393:{\displaystyle r_{m}} 1361: 1359:{\displaystyle r_{i}} 1334: 1332:{\displaystyle r_{u}} 1300: 1278: 1095:Cartesian coordinates 960: 950: 838: 818: 795: 769: 703: 582:stellated icosahedron 566:Coxeter et al. (1938) 558: 511: 465: 427: 375:—with the four 122: 4275:rhombic dodecahedron 4201:truncated octahedron 3653:Regular dodecahedron 3539:"Dodecahedral Graph" 3265:Luminet, Jean-Pierre 3011:"Goldberg Polyhedra" 2977: 2937: 2897: 2857: 2721:10.5951/MT.80.5.0357 2122: 2017:rhombic dodecahedron 1710: 1683: 1652: 1632: 1601: 1404: 1377: 1343: 1316: 1311:circumscribed sphere 1289: 1101: 847: 827: 807: 784: 727: 632: 617:configuration matrix 611:Configuration matrix 529:Pappus of Alexandria 489: 484:icosahedral symmetry 227:axial vertices of a 179:regular dodecahedron 100: 95:icosahedral symmetry 22:Regular dodecahedron 4310:triakis icosahedron 4285:tetrakis hexahedron 4270:triakis tetrahedron 4206:rhombicuboctahedron 3612:Klitzing, Richard. 3299:10.1038/nature01944 3291:2003Natur.425..593L 3173:2023NatSy...2..789W 2838:1991grge.book.....A 2598:Marar, Ton (2022). 2158:distance-transitive 2033:Jean-Pierre Luminet 1766:Goldberg polyhedron 537:Apollonius of Perga 476:regular icosahedron 373:regular icosahedron 361:regular tetrahedron 290:As a Platonic solid 241:regular icosahedron 233:Goldberg polyhedron 50:Goldberg polyhedron 4503:Goldberg polyhedra 4280:triakis octahedron 4165:Archimedean solids 3940:regular polyhedron 3934:uniform polyhedron 3896:Hectotriadiohedron 3595:Weisstein, Eric W. 3536:Weisstein, Eric W. 3415:Ziegler, Günter M. 3015:Senechal, Marjorie 2986: 2963: 2923: 2883: 2799:. pp. 70–71. 2672:Dover Publications 2640:; Flather, H. T.; 2367:. pp. 11–12. 2221:regular polychoron 2170:automorphism group 2143: 2106:dodecahedral graph 2086:Steinitz's theorem 2046:Dodecahedral graph 1898:facial expressions 1877:role-playing games 1820: 1817:Roman dodecahedron 1793:great dodecahedron 1731: 1689: 1665: 1638: 1614: 1587: 1585: 1390: 1356: 1329: 1295: 1273: 1271: 1091: 945: 833: 813: 790: 764: 698: 692: 561: 525:Hero of Alexandria 506: 468: 430: 377:classical elements 369:regular octahedron 268:dodecahedral graph 256:Roman dodecahedron 117: 4490: 4489: 4409: 4408: 4246:snub dodecahedron 4221:icosidodecahedron 4076: 4075: 3977:Archimedean solid 3964:convex polyhedron 3872:Icosidodecahedron 3631:Origami Polyhedra 3520:978-0-8176-8363-4 3036:978-0-387-92713-8 2686:Coxeter, H. S. M. 2667:Regular Polytopes 2662:Coxeter, H. S. M. 2619:978-3-031-07442-4 2466:978-1-61444-509-8 2401:978-0-521-55432-9 2365:Walter de Gruyter 2326:978-1-4665-5464-1 2260:Snub dodecahedron 2205:Hamiltonian cycle 2197:mathematical game 2195:, who invented a 1949:regular pentagons 1828:Roman dodecahedra 1566: 1513: 1510: 1445: 1439: 1298:{\displaystyle a} 930: 877: 876: 836:{\displaystyle a} 816:{\displaystyle V} 793:{\displaystyle A} 756: 750: 592:, thus forming a 175: 174: 63:regular pentagons 4525: 4368: 4364:Dihedral uniform 4339:Dihedral regular 4262: 4178: 4127: 4103: 4096: 4089: 4080: 3912:elemental things 3890:Enneacontahedron 3860:Icositetrahedron 3710: 3703: 3696: 3687: 3617: 3608: 3607: 3581: 3580: 3556: 3550: 3549: 3548: 3531: 3525: 3524: 3496: 3490: 3489: 3483: 3475: 3443: 3437: 3436: 3411: 3405: 3404: 3387:Convex Polytopes 