Knowledge (XXG)

Glossary of arithmetic and diophantine geometry

Source 📝

4346: 4306: 4326: 4316: 4336: 2139:
of the union of images of algebraic groups under non-trivial rational maps; alternatively one may take images of abelian varieties; another definition is the union of all subvarieties that are not of general type. For abelian varieties the definition would be the union of all translates of proper
2162:
shows that points of small height in projective space lie in a finite number of hyperplanes. A quantitative form of the theorem, in which the number of subspaces containing all solutions, was also obtained by Schmidt, and the theorem was generalised by Schlickewei (1977) to allow more general
1203:. One of the main objectives of Diophantine geometry is to classify cases where the Hasse principle holds. Generally that is for a large number of variables, when the degree of an equation is held fixed. The Hasse principle is often associated with the success of the 1207:. When the circle method works, it can provide extra, quantitative information such as asymptotic number of solutions. Reducing the number of variables makes the circle method harder; therefore failures of the Hasse principle, for example for 1374:'s classical method for Diophantine equations. It became one half of the standard proof of the Mordell–Weil theorem, with the other being an argument with height functions (q.v.). Descent is something like division by two in a group of 1922:
is a real number which describes the rate of growth of the number of rational points on the variety with respect to the embedding defined by the divisor. It has similar formal properties to the abscissa of convergence of the
792:. The arithmetic genus is larger than the geometric genus, and the height of a point may be bounded in terms of the arithmetic genus. Obtaining similar bounds involving the geometric genus would have significant consequences. 955:
of an algebraic curve or compact Riemann surface, with a point or more removed corresponding to the 'infinite places' of a number field. This idea is more precisely encoded in the theory that
1891:
as provided by the general theory of heights. It can be defined from a general height by a limiting process; there are also formulae, in the sense that it is a sum of local contributions.
2332: 2135:
in an algebraic variety is the subset in which one might expect to find many rational points. The precise definition varies according to context. One definition is the
2779: 1163: 3693: 511:
and the order of pole of its Hasse–Weil L-function. It has been an important landmark in Diophantine geometry since the mid-1960s, with results such as the
1127: 605: 1828:
or classical height of a vector of rational numbers is the maximum absolute value of the vector of coprime integers obtained by multiplying through by a
915:
is, for the school of Grothendieck, one terminal point of development. It has the disadvantage of being quite hard to compute with. The reason that the
4329: 2379:
is an algebraic subgroup intersecting a subvariety of a torus or abelian variety in a set of unusually large dimension, such as is involved in the
2244:, an analogue of the Birch–Swinnerton-Dyer conjecture (q.v.), leading quickly to a clarification of the latter and a recognition of its importance. 4029: 2505:, e.g. better estimates for curves of the number of points than come from Weil's basic theorem of 1940. The latter turn out to be of interest for 2213: 2208:
was eventually proved. For abelian varieties, and in particular the Birch–Swinnerton-Dyer conjecture (q.v.), the Tamagawa number approach to a
2176: 4002: 3969: 3824: 3751: 3660: 3431: 3030: 2824: 1860:
as a sum of local contributions. The global Néron symbol, which is the sum of the local symbols, is just the negative of the height pairing.
621: 500: 1046:
allow clearing of denominators by multiplying by a common scalar. For a given, single point one can do this and not leave a common factor
2497:, made public around 1949, on local zeta-functions. The proof was completed in 1973. Those being proved, there remain extensions of the 2205: 1295: 1204: 4380: 1070:
can become larger when linear terms reduce to 0 (the geometric formulation shows it is not the fault of a single set of coordinates).
3935: 3893: 3859: 3324: 3126: 1732: 1723:
states that there should be a uniform bound on the number of such points, depending only on the genus and the field of definition.
2561:
is an effective procedure for assigning a height function to any divisor on smooth projective variety over a number field (or to
1836:, or of a polynomial, regarded as a vector of coefficients, or of an algebraic number, from the height of its minimal polynomial. 1792: 853: 734: 1244: 1167: 808: 443: 4060: 2521:
decomposition of algebraic numbers in coordinates of points on algebraic varieties. It has remained somewhat under-developed.
1130:. The theory is subtle, in the sense that the freedom to change variables to try to improve matters is rather unobvious: see 901: 2498: 1994: 3290:
Arithmetic and geometry. Papers dedicated to I. R. Shafarevich on the occasion of his sixtieth birthday. Vol. I: Arithmetic
4370: 3851: 2466: 1989:, i.e. solubility guaranteed by a number of variables polynomial in the degree of an equation, grew out of studies of the 2364: 1752: 1673: 4319: 4106: 976: 375: 2380: 4375: 4101: 4086: 4022: 2957: 2474: 1375: 126:. Arithmetic geometry has also been defined as the application of the techniques of algebraic geometry to problems in 2209: 3816: 3743: 3680: 3423: 3411: 2816: 1402: 1143: 1119: 730: 4119: 1522: 1228: 466: 4281: 4240: 3285: 3152: 3147: 2877:
van der Geer, G.; Schoof, R. (2000). "Effectivity of Arakelov divisors and the theta divisor of a number field".
2731: 2502: 2405: 2229: 2104: 1829: 1147: 877:
of an elliptic curve or abelian variety defined over a number field is a measure of its complexity introduced by
601: 508: 134: 2546: 2080: 1869: 1857: 1772: 546: 516: 512: 4345: 4125: 3688: 3074: 2966: 2164: 1135: 1059: 609: 4068: 893: 411: 1612:
is a geometrically irreducible Zariski-closed subgroup of an affine torus (product of multiplicative groups).
4052: 2506: 1986: 1589: 1521:
flavour, and, on the other hand, implicated in some formulations of arithmetic conjectures. See for example
1175: 1043: 928: 1151: 4309: 4129: 4078: 4015: 2430: 2201: 1526: 1398: 1315: 1299: 845: 816: 640: 632: 597: 520: 3311:
Roessler, Damian (2005). "A note on the Manin–Mumford conjecture". In van der Geer, Gerard; Moonen, Ben;
2002: 4286: 4215: 2315: 2108: 1720: 1652: 1067: 932: 458: 419: 2449:
The initial idea, later somewhat modified, for proving the Weil conjectures (q.v.), was to construct a
4276: 4111: 3357: 3083: 2975: 2426: 2172: 1924: 1901: 1248: 672: 115: 89: 54: 36: 4335: 4245: 4154: 4149: 4143: 4135: 4096: 3843: 3415: 3213: 3211:
Igusa, Jun-Ichi (1974). "Complex powers and asymptotic expansions. I. Functions of certain types".
2741: 2736: 2538: 2470: 1760: 1625: 1621: 1581: 1340: 1332: 857: 841: 688: 680: 644: 462: 383: 351: 111: 58: 2212:
fails on a direct attempt, though it has had heuristic value over many years. Now a sophisticated
4291: 4235: 4139: 4056: 3712: 3524: 3373: 3230: 3169: 3099: 2991: 2904: 2886: 2478: 2006: 1916: 1712: 1656: 1514: 1356: 1171: 1051: 1011: 983: 882: 776:, defined by Vojta. The difference between the two may be compared to the difference between the 565: 119: 44: 3953: 319: 4349: 4205: 3998: 3965: 3931: 3889: 3855: 3820: 3747: 3656: 3427: 3320: 3143: 3122: 3026: 2820: 2462: 2458: 2450: 2438: 2409: 2314:. Algebraically closed fields are of Tsen rank zero. The Tsen rank is greater or equal to the 2084: 1808: 1418: 1414: 1406: 1379: 1352: 1291: 1115: 820: 789: 652: 577: 470: 415: 347: 860:, and was basic in the formulation of the Tate conjecture (q.v.) and numerous other theories. 4210: 4195: 3975: 3941: 3907: 3865: 3830: 3720: 3702: 3633: 3532: 3516: 3437: 3390: 3365: 3330: 3293: 3238: 3222: 3177: 3161: 3091: 2999: 2983: 2912: 2896: 2838: 2490: 2397: 2241: 2233: 2158: 2063: 2047: 1873: 1849: 1811:
is an algebraic variety which has only finitely many points in any finitely generated field.
