Knowledge

Signal reflection

Source 📝

154:(OTDR; for optical cables) can be used to locate the damaged part of a cable. These instruments work by sending a short pulsed signal into the cable and measuring how long the reflection takes to return. If only reflection magnitudes are desired, however, and exact fault locations are not required, VSWR bridges perform a similar but lesser function for 81:
Because the principles are the same, this concept is perhaps easiest to understand when considering an optical fiber. Imperfections in the glass create mirrors that reflect the light back along the fiber.
58:. Some of the signal power may be reflected back to its origin rather than being carried all the way along the cable to the far end. This happens because imperfections in the cable cause 113:. This effect is compounded if multiple discontinuities cause additional portions of the remaining signal to be reflected back to the transmitter. This is a fundamental problem with the 124:
strike the receiver at different intervals making it difficult for the receiver to accurately detect data values on the signal. The effects can resemble those of
62:
mismatches and non-linear changes in the cable characteristics. These abrupt changes in characteristics cause some of the transmitted signal to be reflected. In
120:
When a returning reflection strikes another discontinuity, some of the signal rebounds in the original signal direction, creating multiple echo effects. These
132: 236: 51: 261: 114: 151: 385: 173:
in all cables and connectors, with no impedance discontinuities in the entire cable system. When a sufficient degree of
375: 67: 380: 365: 147: 135: 390: 221: 170: 192:
method, valid for both linear and non-linear models, evaluates the reflection's effects in an electric line.
241: 206: 201: 131: 90: 75: 370: 59: 310: 162: 47: 43: 226: 216: 174: 71: 31: 110: 285: 231: 189: 139: 106: 98: 178: 155: 101:
and other effects because a portion of a transmitted signal will be reflected back to the
63: 161:
The combination of the effects of signal attenuation and impedance discontinuities on a
182: 166: 94: 17: 146:
Because damage to the cable can cause reflections, an instrument called an electrical
359: 55: 211: 121: 334: 27:
When a transmitted signal reflects back through the medium it was transmitted over
102: 86: 70:(VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the 66:(RF) practice this is often measured in a dimensionless ratio known as 125: 39: 130: 262:"Physics behind signal reflections and series termination" 169:. Proper network operation depends on constant 336:AN-807 Reflections: Computations and Waveforms 185:, or both, can sometimes reduce the problems. 117:method of connecting electronic components. 8: 286:"What Is Signal Reflection? (with pictures)" 74:. Mathematically, it is defined using the 237:Reflections of signals on conducting lines 253: 266:Electrical Engineering Stack Exchange 105:device rather than continuing to the 7: 150:(ETDR; for electrical cables) or an 25: 152:optical time-domain reflectometer 85:Impedance discontinuities cause 1: 68:voltage standing wave ratio 407: 148:time-domain reflectometer 136:Time-domain reflectometer 311:"Why Reflections Happen" 222:Ground-penetrating radar 171:characteristic impedance 315:www.signalintegrity.com 242:Reflection phase change 207:Digital subscriber line 202:Crosstalk (electronics) 18:Reflection (electrical) 386:Electrical engineering 143: 91:attenuation distortion 76:reflection coefficient 134: 163:communications link 48:transmission medium 376:Geometrical optics 227:Impedance matching 217:Fresnel reflection 177:is not practical, 175:impedance matching 144: 72:impedance mismatch 32:telecommunications 381:Electronic design 366:Radio electronics 36:signal reflection 16:(Redirected from 398: 350: 349: 347: 346: 341: 331: 325: 324: 322: 321: 307: 301: 300: 298: 297: 282: 276: 275: 273: 272: 258: 232:Signal integrity 190:Bergeron diagram 179:echo suppressors 140:electrical cable 21: 406: 405: 401: 400: 399: 397: 396: 395: 391:Physical optics 356: 355: 354: 353: 344: 342: 339: 333: 332: 328: 319: 317: 309: 308: 304: 295: 293: 290:All the Science 284: 283: 279: 270: 268: 260: 259: 255: 250: 198: 183:echo cancellers 142:fault detection 109:, much like an 64:radio frequency 28: 23: 22: 15: 12: 11: 5: 404: 402: 394: 393: 388: 383: 378: 373: 368: 358: 357: 352: 351: 326: 302: 277: 252: 251: 249: 246: 245: 244: 239: 234: 229: 224: 219: 214: 209: 204: 197: 194: 167:insertion loss 122:forward echoes 95:standing waves 38:occurs when a 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 403: 392: 389: 387: 384: 382: 379: 377: 374: 372: 369: 367: 364: 363: 361: 338: 337: 330: 327: 316: 312: 306: 303: 291: 287: 281: 278: 267: 263: 257: 254: 247: 243: 240: 238: 235: 233: 230: 228: 225: 223: 220: 218: 215: 213: 210: 208: 205: 203: 200: 199: 195: 193: 191: 186: 184: 180: 176: 172: 168: 164: 159: 157: 153: 149: 141: 137: 133: 129: 127: 123: 118: 116: 112: 108: 104: 100: 96: 92: 88: 83: 79: 77: 73: 69: 65: 61: 57: 56:optical fiber 53: 49: 45: 41: 37: 33: 19: 343:. Retrieved 335: 329: 318:. Retrieved 314: 305: 294:. Retrieved 292:. 2023-04-22 289: 280: 269:. Retrieved 265: 256: 212:Project Echo 187: 160: 145: 119: 103:transmitting 84: 80: 52:copper cable 50:, such as a 35: 29: 371:Electricity 115:daisy chain 87:attenuation 44:transmitted 360:Categories 345:2023-06-03 320:2023-06-03 296:2023-06-03 271:2023-06-03 248:References 165:is called 156:RF cables 60:impedance 196:See also 107:receiver 46:along a 99:ringing 126:jitter 54:or an 40:signal 340:(PDF) 188:The 138:for 111:echo 181:or 42:is 30:In 362:: 313:. 288:. 264:. 158:. 128:. 97:, 93:, 89:, 78:. 34:, 348:. 323:. 299:. 274:. 20:)

Index

Reflection (electrical)
telecommunications
signal
transmitted
transmission medium
copper cable
optical fiber
impedance
radio frequency
voltage standing wave ratio
impedance mismatch
reflection coefficient
attenuation
attenuation distortion
standing waves
ringing
transmitting
receiver
echo
daisy chain
forward echoes
jitter

Time-domain reflectometer
electrical cable
time-domain reflectometer
optical time-domain reflectometer
RF cables
communications link
insertion loss

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.