3382:Grünbaum, Branko 3378: 3372: 3371: 3345: 3325: 3319: 3318: 3284: 3282:astro-ph/0310253 3261: 3255: 3254: 3249:. Archived from 3238: 3232: 3220: 3214: 3191: 3185: 3184: 3161:Nature Synthesis 3156: 3147: 3146: 3106: 3100: 3099: 3063: 3057: 3047: 3041: 3040: 3003: 2997: 2995: 2993: 2992: 2987: 2972: 2970: 2969: 2964: 2959: 2954: 2948: 2947: 2942: 2932: 2930: 2929: 2924: 2919: 2914: 2908: 2907: 2902: 2892: 2890: 2889: 2884: 2879: 2874: 2868: 2867: 2862: 2848: 2842: 2841: 2826:Graphics Gems II 2817: 2811: 2810: 2783: 2777: 2776: 2751:(421): 197–198. 2740: 2734: 2732: 2704: 2698: 2697: 2682: 2676: 2675: 2658: 2652: 2651: 2630: 2624: 2623: 2595: 2589: 2588: 2568: 2562: 2561: 2541: 2535: 2534: 2504: 2498: 2497: 2477: 2471: 2470: 2446: 2440: 2428: 2422: 2412: 2406: 2405: 2385: 2379: 2378: 2354: 2348: 2337: 2331: 2330: 2310: 2304: 2303: 2283: 2162:distance-regular 2152: 2150: 2149: 2144: 2069: 2058: 2040:Bertrand Russell 1959: 1937: 1916: 1835:20th-century art 1740: 1738: 1737: 1732: 1698: 1696: 1695: 1690: 1674: 1672: 1671: 1666: 1664: 1663: 1647: 1645: 1644: 1639: 1623: 1621: 1620: 1615: 1613: 1612: 1596: 1594: 1593: 1588: 1586: 1567: 1562: 1561: 1552: 1543: 1542: 1514: 1512: 1511: 1500: 1494: 1493: 1484: 1475: 1474: 1446: 1441: 1440: 1435: 1429: 1420: 1419: 1399: 1397: 1396: 1391: 1389: 1388: 1365: 1363: 1362: 1357: 1355: 1354: 1338: 1336: 1335: 1330: 1328: 1327: 1304: 1302: 1301: 1296: 1282: 1280: 1279: 1274: 1272: 1253: 1201: 1174: 1085: 1079: 1077: 1075: 1074: 1069: 1066: 1053: 1047: 1041: 1035: 1033: 1032: 1027: 1024: 1015: 1009: 1003: 1001: 999: 998: 993: 990: 977: 971: 967: 954: 952: 951: 946: 941: 940: 931: 929: 915: 914: 913: 900: 888: 887: 878: 866: 865: 857: 842: 840: 839: 834: 822: 820: 819: 814: 799: 797: 796: 791: 773: 771: 770: 765: 757: 752: 751: 746: 737: 707: 705: 704: 699: 697: 696: 590:stella octangula 544:Golden rectangle 535:, among others. 515: 513: 512: 507: 505: 504: 503: 497: 426: 405:Harmonices Mundi 339:regular polygons 317: 302: 171: 126: 124: 123: 118: 116: 115: 114: 108: 31: 19: 4533: 4532: 4528: 4527: 4526: 4524: 4523: 4522: 4513:Platonic solids 4493: 4492: 4491: 4486: 4475: 4414:Dihedral others 4405: 4384: 4359: 4334: 4263: 4260: 4259: 4250: 4179: 4168: 4167: 4158: 4121: 4119:Platonic solids 4113: 4107: 4077: 4072: 4023: 4012:Star polyhedron 3994: 3959: 3907: 3884:Hexecontahedron 3866:Triacontahedron 3848: 3839:Enneadecahedron 3829:Heptadecahedron 3819:Pentadecahedron 3814:Tetradecahedron 3787: 3726: 3719: 3714: 3611: 3593: 3592: 3589: 3584: 3578: 3564:Murty, U. S. R. 3558: 3557: 3553: 3534: 3533: 3532: 3528: 3521: 3498: 3497: 3493: 3476: 3472: 3445: 3444: 3440: 3433: 3413: 3412: 3408: 3402: 3380: 3379: 3375: 3327: 3326: 3322: 3275:(6958): 593–5. 3263: 3262: 3258: 3240: 3239: 3235: 3230:Wayback Machine 3221: 3217: 3192: 3188: 3158: 3157: 3150: 3108: 3107: 3103: 3065: 3064: 3060: 3050:Cromwell (1997) 3048: 3044: 3037: 3005: 3004: 3000: 2975: 2974: 2940: 2935: 2934: 2900: 2895: 2894: 2860: 2855: 2854: 2849: 2845: 2832:. p. 177. 