1719:, and states that a curve of genus at least two has only finitely many rational points. The 1716: 1685: 1518: 1433: 1427: 1422: 1371: 1367: 1287: 1279: 1272: 1079: 1035: 987: 960: 948: 824: 777: 676: 636: 454: 379: 355: 123: 3903: 2834: 4339: 4224: 4200: 4115: 3979: 3961: 3945: 3927: 3911: 3899: 3885: 3869: 3834: 3808: 3724: 3637: 3536: 3441: 3334: 3297: 3292:. Progress in Mathematics (in French). Vol. 35. Birkhauser-Boston. pp. 327–352. 3242: 3181: 3022: 3003: 2916: 2842: 2830: 2562: 2542: 2534: 2237: 2225: 2197: 2180: 2136: 1877: 1853: 1825: 1756: 1648: 1640: 1542: 1260: 1192: 1075: 1074:
refers to the reduced variety having the same properties as the original, for example, an
1055: 952: 912: 874: 804: 785: 573: 538: 504: 430: 407: 403: 3624:(1936). "Zur Stufentheorie der Quasi-algebraisch-Abgeschlossenheit kommutativer Körper". 3361: 3087: 2979: 2054:
and a vector of positive real numbers with components indexed by the infinite places of
1034:
of fractions are tricky, in that reduction modulo a prime in the denominator looks like
17: 4261: 4180: 4064: 3766: 3676: 3312: 3277: 2806: 2092: 1998: 1957: 1913: 1884: 1736: 1677: 1452: 1394: 1336: 1212: 1131: 1123: 1083: 1003: 964: 812: 781: 651:
coefficients in this case. It is one of a number of theories deriving in some way from
593: 569: 564:-adic analytic functions, is a special application but capable of proving cases of the 542: 391: 311: 85: 104:
is something to be proved and studied as an extra topic, even knowing the geometry of
4364: 4220: 4072: 4038: 3528: 3507:(1990). "On the number of rational points of bounded height on algebraic varieties". 3504: 3377: 3281: 3234: 3103: 3069: 2995: 2494: 2257: 1906: 1744: 1585: 1558: 1494: 1410: 1236: 924: 916: 878: 849: 800: 668: 568:
for curves whose Jacobian's rank is less than its dimension. It developed ideas from
433:
is an approach to arithmetic geometry that explicitly includes the 'infinite primes'.
127: 40: 2908: 2809:(2008). "Computing Arakelov class groups". In Buhler, J.P.; P., Stevenhagen (eds.). 2759: 1553:(integral points case) and Piotr Blass have conjectured that algebraic varieties of 1378:(often called 'descents', when written out by equations); in more modern terms in a 4266: 4190: 4090: 2961: 2454: 2434: 2168: 2096: 1990: 1633: 1554: 1383: 1196: 956: 936: 897: 815:
and other techniques that have not all been absorbed into general theories such as
387: 315: 77: 73: 3707: 3226: 1263:
in Diophantine geometry quantifies the size of solutions to Diophantine equations.
322:
attempts to state as much as possible about repeated prime factors in an equation
3994: 2810: 1219:) are at a general level connected with the limitations of the analytic approach. 3684: 2518: 2088: 1216: 1200: 1031: 1020: 840:
The search for a Weil cohomology (q.v.) was at least partially fulfilled in the
81: 69: 32: 3021:. Grundlehren der Mathematischen Wissenschaften. Vol. 323 (2nd ed.). 2290:: that is, such that any system of polynomials with no constant term of degree 2144:
is the Zariski closure of the images of all non-constant holomorphic maps from
1600:
is analytically hyperbolic if and only if all subvarieties are of general type.
1569:
a finitely-generated field. This circle of ideas includes the understanding of
4271: 4230: 4082: 3919: 3877: 3621: 3194: 2401: 2277: 2253: 2100: 1748: 1740: 1550: 1546: 1307: 1240: 1208: 1139: 1024: 684: 613: 48: 2273: 1298:
which shows the rational numbers are Hilbertian. Results are applied to the
2812:
Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography
2148:. Lang conjectured that the analytic and algebraic special sets are equal. 3391:
2 page exposition of the Mordell–Lang conjecture by B. Mazur, 3 Nov. 2005
3280:(1983). "Sous-variétés d'une variété abélienne et points de torsion". In 469:
could be regarded as Artin L-functions for the Galois representations on
3348:
McQuillan, Michael (1995). "Division points on semi-abelian varieties".
3319:. Progress in Mathematics. Vol. 239. Birkhäuser. pp. 311–318. 1883:
is a height function (q.v.) that is essentially intrinsic, and an exact
1832:. This may be used to define height on a point in projective space over 896:, the most celebrated conjecture of Diophantine geometry, was proved by 3716: 3653:
Algebra. Volume II: Fields with Structure, Algebras and Advanced Topics
3520: 3369: 3173: 3095: 2987: 2900: 1691:
can only contain a finite number of points that are of finite order in
3072:(1983). "Endlichkeitssätze für abelsche Varietäten über Zahlkörpern". 2318:
but it is not known if they are equal except in the case of rank zero.
1887:, rather than approximately quadratic with respect to the addition on 1343:
counting numbers of points on an algebraic variety modulo high powers
963:
over the complex numbers, also, have some quite strict analogies with
406:
on a projective space over the field of algebraic numbers is a global
334:. For example 3 + 125 = 128 but the prime powers here are exceptional. 4170: 2891: 959:
should all be treated on the same basis. The idea goes further. Thus
823:
of local zeta-functions, the initial advance in the direction of the
3165: 2545:. They are used in the construction of the local components of the 2533:
on an algebraic variety is a real-valued function defined off some
2280:
who introduced their study in 1936, is the smallest natural number
3740:
Some Problems of Unlikely Intersections in Arithmetic and Geometry
2099:
obtained from reducing a given elliptic curve over the rationals.
920: 1243:
remain largely in the realm of conjecture, with the proof of the
4007: 3960:. Grundlehren der Mathematischen Wissenschaften. Vol. 322. 2763: 1647:. According to the Weil conjectures (q.v.) these functions, for 1573:
and the Lang conjectures on that, and the Vojta conjectures. An
1094:, assumed smooth, such that there is otherwise a smooth reduced 4011: 1023:. In the typical situation this presents little difficulty for 2568: 1775:
is a foundational result stating that for an abelian variety
1251:
is largely complementary to the theory of global L-functions.
655:, and has applications outside purely arithmetical questions. 143: 3017:
Neukirch, Jürgen; Schmidt, Alexander; Wingberg, Kay (2008).
1501:-adic L-function earlier introduced by Kubota and Leopoldt. 2964:(1977). "On the conjecture of Birch and Swinnerton-Dyer". 713:: that is, such that any homogeneous polynomial of degree 4185: 4175: 2240:, but well within arithmetic geometry. It also gave, for 1927:
and it is conjectured that they are essentially the same.