2819: 2818: 2814: 2807: 2785: 2784: 2780: 2757:10.2307/3616690 2742: 2741: 2737: 2706: 2705: 2701: 2684: 2683: 2679: 2660: 2659: 2655: 2638:du Val, Patrick 2634:Coxeter, H.S.M. 2632: 2631: 2627: 2620: 2597: 2596: 2592: 2585: 2570: 2569: 2565: 2558: 2543: 2542: 2538: 2523:10.2307/2317282 2506: 2505: 2501: 2494: 2479: 2478: 2474: 2467: 2448: 2447: 2443: 2429: 2425: 2413: 2409: 2402: 2387: 2386: 2382: 2375: 2356: 2355: 2351: 2338: 2334: 2327: 2312: 2311: 2307: 2300: 2285: 2284: 2277: 2273: 2233:coccolithophore 2213: 2120: 2119: 2082: 2081: 2080: 2079: 2072: 2071: 2070: 2061: 2060: 2059: 2048: 2025: 1991:phytoplanktonic 1982:coccolithophore 1978: 1977: 1976: 1975: 1974: 1960: 1952: 1951: 1940:The faces of a 1938: 1930: 1929: 1921:coccolithophore 1917: 1906: 1881:polyhedral dice 1873: 1824:Hellenistic era 1810: 1805: 1747: 1708: 1707: 1681: 1680: 1655: 1650: 1649: 1630: 1629: 1628:of edge length 1604: 1599: 1598: 1584: 1583: 1553: 1544: 1534: 1531: 1530: 1495: 1485: 1476: 1466: 1463: 1462: 1430: 1421: 1411: 1402: 1401: 1380: 1375: 1374: 1346: 1341: 1340: 1319: 1314: 1313: 1287: 1286: 1270: 1269: 1226: 1185: 1184: 1141: 1099: 1098: 1089: 1081: 1070: 1067: 1064: 1063: 1061: 1055: 1051: 1043: 1028: 1025: 1022: 1021: 1019: 1017: 1013: 1005: 994: 991: 988: 987: 985: 979: 975: 969: 965: 932: 916: 905: 901: 879: 858: 845: 844: 825: 824: 805: 804: 782: 781: 738: 725: 724: 713: 691: 690: 685: 680: 674: 673: 668: 663: 657: 656: 651: 646: 636: 630: 629: 613: 586:triacontahedron 553: 492: 487: 486: 472:dual polyhedron 460: 422: 400:Johannes Kepler 335:Platonic solids 331: 330: 329: 328: 327: 318: 310: 309: 307:Johannes Kepler 303: 292: 245:dual polyhedron 231:. It is also a 214:Johannes Kepler 202:Platonic solids 103: 98: 97: 48: 43: 17: 12: 11: 5: 4531: 4529: 4521: 4520: 4515: 4510: 4505: 4495: 4494: 4488: 4487: 4480: 4477: 4476: 4474: 4473: 4468: 4463: 4458: 4453: 4448: 4443: 4438: 4433: 4428: 4423: 4417: 4415: 4411: 4410: 4407: 4406: 4404: 4403: 4398: 4392: 4390: 4386: 4385: 4383: 4382: 4377: 4371: 4365: 4361: 4360: 4358: 4357: 4350: 4342: 4340: 4336: 4335: 4333: 4332: 4327: 4322: 4317: 4312: 4307: 4302: 4297: 4292: 4287: 4282: 4277: 4272: 4266: 4264: 4257:Catalan solids 4255: 4252: 4251: 4249: 4248: 4243: 4238: 4233: 4228: 4223: 4218: 4213: 4208: 4203: 4198: 4196:truncated cube 4193: 4188: 4182: 4180: 4163: 4160: 4159: 4157: 4156: 4151: 4146: 4141: 4136: 4130: 4128: 4115: 4114: 4108: 4106: 4105: 4098: 4091: 4083: 4074: 4073: 4071: 4070: 4068:parallelepiped 4065: 4060: 4055: 4050: 4045: 4040: 4034: 4032: 4025: 4024: 4022: 4021: 4015: 4009: 4002: 4000: 3996: 3995: 3993: 3992: 3986: 3980: 3974: 3971:Platonic solid 3967: 3965: 3961: 3960: 3958: 3957: 3956: 3955: 3949: 3943: 3931: 3926: 3921: 3915: 3913: 3909: 3908: 3906: 3905: 3899: 3893: 3887: 3881: 3875: 3869: 3863: 3856: 3854: 3850: 3849: 3847: 3846: 3841: 3836: 3834:Octadecahedron 3831: 3826: 3824:Hexadecahedron 3821: 3816: 3811: 3806: 3801: 3795: 3793: 3789: 3788: 3786: 3785: 3780: 3775: 3770: 3765: 3760: 3755: 3750: 3745: 3740: 3734: 3732: 3728: 3727: 3724: 3721: 3720: 3715: 3713: 3712: 3705: 3698: 3690: 3684: 3683: 3678: 3673: 3667: 3662: 3657: 3656: 3655: 3640: 3634: 3628: 3623: 3618: 3609: 3588: 3587:External links 3585: 3583: 3582: 3576: 3551: 3526: 3519: 3491: 3470: 3456:. p. 25. 3438: 3431: 3406: 3400: 3373: 3320: 3256: 3253:on 2012-04-25. 3233: 3215: 3205:(12): e81749. 3186: 3148: 3101: 3058: 3042: 3035: 2998: 2985: 2982: 2962: 2958: 2953: 2946: 2922: 2918: 2913: 2906: 2882: 2878: 2873: 2866: 2851:Coxeter (1973) 2843: 2830:Academic Press 2812: 2805: 2797:Broadway Books 2778: 2735: 2715:(5): 357–358. 2699: 2696:. p. 117. 2677: 2653: 2625: 2618: 2590: 2583: 2563: 2556: 2536: 2499: 2492: 2472: 2465: 2459:. p. 62. 2441: 2431:Florian Cajori 2423: 2407: 2400: 2380: 2373: 2349: 2332: 2325: 2305: 2298: 2274: 2272: 2269: 2268: 2267: 2262: 2257: 2252: 2246: 2230: 2224: 2212: 2209: 2142: 2139: 2136: 2133: 2130: 2127: 2110:Platonic graph 2074: 2073: 2064: 2063: 2062: 2053: 2052: 2051: 2050: 2049: 2047: 2044: 2024: 2021: 1961: 1954: 1953: 1939: 1932: 1931: 1918: 1911: 1910: 1909: 1908: 1907: 1905: 1902: 1872: 1869: 1809: 1808:In visual arts 1806: 1804: 1801: 1746: 1743: 1730: 1727: 1724: 1721: 1718: 1715: 1704:dihedral angle 1688: 1662: 1658: 1637: 1611: 1607: 1582: 1579: 1576: 1573: 1570: 1565: 1560: 1556: 1550: 1547: 1545: 1541: 1537: 1533: 1532: 1529: 1526: 1523: 1520: 1517: 1509: 1506: 1503: 1498: 1492: 1488: 1482: 1479: 1477: 1473: 1469: 1465: 1464: 1461: 1458: 1455: 1452: 1449: 1444: 1438: 1433: 1427: 1424: 1422: 1418: 1414: 1410: 1409: 1387: 1383: 1353: 1349: 1326: 1322: 1294: 1268: 1265: 1262: 1259: 1256: 1252: 1248: 1245: 1242: 1239: 1236: 1233: 1229: 1227: 1225: 1222: 1219: 1216: 1213: 1210: 1207: 1204: 1200: 1196: 1193: 1190: 1187: 1186: 1183: 1180: 1177: 1173: 1169: 1166: 1163: 1160: 1157: 1154: 1151: 1148: 1144: 1142: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1107: 1106: 1093:The following 1088: 1087: 1049: 1011: 973: 962: 944: 939: 935: 928: 925: 922: 919: 912: 908: 904: 898: 895: 891: 886: 882: 875: 872: 869: 864: 861: 855: 852: 832: 812: 789: 763: 760: 755: 749: 744: 741: 735: 732: 712: 709: 695: 689: 686: 684: 681: 679: 676: 675: 672: 669: 667: 664: 662: 659: 658: 655: 652: 650: 647: 645: 642: 641: 639: 612: 609: 574:golden section 552: 549: 502: 496: 459: 456: 319: 312: 311: 304: 297: 296: 295: 294: 293: 291: 288: 272:Platonic graph 173: 172: 164: 163: 157: 156: 147: 143: 142: 139: 132:Dihedral angle 128: 127: 113: 107: 92: 90:Symmetry group 86: 85: 82: 76: 75: 72: 66: 65: 59: 53: 52: 40:Platonic solid 37: 33: 32: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 4530: 4519: 4516: 4514: 4511: 4509: 4508:Planar graphs 4506: 4504: 4501: 4500: 4498: 4484: 4478: 4472: 4469: 4467: 4464: 4462: 4459: 4457: 4454: 4452: 4449: 4447: 4444: 4442: 4439: 4437: 4434: 4432: 4429: 4427: 4424: 4422: 4419: 4418: 4416: 4412: 4402: 4399: 4397: 4394: 4393: 4391: 4387: 4381: 4378: 4376: 4373: 4372: 4369: 4366: 4362: 4356: 4355: 4351: 4349: 4348: 4344: 4343: 4341: 4337: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4286: 4283: 4281: 4278: 4276: 4273: 4271: 4268: 4267: 4265: 4258: 4253: 4247: 4244: 4242: 4239: 4237: 4234: 4232: 4229: 4227: 4224: 4222: 4219: 4217: 4214: 4212: 4209: 4207: 4204: 4202: 4199: 4197: 4194: 4192: 4191:cuboctahedron 4189: 4187: 4184: 4183: 4181: 4176: 4172: 4166: 4161: 4155: 4152: 4150: 4147: 4145: 4142: 4140: 4137: 4135: 4132: 4131: 4129: 4125: 4120: 4116: 4112: 4104: 4099: 4097: 4092: 4090: 4085: 4084: 4081: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4035: 4033: 4030: 4026: 4019: 4016: 4013: 4010: 4007: 4004: 4003: 4001: 3997: 3990: 3989:Johnson solid 3987: 3984: 3983:Catalan solid 3981: 3978: 3975: 3972: 3969: 3968: 3966: 3962: 3953: 3950: 3947: 3944: 3941: 3938: 3937: 3935: 