1239:
formed from local zeta-functions. The properties of such
675:
to study from an arithmetic point of view (including the
3150:(November 1968). "Good reduction of abelian varieties". 1086:
remaining smooth. In general there will be a finite set
576:. (Other older methods for Diophantine problems include 51:, which can be related at various levels of generality. 3317:
Number fields and function fields — two parallel worlds
2517:
André Weil proposed a theory in the 1920s and 1930s on
2501:
congruence, which comes from an elementary method, and
1651:
varieties, exhibit properties closely analogous to the
990:
to varieties of dimension at least two is often called
374:) on a global field is an extension of the concept of 1588:
to it exists, that is not constant. Examples include
1425:). In its early days in the late 1960s it was called 1211:
in small numbers of variables (and in particular for
3133:→ Contains an English translation of Faltings (1983) 2260:
introduced by John Tate to study bad reduction (see
4254: 4163: 4045: 1848:is a bimultiplicative pairing between divisors and 1477:) as Galois module. In the same way, Iwasawa added 947:It was realised in the nineteenth century that the 749:refers to two related concepts relative to a point 3771:Poids dans la cohomologie des variétés algébriques 1042:per fraction. With a little extra sophistication, 2284:, if it exists, such that the field is of class T 2140:abelian subvarieties. For a complex variety, the 1628:for the number of points on an algebraic variety 707:, if it exists, such that the field of is class C 3742:. Annals of Mathematics Studies. Vol. 181. 2107:suggested it around 1960. It is a prototype for 951:of a number field has analogies with the affine 133:See also the glossary of number theory terms at 47:. Much of the theory is in the form of proposed 35:, areas growing out of the traditional study of 3214:Journal für die reine und angewandte Mathematik 2171:. The theorem may be used to obtain results on 1799:, but extends to all finitely-generated fields. 1174:solutions. The initial result of this type was 1795:. This was proved initially for number fields 1517:is on one hand a quite general theory with an 620: = 1. This is a special case of the 114:can be more generally defined as the study of 4023: 2854: 2852: 2493:were three highly influential conjectures of 2461:at detecting topological structure, and have 1580:over the complex numbers is one such that no 919:has been considered the 'right' foundational 541:is a height function that is a distinguished 8: 3815:. New Mathematical Monographs. Vol. 4. 3694:Journal of the American Mathematical Society 3571:in the volume (O. F. G. Schilling, editor), 3569:Algebraic cycles and poles of zeta functions 3422:. New Mathematical Monographs. Vol. 9. 3117:Cornell, Gary; Silverman, Joseph H. (1986). 1451:Picard variety), where the finite field has 2778:Sutherland, Andrew V. (September 5, 2013). 1731:The Mordell–Lang conjecture, now proved by 4325: 4315: 4030: 4016: 4008: 3420:Logarithmic Forms and Diophantine Geometry 2301:variables has a non-trivial zero whenever 1199:is the same as solubility in all relevant 721:variables has a non-trivial zero whenever 703:of a field is the smallest natural number 3706: 2890: 2513:Weil distributions on algebraic varieties 1575:analytically hyperbolic algebraic variety 1489:→ ∞, for his analogue, to a number field 931:, the discovery of Grothendieck that the 3480: 3478: 3254: 3252: 2256:is a particular elliptic curve over the 1382:group which is to be proved finite. See 1164:Grothendieck–Katz p-curvature conjecture 1038:, but that rules out only finitely many 935:are sheaves for it (i.e. a very general 3611:Bombieri & Gubler (2006) pp.176–230 3454:Bombieri & Gubler (2006) pp.301–314 3055: 3053: 3051: 2801: 2799: 2752: 2363:. The conjecture would follow from the 2359:-rational points on any curve of genus 382:. It is a formal linear combination of 68:that are finitely generated over their 2214:equivariant Tamagawa number conjecture 1455:added to make finite field extensions 3848:Diophantine Geometry: An Introduction 3800:Hindry & Silverman (2000) 184–185 3267:Bombieri & Gubler (2006) pp.82–93 2929:Bombieri & Gubler (2006) pp.66–67 2780:"Introduction to Arithmetic Geometry" 2453:applying to algebraic varieties over 1355:are now known, drawing on methods of 1306:) are in some sense analogous to the 410:with local contributions coming from 7: 3995:An invitation to arithmetic geometry 3773:, Actes ICM, Vancouver, 1974, 79–85. 3198: 2469:could be applied to the counting in 2232:, 1963) provided an analogue to the 1751:unifying the Mordell conjecture and 763:geometric (logarithmic) discriminant 622:Birch and Swinnerton-Dyer conjecture 507:postulates a connection between the 501:Birch and Swinnerton-Dyer conjecture 495:Birch and Swinnerton-Dyer conjecture 480: 390:having integer coefficients and the 3593:Hindry & Silverman (2000) p.480 3493:Hindry & Silverman (2000) p.488 3258:Hindry & Silverman (2000) p.479 2815:. MSRI Publications. Vol. 44. 2206:Weil conjecture on Tamagawa numbers 2177:Siegel's theorem on integral points 1856:used in Néron's formulation of the 1166:applies reduction modulo primes to 1118:, good reduction is connected with 29:arithmetic and diophantine geometry 1462:The local zeta-function (q.v.) of 72:—including as of special interest 25: 2537:which generalises the concept of 2343:> 2, there is a uniform bound 2335:states that for any number field 1466:can be recovered from the points 735:quasi-algebraically closed fields 635:is a p-adic cohomology theory in 4344: 4334: 4324: 4314: 4305: 4304: 1793:finitely-generated abelian group 1481:-power roots of unity for fixed 1302:. Thin sets (the French word is 1296:Hilbert's irreducibility theorem 1168:algebraic differential equations 809:algebraic differential equations 733:are of Diophantine dimension 0; 647:which is deficient in using mod 3882:Introduction to Arakelov theory 3813:Heights in Diophantine Geometry 3689:"Uniformity of rational points" 3573:Arithmetical Algebraic Geometry 2400:is a complex of conjectures by 2200:definition works well only for 1872:(also often referred to as the 1128:Néron–Ogg–Shafarevich criterion 444:arithmetic of abelian varieties 437:Arithmetic of abelian varieties 4083:analytic theory of L-functions 4061:non-abelian class field theory 3924:Survey of Diophantine Geometry 3655:. Springer. pp. 109–126. 2465:acting in such a way that the 2457:that would both be as good as 2083:describes the distribution of 1596:> 1. Lang conjectured that 1294:. This is a geometric take on 1205:Hardy–Littlewood circle method 1090:of primes for a given variety 457:are defined for quite general 1: 3852:Graduate Texts in Mathematics 3708:10.1090/S0894-0347-97-00195-1 3227:10.1515/crll.1974.268-269.110 2467:Lefschetz fixed-point theorem 1195:states that solubility for a 1006:in arithmetic problems is to 852:. It provided a proof of the 4107:Transcendental number theory 3567:It is mentioned in J. Tate, 2216:is a major research problem. 1997:. It stalled in the face of 1376:principal homogeneous spaces 1158:Grothendieck–Katz conjecture 977:Geometric class field theory 803:used distinctive methods of 757:defined over a number field 418:and the usual metric on the 39:to encompass large parts of 4330:List of recreational topics 4102:Computational number theory 4087:probabilistic number theory 3019:Cohomology of Number Fields 2503:improvements of Weil bounds 2475:motive (algebraic geometry) 2404:, making analogies between 1735:following work of Laurent, 1497:of class groups, finding a 1432:. The analogy was with the 1245:Taniyama–Shimura conjecture 1170:, to derive information on 731:Algebraically closed fields 691:is the most classical case. 537:The canonical height on an 96:the existence of points of 57:in general is the study of 4397: 3817:Cambridge University Press 3744:Princeton University Press 3424:Cambridge University Press 2817:Cambridge University Press 1247:being a breakthrough. The 1144:semistable abelian variety 4381:Glossaries of mathematics 4300: 4282:Diophantine approximation 4241:Chinese remainder theorem 3811:; Gubler, Walter (2006). 3738:Zannier, Umberto (2012). 3153:The Annals of Mathematics 2732:Glossary of number theory 2565:on non-smooth varieties). 2499:Chevalley–Warning theorem 2406:Diophantine approximation 2046:is a formal product of a 1995:Chevalley–Warning theorem 1830:lowest common denominator 1148:semistable elliptic curve 927:goes back to the fact of 683:are computed in terms of 671:are some of the simplest 602:imaginary quadratic field 509:rank of an elliptic curve 394:having real coefficients. 135:Glossary of number theory 4126:Arithmetic combinatorics 3075:Inventiones Mathematicae 2967:Inventiones Mathematicae 2583: 2578: 2507:Algebraic geometry codes 2473:. For later history see 2365:Bombieri–Lang conjecture 1753:Manin–Mumford conjecture 1674:Manin–Mumford conjecture 1668:Manin–Mumford conjecture 1590:compact Riemann surfaces 1430:analogue of the Jacobian 1347:of a fixed prime number 1136:potential good reduction 753:on an algebraic variety 643:to fill the gap left by 465:in the 1960s meant that 158: 153: 118:of finite type over the 18:Reduction modulo a prime 4097:Geometric number theory 4053:Algebraic number theory 3993:Dino Lorenzini (1996), 3958:Algebraic Number Theory 2381:Mordell–Lang conjecture 2202:linear algebraic groups 2142:holomorphic special set 2022:a prime number or ideal 1987:quasi-algebraic closure 1981:Quasi-algebraic closure 1727:Mordell–Lang conjecture 1403:Stickelberger's theorem 1044:homogeneous coordinates 929:faithfully-flat descent 774:arithmetic discriminant 747:discriminant of a point 741:Discriminant of a point 346:is the analogue of the 4216:Transcendental numbers 4130:additive number theory 4079:Analytic number theory 3791:Lang (1997) pp.164,212 3651:Lorenz, Falko (2008). 3575:, pages 93–110 (1965). 3549:Lang (1997) pp.161–162 3121:. New York: Springer. 2938:Lang (1988) pp.156–157 2713: 2708: 2703: 2698: 2693: 2688: 2683: 2678: 2673: 2668: 2663: 2658: 2653: 2648: 2643: 2638: 2633: 2628: 2623: 2618: 2613: 2608: 2603: 2598: 2593: 2588: 2431:Alexander Grothendieck 2276:of a field, named for 2210:local–global principle 2109:Galois representations 1680:, states that a curve 1571:analytic hyperbolicity 1565:-rational points, for 1527:Lichtenbaum conjecture 1399:analytic number theory 1316:Baire category theorem 1300:inverse Galois problem 943:Function field analogy 933:representable functors 846:Alexander Grothendieck 819:. He first proved the 817:crystalline cohomology 641:Alexander Grothendieck 633:Crystalline cohomology 628:Crystalline cohomology 598:complex multiplication 467:Hasse–Weil L-functions 461:. The introduction of 459:Galois representations 420:non-Archimedean fields 288: 283: 278: 273: 268: 263: 258: 253: 248: 243: 238: 233: 228: 223: 218: 213: 208: 203: 198: 193: 188: 183: 178: 173: 168: 163: 27:This is a glossary of 4287:Irrationality measure 4277:Diophantine equations 4120:Hodge–Arakelov theory 3558:Neukirch (1999) p.185 2858:Neukirch (1999) p.189 2433:of analogies between 2377:unlikely intersection 2371:Unlikely intersection 2333:uniformity conjecture 2327:Uniformity conjecture 2316:Diophantine dimension 2173:Diophantine equations 1747:, is a conjecture of 1721:Uniformity conjecture 1653:Riemann zeta-function 1523:Birch–Tate conjecture 1493:, and considered the 1278:is one for which the 1231:, sometimes called a 1229:Hasse–Weil L-function 1223:Hasse–Weil L-function 1068:Zariski tangent space 894:Fermat's Last Theorem 889:Fermat's Last Theorem 701:Diophantine dimension 695:Diophantine dimension 84:. Of those, only the 37:Diophantine equations 4371:Diophantine geometry 4246:Arithmetic functions 4112:Diophantine geometry 3844:Silverman, Joseph H. 3626:J. Chinese Math. Soc 3584:Lang (1997) pp.17–23 3463:Lang (1988) pp.66–69 3221:(268–269): 110–130. 2947:Lang (1997) pp.91–96 2867:Lang (1988) pp.74–75 2819:. pp. 447–495. 2471:local zeta-functions 2429:is a formulation by 2179:and solution of the 2103:and, independently, 2081:Sato–Tate conjecture 2075:Sato–Tate conjecture 1964:and in addition the 1925:height zeta function 1902:Nevanlinna invariant 1895:Nevanlinna invariant 1779:over a number field 1773:Mordell–Weil theorem 1767:Mordell–Weil theorem 1443:over a finite field 1353:rationality theorems 1249:Langlands philosophy 1176:Eisenstein's theorem 1062:on reduction modulo 1019:or, more generally, 881:in his proof of the 858:local zeta-functions 681:local zeta-functions 673:projective varieties 590:Coates–Wiles theorem 584:Coates–Wiles theorem 517:Gross–Zagier theorem 513:Coates–Wiles theorem 412:Fubini–Study metrics 344:Arakelov class group 338:Arakelov class group 100:with coordinates in 90:algebraically closed 55:Diophantine geometry 4292:Continued fractions 4155:Arithmetic dynamics 4150:Arithmetic topology 4144:P-adic Hodge theory 4136:Arithmetic geometry 4069:Iwasawa–Tate theory 3362:1995InMat.120..143M 3119:Arithmetic geometry 3088:1983InMat..73..349F 2980:1977InMat..39..223C 2879:Selecta Mathematica 2760:Arithmetic geometry 2742:Arithmetic dynamics 2737:Arithmetic topology 2572:Contents:  2559:Weil height machine 2553:Weil height machine 2355:) on the number of 1940:An Abelian variety 1761:semiabelian variety 1626:generating function 1622:local zeta-function 1616:Local zeta-function 1582:holomorphic mapping 1397:builds up from the 1341:generating function 1333:Igusa zeta-function 1327:Igusa zeta-function 1058:point may become a 994:class field theory. 