3932: 3930: 3927: 3925: 3922: 3920: 3917: 3916: 3914: 3910: 3903: 3900: 3897: 3894: 3891: 3888: 3885: 3882: 3879: 3878:Hexoctahedron 3876: 3873: 3870: 3867: 3864: 3861: 3858: 3857: 3855: 3851: 3845: 3842: 3840: 3837: 3835: 3832: 3830: 3827: 3825: 3822: 3820: 3817: 3815: 3812: 3810: 3809:Tridecahedron 3807: 3805: 3802: 3800: 3799:Hendecahedron 3797: 3796: 3794: 3790: 3784: 3781: 3779: 3776: 3774: 3771: 3769: 3766: 3764: 3761: 3759: 3756: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3735: 3733: 3729: 3722: 3718: 3711: 3706: 3704: 3699: 3697: 3692: 3691: 3688: 3682: 3679: 3677: 3674: 3671: 3668: 3666: 3663: 3661: 3658: 3654: 3650: 3647: 3646: 3644: 3641: 3638: 3635: 3632: 3629: 3627: 3624: 3622: 3619: 3615: 3610: 3605: 3604: 3599: 3596: 3591: 3590: 3586: 3579: 3577:0-444-19451-7 3573: 3569: 3565: 3561: 3555: 3552: 3546: 3545: 3540: 3537: 3530: 3527: 3522: 3516: 3512: 3508: 3504: 3503: 3495: 3492: 3487: 3481: 3473: 3471:9781316466919 3467: 3463: 3459: 3455: 3451: 3450: 3442: 3439: 3434: 3432:0-387-94365-X 3428: 3424: 3420: 3416: 3410: 3407: 3403: 3401:0-387-40409-0 3397: 3393: 3389: 3388: 3383: 3377: 3374: 3369: 3365: 3361: 3357: 3353: 3349: 3344: 3339: 3335: 3331: 3324: 3321: 3316: 3312: 3308: 3304: 3300: 3296: 3292: 3288: 3283: 3278: 3274: 3270: 3266: 3260: 3257: 3252: 3248: 3244: 3237: 3234: 3231: 3227: 3224: 3219: 3216: 3212: 3208: 3204: 3200: 3196: 3190: 3187: 3182: 3178: 3174: 3170: 3166: 3162: 3155: 3153: 3149: 3144: 3140: 3136: 3132: 3128: 3124: 3120: 3116: 3112: 3105: 3102: 3097: 3093: 3089: 3085: 3081: 3077: 3073: 3069: 3062: 3059: 3055: 3051: 3046: 3043: 3038: 3032: 3028: 3024: 3020: 3019:Shaping Space 3016: 3012: 3008: 3002: 2999: 2983: 2980: 2960: 2956: 2944: 2920: 2916: 2904: 2880: 2876: 2864: 2852: 2847: 2844: 2839: 2835: 2831: 2827: 2823: 2816: 2813: 2808: 2806:0-7679-0816-3 2802: 2798: 2794: 2793: 2788: 2782: 2779: 2774: 2770: 2766: 2762: 2758: 2754: 2750: 2746: 2739: 2736: 2730: 2726: 2722: 2718: 2714: 2710: 2703: 2700: 2695: 2691: 2687: 2681: 2678: 2673: 2669: 2668: 2663: 2657: 2654: 2649: 2648: 2643: 2642:Petrie, J. F. 2639: 2635: 2629: 2626: 2621: 2615: 2611: 2607: 2603: 2602: 2594: 2591: 2586: 2584:9780883855614 2580: 2576: 2575: 2567: 2564: 2559: 2557:9780486152325 2553: 2549: 2548: 2540: 2537: 2532: 2528: 2524: 2520: 2516: 2512: 2511: 2503: 2500: 2495: 2493:9780140118131 2489: 2485: 2484: 2476: 2473: 2468: 2462: 2458: 2454: 2453: 2445: 2442: 2438: 2437: 2432: 2427: 2424: 2420: 2416: 2411: 2408: 2403: 2397: 2393: 2392: 2384: 2381: 2376: 2374:9783110104462 2370: 2366: 2362: 2361: 2353: 2350: 2346: 2345:diazographein 2342: 2336: 2333: 2328: 2322: 2318: 2317: 2309: 2306: 2301: 2299:9780802713865 2295: 2291: 2290: 2282: 2280: 2276: 2270: 2266: 2263: 2261: 2258: 2256: 2253: 2250: 2249:Dodecahedrane 2247: 2244: 2241: 2240:phytoplankton 2238: 2234: 2229: 2226: 2225: 2222: 2218: 2215: 2214: 2210: 2208: 2206: 2202: 2199:known as the 2198: 2194: 2190: 2186: 2181: 2179: 2175: 2171: 2167: 2163: 2159: 2154: 2137: 2134: 2131: 2125: 2118: 2113: 2111: 2107: 2103: 2099: 2095: 2091: 2087: 2084:According to 2078: 2068: 2057: 2045: 2043: 2041: 2036: 2034: 2030: 2022: 2020: 2018: 2014: 2010: 2006: 2002: 2001:quasicrystals 1997: 1995: 1992: 1988: 1987: 1983: 1972: 1969: 1965: 1958: 1950: 1946: 1943: 1936: 1927: 1926: 1922: 1915: 1903: 1901: 1899: 1895: 1894: 1888: 1886: 1882: 1878: 1870: 1868: 1866: 1862: 1861: 1856: 1855:Salvador Dalí 1852: 1851: 1846: 1845: 1840: 1836: 1831: 1829: 1825: 1818: 1814: 1807: 1802: 1800: 1798: 1794: 1790: 1786: 1782: 1778: 1773: 1771: 1767: 1762: 1760: 1759:trapezohedron 1756: 1752: 1744: 1742: 1725: 1719: 1716: 1713: 1705: 1700: 1686: 1678: 1660: 1656: 1635: 1627: 1609: 1605: 1580: 1577: 1574: 1571: 1568: 1563: 1558: 1554: 1548: 1546: 1539: 1535: 1527: 1524: 1521: 1518: 1515: 1507: 1504: 1501: 1496: 1490: 1486: 1480: 1478: 1471: 1467: 1459: 1456: 1453: 1450: 1447: 1442: 1436: 1431: 1425: 1423: 1416: 1412: 1385: 1381: 1373: 1369: 1351: 1347: 1324: 1320: 1312: 1308: 1292: 1283: 1266: 1260: 1257: 1254: 1250: 1246: 1243: 1240: 1237: 1234: 1228: 1223: 1217: 1214: 1211: 1208: 1205: 1202: 1198: 1194: 1191: 1181: 1175: 1171: 1167: 1164: 1161: 1158: 1155: 1152: 1149: 1143: 1138: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1096: 1084: 1073: 1059: 1050: 1046: 1039: 1031: 1012: 1008: 997: 983: 974: 964: 963: 959: 955: 942: 937: 933: 926: 923: 920: 917: 910: 906: 902: 896: 893: 889: 884: 880: 873: 870: 867: 862: 859: 853: 850: 830: 810: 803: 787: 780: 775: 761: 758: 753: 747: 742: 739: 733: 730: 722: 718: 710: 708: 693: 687: 682: 677: 670: 665: 660: 653: 648: 643: 637: 626: 622: 618: 610: 607: 605: 604: 599: 595: 591: 587: 583: 579: 575: 569: 567: 557: 550: 548: 545: 541: 538: 534: 530: 526: 522: 517: 485: 481: 477: 473: 464: 457: 455: 453: 449: 445: 444: 439: 435: 425: 420: 417: 413: 412: 407: 406: 401: 396: 394: 390: 386: 382: 378: 374: 370: 366: 362: 358: 354: 353: 348: 344: 340: 336: 326: 322: 316: 308: 301: 289: 287: 285: 281: 277: 273: 269: 265: 261: 257: 253: 248: 246: 242: 238: 234: 230: 226: 222: 217: 215: 211: 207: 203: 199: 195: 192: 188: 184: 180: 170: 165: 162: 158: 155: 151: 148: 144: 141:116.565° 140: 137: 133: 129: 96: 93: 91: 87: 83: 81: 77: 73: 71: 67: 64: 60: 58: 54: 51: 46: 41: 38: 34: 30: 25: 20: 4482: 4401:trapezohedra 4352: 4345: 4149:dodecahedron 4148: 3902:Apeirohedron 3853:>20 faces 3804:Dodecahedron 3637:Dodecahedron 3601: 3567: 3560:Bondy, J. A. 3554: 3542: 3529: 3501: 3494: 3448: 3441: 3418: 3409: 3386: 3376: 3333: 3329: 3323: 3272: 3268: 3259: 3251:the original 3247:PhysicsWorld 3246: 3236: 3218: 3202: 3198: 3194: 3189: 3164: 3160: 3114: 3110: 3104: 3071: 3067: 3061: 3045: 3018: 3007:Hart, George 3001: 2846: 2825: 2815: 2791: 2787:Livio, Mario 2781: 2748: 2744: 2738: 2712: 2708: 2702: 2689: 2680: 2666: 2656: 2646: 2628: 2600: 2593: 2573: 2566: 2546: 2539: 2514: 2508: 2502: 2482: 2475: 2451: 2444: 2435: 2426: 2415:Livio (2003) 2410: 2390: 2383: 2359: 2352: 2344: 2340: 2335: 2315: 2308: 2288: 2201:icosian game 2187:, meaning a 2182: 2155: 2114: 2105: 2083: 2077:Icosian game 2037: 2026: 1998: 1984: 1979: 1970: 1967: 1963: 1945:quasicrystal 1923: 1891: 1889: 1874: 1865:Gerard Caris 1858: 1857:'s painting 1848: 1842: 1839:M. C. Escher 1832: 1821: 1791:, forming a 1774: 1763: 1748: 1701: 1284: 1092: 1082: 1071: 1057: 1044: 1037: 1029: 1006: 995: 981: 970:(±1, ±1, ±1) 779:surface area 776: 717:golden ratio 714: 614: 601: 571: 562: 542: 518: 469: 450:states that 442: 431: 416:Solar System 409: 403: 397: 392: 388: 350: 332: 325:Solar System 284:icosian game 267: 252:golden ratio 249: 218: 212:proposed by 210:Solar System 189:composed of 187:dodecahedron 182: 178: 176: 4518:12 (number) 4171:semiregular 4154:icosahedron 4134:tetrahedron 3844:Icosahedron 3792:11–20 faces 3778:Enneahedron 3768:Heptahedron 3758:Pentahedron 3753:Tetrahedron 3121:: 289–292. 