967:over number fields. 854:functional equation 521:Kolyvagin's theorem 352:divisor class group 147:Contents:  112:Arithmetic geometry 59:algebraic varieties 4376:Algebraic geometry 4236:Modular arithmetic 4206:Irrational numbers 4140:anabelian geometry 4057:class field theory 3782:Lang (1988) pp.1–9 3521:10.1007/bf01453564 3370:10.1007/BF01241125 3144:Serre, Jean-Pierre 3096:10.1007/BF01388432 2988:10.1007/BF01402975 2901:10.1007/PL00001393 2479:motivic cohomology 2463:Frobenius mappings 2085:Frobenius elements 2042:in a number field 2007:mathematical logic 1968:-torsion has rank 1950:ordinary reduction 1936:Ordinary reduction 1917:projective variety 1713:Mordell conjecture 1707:Mordell conjecture 1657:Riemann hypothesis 1639:, over the finite 1515:Algebraic K-theory 1415:p-adic L-functions 1407:ideal class groups 1357:mathematical logic 1235:L-function, is an 1172:algebraic function 1152:Serre–Tate theorem 1052:singularity theory 1015:all prime numbers 986:-style results on 984:class field theory 883:Mordell conjecture 566:Mordell conjecture 416:Archimedean fields 386:of the field with 45:algebraic geometry 4358: 4357: 4255:Advanced concepts 4211:Algebraic numbers 4196:Composite numbers 4003:978-0-8218-0267-0 3997:, AMS Bookstore, 3971:978-3-540-65399-8 3854:. Vol. 201. 3826:978-0-521-71229-3 3753:978-0-691-15371-1 3662:978-0-387-72487-4 3602:Lang (1997) p.179 3472:Lang (1997) p.212 3433:978-0-521-88268-2 3416:Wüstholz, Gisbert 3059:Lang (1997) p.171 3045:Lang (1997) p.146 3032:978-3-540-37888-4 2826:978-0-521-20833-8 2547:Néron–Tate height 2459:singular homology 2451:cohomology theory 2439:l-adic cohomology 2410:Nevanlinna theory 2242:elliptic surfaces 2121:Chabauty's method 2003:Ax–Kochen theorem 1870:Néron–Tate height 1864:Néron–Tate height 1858:Néron–Tate height 1809:Mordellic variety 1803:Mordellic variety 1423:Bernoulli numbers 1419:Kummer congruence 1380:Galois cohomology 1292:Jean-Pierre Serre 1280:projective spaces 1267:Hilbertian fields 1116:abelian varieties 988:abelian coverings 982:The extension of 961:elliptic surfaces 790:desingularisation 572:'s method for an 558:Chabauty's method 553:Chabauty's method 547:Néron–Tate height 471:l-adic cohomology 455:Artin L-functions 450:Artin L-functions 442:See main article 356:Arakelov divisors 348:ideal class group 92:; over any other 16:(Redirected from 4388: 4348: 4338: 4328: 4327: 4318: 4317: 4308: 4307: 4201:Rational numbers 4032: 4025: 4018: 4009: 3983: 3954:Neukirch, Jürgen 3949: 3915: 3873: 3838: 3809:Bombieri, Enrico 3801: 3798: 3792: 3789: 3783: 3780: 3774: 3764: 3758: 3757: 3735: 3729: 3728: 3710: 3673: 3667: 3666: 3648: 3642: 3641: 3618: 3612: 3609: 3603: 3600: 3594: 3591: 3585: 3582: 3576: 3565: 3559: 3556: 3550: 3547: 3541: 3540: 3500: 3494: 3491: 3485: 3484:Lang (1988) p.77 3482: 3473: 3470: 3464: 3461: 3455: 3452: 3446: 3445: 3408: 3402: 3401:Lang (1997) p.15 3399: 3393: 3388: 3382: 3381: 3345: 3339: 3338: 3308: 3302: 3301: 3274: 3268: 3265: 3259: 3256: 3247: 3246: 3208: 3202: 3192: 3186: 3185: 3140: 3134: 3132: 3114: 3108: 3107: 3066: 3060: 3057: 3046: 3043: 3037: 3036: 3014: 3008: 3007: 2954: 2948: 2945: 2939: 2936: 2930: 2927: 2921: 2920: 2894: 2874: 2868: 2865: 2859: 2856: 2847: 2846: 2803: 2794: 2793: 2791: 2789: 2784: 2775: 2769: 2757: 2573: 2563:Cartier divisors 2539:Green's function 2491:Weil conjectures 2485:Weil conjectures 2398:Vojta conjecture 2392:Vojta conjecture 2238:algebraic cycles 2234:Hodge conjecture 2192:Tamagawa numbers 2159:subspace theorem 2152:Subspace theorem 2064:Arakelov divisor 2048:fractional ideal 1874:canonical height 1850:algebraic cycles 1717:Faltings theorem 1686:Jacobian variety 1676:, now proved by 1655:, including the 1641:field extensions 1519:abstract algebra 1475: 1460: 1434:Jacobian variety 1372:Pierre de Fermat 1368:Infinite descent 1363:Infinite descent 1290:in the sense of 1273:Hilbertian field 1122:in the field of 1078:having the same 1036:division by zero 949:ring of integers 842:étale cohomology 836:Étale cohomology 825:Weil conjectures 813:Koszul complexes 778:arithmetic genus 689:Waring's problem 677:Fermat varieties 645:étale cohomology 639:, introduced by 637:characteristic p 533:Canonical height 463:étale cohomology 380:fractional ideal 368:Arakelov divisor 362:Arakelov divisor 148: 124:ring of integers 21: 4396: 4395: 4391: 4390: 4389: 4387: 4386: 4385: 4361: 4360: 4359: 4354: 4296: 4262:Quadratic forms 4250: 4225:P-adic analysis 4181:Natural numbers 4159: 4116:Arakelov theory 4041: 4036: 3990: 3988:Further reading 3972: 3962:Springer-Verlag 3952: 3938: 3928:Springer-Verlag 3918: 3896: 3886:Springer-Verlag 3876: 3862: 3841: 3827: 3807: 3804: 3799: 3795: 3790: 3786: 3781: 3777: 3765: 3761: 3754: 3737: 3736: 3732: 3677:Caporaso, Lucia 3675: 3674: 3670: 3663: 3650: 3649: 3645: 3620: 3619: 3615: 3610: 3606: 3601: 3597: 3592: 3588: 3583: 3579: 3566: 3562: 3557: 3553: 3548: 3544: 3503:Batyrev, V.V.; 3502: 3501: 3497: 3492: 3488: 3483: 3476: 3471: 3467: 3462: 3458: 3453: 3449: 3434: 3410: 3409: 3405: 3400: 3396: 3389: 3385: 3347: 3346: 3342: 3327: 3310: 3309: 3305: 3278:Raynaud, Michel 3276: 3275: 3271: 3266: 3262: 3257: 3250: 3210: 3209: 3205: 3193: 3189: 3166:10.2307/1970722 3142: 3141: 3137: 3129: 3116: 3115: 3111: 3068: 3067: 3063: 3058: 3049: 3044: 3040: 3033: 3025:. p. 361. 3023:Springer-Verlag 3016: 3015: 3011: 2956: 2955: 2951: 2946: 2942: 2937: 2933: 2928: 2924: 2876: 2875: 2871: 2866: 2862: 2857: 2850: 2827: 2805: 2804: 2797: 2787: 2785: 2782: 2777: 2776: 2772: 2758: 2754: 2750: 2728: 2723: 2722: 2721: 2720: 2574: 2571: 2554: 2543:Arakelov theory 2535:Cartier divisor 2526: 2514: 2486: 2446: 2445:Weil cohomology 2427:yoga of weights 2422: 2418: 2393: 2389: 2372: 2328: 2324: 2313: 2295: 2289: 2269: 2249: 2226:Tate conjecture 2221: 2220:Tate conjecture 2198:Tamagawa number 2193: 2189: 2181:S-unit equation 2165:absolute values 2153: 2137:Zariski closure 2128: 2116: 2115:Skolem's method 2093:elliptic curves 2076: 2072: 2060:replete divisor 2035: 2023: 2015: 1999:counterexamples 1982: 1978: 1937: 1933: 1896: 1878:abelian variety 1865: 1854:Abelian variety 1841: 1821: 1817: 1804: 1768: 1757:abelian variety 1728: 1708: 1669: 1665: 1617: 1605: 1584:from the whole 1545:(dimension 2), 1543:Enrico Bombieri 1539: 1538:Lang conjecture 1535: 1511: 1507: 1473: 1458: 1417:(with roots in 1405:as a theory of 1391: 1364: 1328: 1324: 1268: 1261:height function 1256: 1255:Height function 1224: 1213:elliptic curves 1193:Hasse principle 1188: 1187:Hasse principle 1184: 1159: 1124:division points 1102: 1076:algebraic curve 1002:Fundamental to 999: 979: 973: 965:elliptic curves 953:coordinate ring 944: 913:Flat cohomology 909: 908:Flat cohomology 890: 875:Faltings height 870: 869:Faltings height 866: 837: 833: 805:p-adic analysis 797: 786:geometric genus 742: 737:of dimension 1. 712: 696: 665: 661: 629: 616:with a zero at 608:1 and positive 592:states that an 585: 574:algebraic torus 554: 539:abelian variety 534: 530: 505:elliptic curves 496: 484: 479: 451: 438: 431:Arakelov theory 427: 426:Arakelov theory 408:height function 404:Arakelov height 399: 398:Arakelov height 392:infinite places 372:replete divisor 363: 339: 307: 303: 298: 297: 296: 295: 149: 146: 140: 86:complex numbers 23: 22: 15: 12: 11: 5: 4394: 4392: 4384: 4383: 4378: 4373: 4363: 4362: 4356: 4355: 4353: 4352: 4342: 4332: 4322: 4320:List of topics 4312: 4301: 4298: 4297: 4295: 4294: 4289: 4284: 4279: 4274: 4269: 4264: 4258: 4256: 4252: 4251: 4249: 4248: 4243: 4238: 4233: 4228: 4221:P-adic numbers 4218: 4213: 4208: 4203: 4198: 4193: 4188: 4183: 4178: 4173: 4167: 4165: 4161: 4160: 4158: 4157: 4152: 4147: 4133: 4123: 4109: 4104: 4099: 4094: 4076: 4065:Iwasawa theory 4049: 4047: 4043: 4042: 4037: 4035: 4034: 4027: 4020: 4012: 4006: 4005: 3989: 3986: 3985: 3984: 3970: 3950: 3936: 3916: 3894: 3874: 3860: 3842:Hindry, Marc; 3839: 3825: 3803: 3802: 3793: 3784: 3775: 3767:Pierre Deligne 3759: 3752: 3730: 3668: 3661: 3643: 3613: 3604: 3595: 3586: 3577: 3560: 3551: 3542: 3495: 3486: 3474: 3465: 3456: 3447: 3432: 3403: 3394: 3383: 3356:(1): 143–159. 3340: 3325: 3303: 3282:Artin, Michael 3269: 3260: 3248: 3203: 3187: 3160:(3): 492–517. 3135: 3127: 3109: 3082:(3): 349–366. 3070:Faltings, Gerd 3061: 3047: 3038: 3031: 3009: 2974:(3): 223–251. 2949: 2940: 2931: 2922: 2885:(4): 377–398. 2881:. New Series. 2869: 2860: 2848: 2825: 2795: 2770: 2751: 2749: 2746: 2745: 2744: 2739: 2734: 2727: 2724: 2717: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2681: 2676: 2671: 2666: 2661: 2656: 2651: 2646: 2641: 2636: 2631: 2626: 2621: 2616: 2611: 2606: 2601: 2596: 2591: 2586: 2581: 2575: 2570: 2569: 2567: 2566: 2555: 2552: 2550: 2527: 2524: 2522: 2515: 2512: 2510: 2487: 2484: 2482: 2447: 2444: 2442: 2423: 2420: 2417: 2414: 2413: 2394: 2391: 2388: 2385: 2384: 2373: 2370: 2368: 2329: 2326: 2323: 2320: 2319: 2309: 2293: 2285: 2270: 2267: 2265: 2262:good reduction 2258:p-adic numbers 2250: 2247: 2245: 2222: 2219: 2217: 2194: 2191: 2188: 2185: 2184: 2154: 2151: 2149: 2129: 2126: 2124: 2117: 2114: 2112: 2077: 2074: 2071: 2068: 2067: 2036: 2033: 2031: 2028:good reduction 2024: 2017: 2014: 2011: 2010: 1983: 1980: 1977: 1974: 1973: 1958:good reduction 1938: 1935: 1932: 1929: 1928: 1897: 1894: 1892: 1885:quadratic form 1866: 1863: 1861: 1842: 1839: 1837: 1822: 1819: 1816: 1813: 1812: 1805: 1802: 1800: 1769: 1766: 1764: 1729: 1726: 1724: 1709: 1706: 1704: 1678:Michel Raynaud 1670: 1667: 1664: 1661: 1660: 1618: 1615: 1613: 1606: 1603: 1601: 1540: 1537: 1534: 1531: 1530: 1512: 1509: 1506: 1503: 1502: 1453:roots of unity 1411:Galois modules 1395:Iwasawa theory 1392: 1390:Iwasawa theory 1389: 1387: 1365: 1362: 1360: 1337:Jun-ichi Igusa 1329: 1326: 1323: 1320: 1319: 1269: 1266: 1264: 1257: 1254: 1252: 1225: 1222: 1220: 1189: 1186: 1183: 1180: 1179: 1160: 1157: 1155: 1098: 1084:smooth variety 1072:Good reduction 1066:, because the 1060:singular point 1030:; for example 1004:local analysis 1000: 998:Good reduction 997: 995: 980: 975: 972: 969: 968: 945: 942: 940: 910: 907: 905: 902:Richard Taylor 891: 888: 886: 871: 868: 865: 862: 861: 838: 835: 832: 829: 828: 798: 796:Dwork's method 795: 793: 782:singular curve 743: 740: 738: 708: 697: 694: 692: 669:Diagonal forms 666: 664:Diagonal forms 663: 660: 657: 656: 653:Dwork's method 630: 627: 625: 594:elliptic curve 586: 583: 581: 578:Runge's method 570:Thoralf Skolem 555: 552: 550: 543:quadratic form 535: 532: 529: 526: 525: 524: 497: 494: 492: 489:good reduction 485: 482: 478: 475: 474: 452: 449: 447: 439: 436: 434: 428: 425: 423: 400: 397: 395: 364: 361: 359: 340: 337: 335: 312:abc conjecture 308: 306:abc conjecture 305: 302: 299: 292: 291: 286: 281: 276: 271: 266: 261: 256: 251: 246: 241: 236: 231: 226: 221: 216: 211: 206: 201: 196: 191: 186: 181: 176: 171: 166: 161: 156: 150: 145: 144: 142: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4393: 4382: 4379: 4377: 4374: 4372: 4369: 4368: 4366: 4351: 4347: 4343: 4341: 4337: 4333: 4331: 4323: 4321: 4313: 4311: 4303: 4302: 4299: 4293: 4290: 4288: 4285: 4283: 4280: 4278: 4275: 4273: 4270: 4268: 4267:Modular forms 4265: 4263: 4260: 4259: 4257: 4253: 4247: 4244: 4242: 4239: 4237: 4234: 4232: 4229: 4226: 4222: 4219: 4217: 4214: 4212: 4209: 4207: 4204: 4202: 4199: 4197: 4194: 4192: 4191:Prime numbers 4189: 4187: 4184: 4182: 4179: 4177: 4174: 4172: 4169: 4168: 4166: 4162: 4156: 4153: 4151: 4148: 4145: 4141: 4137: 4134: 4131: 4127: 4124: 4121: 4117: 4113: 4110: 4108: 4105: 4103: 4100: 4098: 4095: 4092: 4088: 4084: 4080: 4077: 4074: 4073:Kummer theory 4070: 4066: 4062: 4058: 4054: 4051: 4050: 4048: 4044: 4040: 4039:Number theory 4033: 4028: 4026: 4021: 4019: 4014: 4013: 4010: 4004: 4000: 3996: 3992: 3991: 3987: 3981: 3977: 3973: 3967: 3963: 3959: 3955: 3951: 3947: 3943: 3939: 3937:3-540-61223-8 3933: 3929: 3925: 3921: 3917: 3913: 3909: 3905: 3901: 3897: 3895:0-387-96793-1 3891: 3887: 3883: 3879: 3875: 3871: 3867: 3863: 3861:0-387-98981-1 3857: 3853: 3849: 3845: 3840: 3836: 3832: 3828: 3822: 3818: 3814: 3810: 3806: 3805: 3797: 3794: 3788: 3785: 3779: 3776: 3772: 3768: 3763: 3760: 3755: 3749: 3745: 3741: 3734: 3731: 3726: 3722: 3718: 3714: 3709: 3704: 3700: 3696: 3695: 3690: 3686: 3682: 3678: 3672: 3669: 3664: 3658: 3654: 3647: 3644: 3639: 3635: 3631: 3627: 3623: 3617: 3614: 3608: 3605: 3599: 3596: 3590: 3587: 3581: 3578: 3574: 3570: 3564: 3561: 3555: 3552: 3546: 3543: 3538: 3534: 3530: 3526: 3522: 3518: 3514: 3510: 3506: 3499: 3496: 3490: 3487: 3481: 3479: 3475: 3469: 3466: 3460: 3457: 3451: 3448: 3443: 3439: 3435: 3429: 3426:. p. 3. 