2237:unicellular 2185:Hamiltonian 1980:The fossil 1968:Nat. Synth. 1853:(1952). In 1850:Gravitation 1847:(1943) and 1803:Appearances 1777:stellations 276:Hamiltonian 266:called the 4497:Categories 4466:prismatoid 4396:bipyramids 4380:antiprisms 4354:hosohedron 4144:octahedron 4029:prismatoid 4014:(infinite) 3783:Decahedron 3773:Octahedron 3763:Hexahedron 3738:Monohedron 3731:1–10 faces 3336:(3): 747. 3167:(8): 789. 3052:, p.  2517:(2): 192. 2417:, p.  2271:References 2251:(molecule) 1875:In modern 1755:truncating 448:Iamblichus 434:Theaetetus 391:in Latin, 352:Theaetetus 237:chamfering 225:truncating 194:pentagonal 146:Properties 4461:birotunda 4451:bifrustum 4216:snub cube 4111:polyhedra 4043:antiprism 3748:Trihedron 3717:Polyhedra 3603:MathWorld 3544:MathWorld 3480:cite book 3343:0801.0006 3143:161691752 3135:0003-5815 3096:122337773 3088:0343-6993 2984:ℓ 2961:ℓ 2921:ℓ 2881:ℓ 2789:(2003) . 2773:125919525 2391:Polyhedra 2180:is five. 2166:symmetric 1947:are true 1726:ϕ 1720:⁡ 1687:ϕ 1636:ϕ 1572:≈ 1555:ϕ 1519:≈ 1508:ϕ 1505:− 1487:ϕ 1451:≈ 1432:ϕ 1372:midradius 1255:ϕ 1244:± 1238:ϕ 1235:± 1218:ϕ 1215:± 1203:ϕ 1192:± 1176:ϕ 1165:± 1159:ϕ 1156:± 1130:± 1121:± 1112:± 927:ϕ 921:− 907:ϕ 874:ϕ 871:− 863:ϕ 759:≈ 731:ϕ 533:Fibonacci 381:Aristotle 343:congruent 341:that are 4441:bicupola 4421:pyramids 4347:dihedron 3743:Dihedron 3566:(1976), 3307:14534579 3226:Archived 3199:PLoS One 3009:(2012). 2729:27965402 2688:(1991). 2644:(1938). 2217:120-cell 2211:See also 2178:diameter 2094:skeleton 1885:Megaminx 1844:Reptiles 800:and the 625:diagonal 452:Hippasus 443:Elements 321:Kepler's 260:skeleton 80:Vertices 4483:italics 4471:scutoid 4456:rotunda 4446:frustum 4175:uniform 4124:regular 4109:Convex 4063:pyramid 4048:frustum 3368:1616362 3348:Bibcode 3315:4380713 3287:Bibcode 3169:Bibcode 3017:(ed.). 2834:Bibcode 2765:3616690 2531:2317282 2341:Timaeus 2339:Plato, 2174:colored 2019:shape. 2009:diamond 1964:Co20L12 1770:chamfer 1677:apothem 1675:is the 1368:tangent 1086:-plane. 1076:⁠ 1062:⁠ 1048:-plane. 1034:⁠ 1020:⁠ 1010:-plane. 1000:⁠ 986:⁠ 402:in his 357:Timaeus 243:as its 191:regular 154:regular 136:degrees 4436:cupola 4389:duals: 4375:prisms 4053:cupola 3929:vertex 3574:  3517:  3468:  3429:  3398:  3366:  3313:  3305:  3269:Nature 3141:  3133:  3094:  3086:  3033:  2933:, and 2803:  2771:  2763:  2727:  2616:  2581:  2554:  2529:  2490:  2463:  2439:(1893) 2398:  2371:  2323:  2296:  2168:. The 2164:, and 2098:planar 2088:, the 2005:garnet 1883:. The 1789:wedges 1717:arctan 1648:, and 1307:radius 1305:, the 1052:  1036:, 0, ± 1014:  976:  966:  802:volume 621:matrix 603:chiral 531:, and 521:sphere 438:Euclid 389:aether 385:aithêr 371:, and 198:vertex 150:convex 4058:wedge 4038:prism 3898:(132) 3364:S2CID 3338:arXiv 3311:S2CID 3277:arXiv 3139:S2CID 3092:S2CID 3013:. In 2769:S2CID 2761:JSTOR 2725:JSTOR 2527:JSTOR 2243:algae 2090:graph 2013:habit 1999:Some 1575:1.309 1522:1.114 1454:1.401 1309:of a 980:(0, ± 843:are: 762:1.618 