3425: 3421: 3417: 3413: 3407: 3404: 3398: 3395: 3392: 3387: 3384: 3379: 3375: 3371: 3367: 3363: 3359: 3355: 3351: 3344: 3341: 3336: 3332: 3328: 3326:0-8176-4397-4 3322: 3318: 3314: 3307: 3304: 3299: 3295: 3291: 3287: 3283: 3279: 3273: 3270: 3264: 3261: 3255: 3253: 3249: 3244: 3240: 3236: 3232: 3228: 3224: 3220: 3216: 3215: 3207: 3204: 3200: 3196: 3191: 3188: 3183: 3179: 3175: 3171: 3167: 3163: 3159: 3155: 3154: 3149: 3145: 3139: 3136: 3130: 3128:0-387-96311-1 3124: 3120: 3113: 3110: 3105: 3101: 3097: 3093: 3089: 3085: 3081: 3077: 3076: 3071: 3065: 3062: 3056: 3054: 3052: 3048: 3042: 3039: 3034: 3028: 3024: 3020: 3013: 3010: 3005: 3001: 2997: 2993: 2989: 2985: 2981: 2977: 2973: 2969: 2968: 2963: 2959: 2953: 2950: 2944: 2941: 2935: 2932: 2926: 2923: 2918: 2914: 2910: 2906: 2902: 2898: 2893: 2888: 2884: 2880: 2873: 2870: 2864: 2861: 2855: 2853: 2849: 2844: 2840: 2836: 2832: 2828: 2822: 2818: 2814: 2813: 2808: 2802: 2800: 2796: 2781: 2774: 2771: 2768: 2766: 2761: 2756: 2753: 2747: 2743: 2740: 2738: 2735: 2733: 2730: 2729: 2725: 2719: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2685: 2682: 2680: 2677: 2675: 2672: 2670: 2667: 2665: 2662: 2660: 2657: 2655: 2652: 2650: 2647: 2645: 2642: 2640: 2637: 2635: 2632: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2577: 2576: 2564: 2560: 2556: 2551: 2548: 2544: 2540: 2536: 2532: 2531:Weil function 2528: 2525:Weil function 2523: 2520: 2516: 2511: 2508: 2504: 2500: 2496: 2492: 2488: 2483: 2480: 2476: 2472: 2468: 2464: 2460: 2456: 2455:finite fields 2452: 2448: 2443: 2440: 2436: 2432: 2428: 2424: 2419: 2415: 2411: 2407: 2403: 2399: 2395: 2390: 2386: 2382: 2378: 2374: 2369: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2338: 2334: 2330: 2325: 2321: 2317: 2312: 2308: 2304: 2300: 2296: 2288: 2283: 2279: 2275: 2271: 2266: 2263: 2259: 2255: 2251: 2246: 2243: 2239: 2235: 2231: 2227: 2223: 2218: 2215: 2211: 2207: 2203: 2199: 2195: 2190: 2186: 2182: 2178: 2174: 2170: 2169:number fields 2166: 2161: 2160: 2155: 2150: 2147: 2143: 2138: 2134: 2130: 2125: 2122: 2118: 2113: 2110: 2106: 2102: 2098: 2097:finite fields 2094: 2090: 2086: 2082: 2078: 2073: 2069: 2065: 2061: 2057: 2053: 2049: 2045: 2041: 2040:replete ideal 2037: 2034:Replete ideal 2032: 2029: 2025: 2021: 2016: 2012: 2008: 2004: 2000: 1996: 1992: 1988: 1985:The topic of 1984: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1951: 1947: 1944:of dimension 1943: 1939: 1934: 1930: 1926: 1921: 1918: 1915: 1911: 1908: 1907:ample divisor 1904: 1903: 1898: 1893: 1890: 1886: 1882: 1879: 1875: 1871: 1867: 1862: 1859: 1855: 1851: 1847: 1843: 1838: 1835: 1831: 1827: 1823: 1818: 1814: 1810: 1806: 1801: 1798: 1794: 1790: 1786: 1782: 1778: 1774: 1770: 1765: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1734: 1730: 1725: 1722: 1718: 1714: 1710: 1705: 1702: 1698: 1694: 1690: 1687: 1683: 1679: 1675: 1671: 1666: 1662: 1658: 1654: 1650: 1646: 1642: 1638: 1635: 1631: 1627: 1623: 1619: 1614: 1611: 1607: 1602: 1599: 1595: 1591: 1587: 1586:complex plane 1583: 1579: 1576: 1572: 1568: 1564: 1560: 1559:Zariski dense 1556: 1552: 1548: 1544: 1541: 1536: 1532: 1528: 1524: 1520: 1516: 1513: 1508: 1504: 1500: 1496: 1495:inverse limit 1492: 1488: 1484: 1480: 1476: 1469: 1465: 1461: 1454: 1450: 1446: 1442: 1438: 1435: 1431: 1429: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1393: 1388: 1385: 1381: 1377: 1373: 1369: 1366: 1361: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1325: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1289: 1285: 1281: 1277: 1274: 1270: 1265: 1262: 1258: 1253: 1250: 1246: 1242: 1238: 1237:Euler product 1234: 1230: 1226: 1221: 1218: 1214: 1210: 1206: 1202: 1198: 1194: 1190: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1156: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1113: 1110: 1106: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1026: 1022: 1018: 1014: 1013: 1009: 1005: 1001: 996: 993: 989: 985: 981: 978: 974: 970: 966: 962: 958: 957:global fields 954: 950: 946: 941: 938: 934: 930: 926: 925:scheme theory 922: 918: 917:flat topology 914: 911: 906: 903: 899: 895: 892: 887: 884: 880: 876: 872: 867: 863: 859: 855: 851: 850:Michael Artin 847: 843: 839: 834: 830: 826: 822: 818: 814: 810: 806: 802: 801:Bernard Dwork 799: 794: 791: 787: 783: 779: 775: 771: 767: 764: 760: 756: 752: 748: 744: 739: 736: 732: 728: 724: 720: 716: 711: 706: 702: 698: 693: 690: 686: 682: 678: 674: 670: 667: 662: 658: 654: 650: 646: 642: 638: 634: 631: 626: 623: 619: 615: 611: 607: 603: 599: 595: 591: 587: 582: 579: 575: 571: 567: 563: 559: 556: 551: 548: 544: 540: 536: 531: 527: 522: 518: 514: 510: 506: 502: 498: 493: 490: 486: 483:Bad reduction 481: 476: 472: 468: 464: 460: 456: 453: 448: 446: 445: 440: 435: 432: 429: 424: 421: 417: 413: 409: 405: 401: 396: 393: 389: 388:finite places 385: 381: 377: 373: 369: 365: 360: 357: 353: 349: 345: 341: 336: 333: 329: 325: 321: 317: 313: 309: 304: 300: 294: 290: 287: 285: 282: 280: 277: 275: 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 215: 212: 210: 207: 205: 202: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 151: 141: 138: 136: 131: 129: 128:number theory 125: 121: 117: 113: 109: 107: 103: 99: 95: 91: 87: 83: 79: 78:finite fields 75: 74:number fields 71: 67: 63: 60: 56: 52: 50: 46: 42: 41:number theory 38: 34: 30: 19: 4164:Key concepts 4091:sieve theory 3957: 3923: 3884:. New York: 3881: 3847: 3812: 3796: 3787: 3778: 3770: 3762: 3739: 3733: 3698: 3692: 3685:Mazur, Barry 3671: 3652: 3646: 3629: 3625: 3616: 3607: 3598: 3589: 3580: 3572: 3568: 3563: 3554: 3545: 3512: 3508: 3505:Manin, Yu.I. 3498: 3489: 3468: 3459: 3450: 3419: 3406: 3397: 3386: 3353: 3350:Invent. Math 3349: 3343: 3316: 3313:Schoof, René 3306: 3289: 3272: 3263: 3218: 3212: 3206: 3190: 3157: 3151: 3138: 3118: 3112: 3079: 3073: 3064: 3041: 3018: 3012: 2971: 2965: 2952: 2943: 2934: 2925: 2892:math/9802121 2882: 2878: 2872: 2863: 2811: 2807:Schoof, René 2786:. Retrieved 2773: 2764: 2755: 2718: 2558: 2530: 2435:Hodge theory 2376: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2310: 2306: 2302: 2298: 2291: 2286: 2281: 2261: 2204:. There the 2157: 2145: 2141: 2132: 2120: 2089:Tate modules 2059: 2055: 2051: 2043: 2039: 2027: 2019: 1991:Brauer group 1969: 1965: 1961: 1953: 1949: 1945: 1941: 1919: 1909: 1900: 1888: 1880: 1846:Néron symbol 1845: 1840:Néron symbol 1833: 1826:naive height 1820:Naive height 1796: 1788: 1784: 1780: 1776: 1700: 1696: 1692: 1688: 1681: 1649:non-singular 1644: 1636: 1634:finite field 1629: 1610:linear torus 1609: 1604:Linear torus 1597: 1593: 1577: 1574: 1570: 1566: 1562: 1557:do not have 1555:general type 1498: 1490: 1486: 1482: 1478: 1471: 1467: 1463: 1456: 1448: 1444: 1440: 1436: 1426: 1384:Selmer group 1348: 1344: 1335:, named for 1311: 1303: 1283: 1275: 1232: 1217:cubic curves 1201:local fields 1197:global field 1120:ramification 1111: 1108: 1104: 1099: 1095: 1091: 1087: 1071: 1063: 1056:non-singular 1047: 1039: 1032:denominators 1027: 1021:prime ideals 1016: 1010: 1007: 991: 937:gluing axiom 898:Andrew Wiles 773: 769: 765: 762: 758: 754: 750: 746: 726: 722: 718: 714: 709: 704: 700: 648: 617: 606:class number 589: 561: 557: 488: 441: 371: 367: 343: 331: 327: 323: 293: 139: 132: 110: 105: 101: 97: 93: 82:local fields 70:prime fields 65: 64:over fields 61: 53: 28: 26: 4350:Wikiversity 4272:L-functions 3920:Lang, Serge 3878:Lang, Serge 3701:(1): 1–35. 3681:Harris, Joe 3412:Baker, Alan 2519:prime ideal 2196:The direct 2133:special set 2127:Special set 2111:in general. 1952:at a prime 1715:is now the 1561:subsets of 1439:of a curve 1308:meagre sets 1241:L-functions 1209:cubic forms 1132:Néron model 821:rationality 685:Jacobi sums 560:, based on 49:conjectures 33:mathematics 4365:Categories 4231:Arithmetic 3980:0956.11021 3946:0869.11051 3912:0667.14001 3870:0948.11023 3835:1130.11034 3725:0872.14017 3638:0015.38803 3537:0679.14008 3442:1145.11004 3335:1098.14030 3298:0581.14031 3286:Tate, John 3243:0287.43007 3182:0172.46101 3156:. Second. 3148:Tate, John 3004:0359.14009 2958:Coates, J. 2917:1030.11063 2843:1188.11076 2748:References 2495:André Weil 2402:Paul Vojta 2278:C. C. Tsen 2254:Tate curve 2248:Tate curve 2236:, also on 2156:Schmidt's 2101:Mikio Sato 2018:Reduction 2001:; but see 1956:if it has 1783:the group 1739:, Hindry, 1551:Paul Vojta 1547:Serge Lang 1351:. General 1140:Tate curve 1054:enters: a 1050:. However 1025:almost all 844:theory of 772:) and the 614:L-function 80:—and over 3632:: 81–92. 3529:119945673 3515:: 27–43. 3509:Math. Ann 3378:120053132 3235:117772856 3104:121049418 2996:189832636 2962:Wiles, A. 2274:Tsen rank 2268:Tsen rank 2230:John Tate 2105:John Tate 1733:McQuillan 1695:, unless 1592:of genus 1485:and with 1428:Iwasawa's 1314:) of the 1288:thin sets 992:geometric 807:, p-adic 679:). Their 4340:Wikibook 4310:Category 3956:(1999). 3922:(1997). 3880:(1988). 3846:(2000). 3687:(1997). 3622:Tsen, C. 3418:(2007). 3315:(eds.). 3288:(eds.). 2909:12089289 2788:22 March 2726:See also 2175:such as 1993:and the 1876:) on an 1745:Faltings 1510:K-theory 1310:(French 1286:are not 879:Faltings 856:for the 784:and the 320:Oesterlé 120:spectrum 4171:Numbers 3904:0969124 3717:2152901 3358:Bibcode 3197: ( 3174:1970722 3084:Bibcode 2976:Bibcode 2835:2467554 2762:at the 2421:Weights 2305:> Σ 2091:of the 2087:in the 1791:) is a 1737:Raynaud 1684:in its 1632:over a 1339:, is a 1126:by the 1082:, or a 939:holds). 788:of the 473:groups. 414:on the 376:divisor 122:of the 116:schemes 4046:Fields 4001:  3978:  3968:  3944:  3934:  3910:  3902:  3892:  3868:  3858:  3833:  3823:  3750:  3723:  3715:  3659:  3636:  3535:  3527:  3440:  3430:  3376:  3333:  3323:  3296:  3241:  3233:  3180:  3172:  3125:  3102:  3029:  3002:  2994:  2915:  2907:  2841:  2833:  2823:  2062:is an 2020:modulo 1914:normal 1905:of an 1852:on an 1755:in an 1743:, and 1312:maigre 1233:global 1114:. For 1012:modulo 1008:reduce 761:: the 600:by an 545:. See 384:places 316:Masser 4186:Unity 3713:JSTOR 3525:S2CID 3374:S2CID 3231:S2CID 3170:JSTOR 3100:S2CID 2992:S2CID 2905:S2CID 2887:arXiv 2783:(PDF) 2095:over 2005:from 1912:on a 1741:Vojta 1624:is a 1304:mince 1282:over 1103:over 1080:genus 921:topos 780:of a 725:> 596:with 3999:ISBN 3966:ISBN 3932:ISBN 3890:ISBN 3856:ISBN 3821:ISBN 3748:ISBN 3657:ISBN 3428:ISBN 3321:ISBN 3219:1974 3199:1997 3195:Lang 3123:ISBN 3027:ISBN 2821:ISBN 2790:2019 2557:The 2489:The 2437:and 2425:The 2408:and 2396:The 2339:and 2331:The 2272:The 2252:The 2224:The 2131:The 2119:See 2079:The 2058:. A 2026:See 1948:has 1899:The 1868:The 1844:The 1824:The 1771:The 1749:Lang 1711:The 1672:The 1549:and 1413:and 1401:and 1370:was 1191:The 1162:The 923:for 900:and 873:The 848:and 745:The 699:The 612:has 610:rank 588:The 519:and 499:The 487:See 402:The 370:(or 354:for 342:The 318:and 310:The 88:are 76:and 43:and 3976:Zbl 3942:Zbl 3908:Zbl 3866:Zbl 3831:Zbl 3721:Zbl 3703:doi 3634:Zbl 3630:171 3533:Zbl 3517:doi 3513:286 3438:Zbl 3366:doi 3354:120 3331:Zbl 3294:Zbl 3239:Zbl 3223:doi 3178:Zbl 3162:doi 3092:doi 3000:Zbl 2984:doi 2913:Zbl 2897:doi 2839:Zbl 2767:Lab 2584:0–9 2579:Top 2541:in 2375:An 2297:in 2167:on 2050:of 1960:at 1759:or 1643:of 1449:qua 1421:on 1409:as 1331:An 1215:as 717:in 604:of 503:on 378:or 366:An 350:or 314:of 159:0–9 154:Top 31:in 4367:: 4142:, 4118:, 4089:, 4085:, 4071:, 4067:, 4063:, 4059:, 3974:. 3964:. 3940:. 3930:. 3926:. 3906:. 3900:MR 3898:. 3888:. 3864:. 3850:. 3829:. 3819:. 3769:, 3746:. 3719:. 3711:. 3699:10 3697:. 3691:. 3683:; 3679:; 3628:. 3531:. 3523:. 3511:. 3477:^ 3436:. 3414:; 3372:. 3364:. 3352:. 3329:. 3284:; 3251:^ 3237:. 3229:. 3217:. 3176:. 3168:. 3158:88 3146:; 3098:. 3090:. 3080:73 3078:. 3050:^ 2998:. 2990:. 2982:. 2972:39 2970:. 2960:; 2911:. 2903:. 2895:. 2851:^ 2837:. 2831:MR 2829:. 2798:^ 2529:A 2477:, 2264:). 2038:A 1807:A 1699:= 1620:A 1608:A 1525:, 1271:A 1259:A 1227:A 1150:, 1146:, 1142:, 1138:, 1134:, 811:, 729:. 687:. 580:.) 515:, 330:= 326:+ 137:. 130:. 108:. 4227:) 4223:( 4176:0 4146:) 4138:( 4132:) 4128:( 4122:) 4114:( 4093:) 4081:( 4075:) 4055:( 4031:e 4024:t 4017:v 3982:. 3948:. 3914:. 3872:. 3837:. 3756:. 3727:. 3705:: 3665:. 3640:. 3539:. 3519:: 3444:. 3380:. 3368:: 3360:: 3337:. 3300:. 3245:. 3225:: 3201:) 3184:. 3164:: 3131:. 3106:. 3094:: 3086:: 3035:. 3006:. 2986:: 2978:: 2919:. 2899:: 2889:: 2883:6 2845:. 2792:. 2765:n 2714:Z 2709:Y 2704:X 2699:W 2694:V 2689:U 2684:T 2679:S 2674:R 2669:Q 2664:P 2659:O 2654:N 2649:M 2644:L 2639:K 2634:J 2629:I 2624:H 2619:G 2614:F 2609:E 2604:D 2599:C 2594:B 2589:A 2549:. 2509:. 2481:. 2441:. 2416:W 2412:. 2387:V 2383:. 2367:. 2361:g 2357:K 2353:K 2351:, 2349:g 2347:( 2345:B 2341:g 2337:K 2322:U 2311:j 2307:d 2303:n 2299:n 2294:j 2292:d 2287:i 2282:i 2228:( 2187:T 2183:. 2146:C 2123:. 2070:S 2066:. 2056:K 2052:K 2044:K 2030:. 2013:R 2009:. 1976:Q 1972:. 1970:d 1966:p 1962:p 1954:p 1946:d 1942:A 1931:O 1920:X 1910:D 1889:A 1881:A 1834:Q 1815:N 1797:K 1789:K 1787:( 1785:A 1781:K 1777:A 1763:. 1703:. 1701:J 1697:C 1693:J 1689:J 1682:C 1663:M 1659:. 1645:F 1637:F 1630:V 1598:V 1594:g 1578:V 1567:K 1563:K 1533:L 1529:. 1505:K 1499:p 1491:K 1487:n 1483:p 1479:p 1474:′ 1472:F 1470:( 1468:J 1464:C 1459:′ 1457:F 1447:( 1445:F 1441:C 1437:J 1386:. 1359:. 1349:p 1345:p 1322:I 1318:. 1284:K 1276:K 1182:H 1178:. 1154:. 1112:Z 1109:p 1107:/ 1105:Z 1100:p 1096:V 1092:V 1088:S 1064:p 1048:p 1040:p 1028:p 1017:p 971:G 904:. 885:. 864:F 831:E 827:. 770:P 768:( 766:d 759:K 755:V 751:P 727:d 723:N 719:N 715:d 710:k 705:k 659:D 649:p 624:. 618:s 562:p 549:. 528:C 523:. 491:. 477:B 422:. 358:. 332:c 328:b 324:a 301:A 289:Z 284:Y 279:X 274:W 269:V 264:U 259:T 254:S 249:R 244:Q 239:P 234:O 229:N 224:M 219:L 214:K 209:J 204:I 199:H 194:G 189:F 184:E 179:D 174:C 169:B 164:A 106:V 102:K 98:V 94:K 66:K 62:V 20:)

Index

Reduction modulo a prime
mathematics
Diophantine equations
number theory
algebraic geometry
conjectures
Diophantine geometry
algebraic varieties
prime fields
number fields
finite fields
local fields
complex numbers
algebraically closed
Arithmetic geometry
schemes
spectrum
ring of integers
number theory
Glossary of number theory
Top
0–9
A
B
C
D
E
F
G
H

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.