721:roots 619:is a 393:ether 349:. In 347:Plato 264:graph 206:Plato 185:is a 70:Edges 57:Faces 4139:cube 4020:(57) 3991:(92) 3985:(13) 3979:(13) 3948:(16) 3924:edge 3919:face 3892:(90) 3886:(60) 3880:(48) 3874:(32) 3868:(30) 3862:(24) 3649:VRML 3572:ISBN 3515:ISBN 3486:link 3466:ISBN 3427:ISBN 3396:ISBN 3303:PMID 3131:ISSN 3084:ISSN 3031:ISBN 2801:ISBN 2614:ISBN 2579:ISBN 2552:ISBN 2488:ISBN 2461:ISBN 2396:ISBN 2369:ISBN 2321:ISBN 2294:ISBN 2219:, a 2189:path 2108:, a 2007:and 1994:alga 1971:2023 1775:The 1702:The 1626:cube 1078:, 0) 777:The 715:The 615:The 470:The 365:cube 280:path 278:, a 270:, a 36:Type 4173:or 4008:(4) 3973:(5) 3942:(9) 3904:(∞) 3507:doi 3458:doi 3356:doi 3334:482 3295:doi 3273:425 3207:doi 3177:doi 3123:doi 3076:doi 3054:265 3023:doi 2753:doi 2717:doi 2606:doi 2519:doi 2419:147 2235:(a 2038:In 1833:In 1060:, ± 984:, ± 181:or 161:Net 61:12 4499:: 4031:‌s 3600:. 3562:; 3541:. 3513:. 3482:}} 3478:{{ 3452:. 3421:. 3390:, 3362:. 3354:. 3346:. 3332:. 3309:. 3301:. 3293:. 3285:. 3271:. 3245:. 3201:, 3175:. 3163:. 3151:^ 3137:. 3129:. 3117:. 3115:74 3113:. 3090:. 3082:. 3072:35 3070:. 3029:. 2893:, 2828:. 2767:. 2759:. 2749:62 2747:. 2723:. 2713:80 2711:. 2636:; 2612:. 2525:. 2515:76 2513:. 2455:. 2433:, 2363:. 2278:^ 2245:). 2160:, 2132:10 2112:. 1799:. 1699:. 1083:xy 1056:(± 1045:xz 1018:(± 1007:yz 860:15 688:12 666:30 644:20 606:." 568:, 527:, 367:, 363:, 286:. 177:A 152:, 84:20 74:30 4485:. 4177:) 4169:( 4126:) 4122:( 4102:e 4095:t 4088:v 3709:e 3702:t 3695:v 3651:# 3616:. 3606:. 3547:. 3523:. 3509:: 3488:) 3474:. 3460:: 3435:. 3370:. 3358:: 3350:: 3340:: 3317:. 3297:: 3289:: 3279:: 3213:. 3209:: 3203:8 3183:. 3179:: 3171:: 3165:2 3145:. 3125:: 3098:. 3078:: 3056:. 3039:. 3025:: 2981:2 2957:/ 2952:R 2945:2 2917:/ 2912:R 2905:1 2877:/ 2872:R 2865:0 2840:. 2836:: 2809:. 2775:. 2755:: 2731:. 2719:: 2674:. 2622:. 2608:: 2587:. 2560:. 2533:. 2521:: 2496:. 2469:. 2421:. 2404:. 2377:. 2329:. 2302:. 2141:) 2138:2 2135:, 2129:( 2126:G 1729:) 1723:( 1714:2 1661:i 1657:r 1610:u 1606:r 1581:. 1578:a 1569:a 1564:2 1559:2 1549:= 1540:m 1536:r 1528:, 1525:a 1516:a 1502:3 1497:2 1491:2 1481:= 1472:i 1468:r 1460:, 1457:a 1448:a 1443:2 1437:3 1426:= 1417:u 1413:r 1386:m 1382:r 1366:( 1352:i 1348:r 1325:u 1321:r 1293:a 1267:. 1264:) 1261:0 1258:, 1251:/ 1247:1 1241:, 1232:( 1224:, 1221:) 1212:, 1209:0 1206:, 1199:/ 1195:1 1189:( 1182:, 1179:) 1172:/ 1168:1 1162:, 1153:, 1150:0 1147:( 1139:, 1136:) 1133:1 1127:, 1124:1 1118:, 1115:1 1109:( 1072:ϕ 1068:/ 1065:1 1058:ϕ 1040:) 1038:ϕ 1030:ϕ 1026:/ 1023:1 1002:) 996:ϕ 992:/ 989:1 982:ϕ 972:. 943:. 938:3 934:a 924:2 918:6 911:3 903:5 897:= 894:V 890:, 885:2 881:a 868:3 854:= 851:A 831:a 811:V 788:A 754:2 748:5 743:+ 740:1 734:= 694:] 683:5 678:5 671:2 661:2 654:3 649:3 638:[ 501:h 495:I 387:( 138:) 134:( 112:h 106:I 47:, 42:,

Index


Platonic solid
Truncated trapezohedron
Goldberg polyhedron
Faces
regular pentagons
Edges
Vertices
Symmetry group
icosahedral symmetry
Dihedral angle
degrees
convex
regular
Net

dodecahedron
regular
pentagonal
vertex
Platonic solids
Plato
Solar System
Johannes Kepler
truncated trapezohedron
truncating
pentagonal trapezohedron
Goldberg polyhedron
chamfering
regular icosahedron

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.