Knowledge (XXG)

Reflection coefficient

Source đź“ť

396: 1766: 1181:
the phase length of the attached transmission line. That is to take into account not only the phase delay of the reflected wave, but the phase shift that had first been applied to the forward wave, with the reflection coefficient being the quotient of these. The reflection coefficient so measured,
368:
pairs of quantities whose product defines power resolvable into a forward and reverse wave. For instance, with electromagnetic plane waves, one uses the ratio of the electric fields of the reflected to that of the forward wave (or magnetic fields, again with a minus sign); the ratio of each wave's
141:
of a transmission line that's involved, but one can speak of reflection coefficient without any actual transmission line being present. In terms of the forward and reflected waves determined by the voltage and current, the reflection coefficient is defined as the
1770: 129:
of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance
90:
A wave is partially transmitted and partially reflected when the medium through which it travels suddenly changes. The reflection coefficient determines the ratio of the reflected wave amplitude to the incident wave
359: 847:
at the load. This implies the reflected wave having a 180° phase shift (phase reversal) with the voltages of the two waves being opposite at that point and adding to zero (as a short circuit demands).
995: 1508: 1172: 1520:, the SWR signifies the ratio of the voltage (or current) maxima to minima (or what it would be if the transmission line were long enough to produce them). The above calculation assumes that 272: 1093: 1271: 723: 1205: 1118: 680: 1351: 617: 573: 845: 783: 643: 1627: 1569: 1538: 1315: 1295: 912: 816: 533: 218: 1374: 1607: 1401: 1232: 1029: 884: 753: 513: 486: 455: 428: 198: 171: 1049: 1582:. That SWR remains the same wherever measured along a transmission line (looking towards the load) since the addition of a transmission line length to a load 1629:. While having a one-to-one correspondence with reflection coefficient, SWR is the most commonly used figure of merit in describing the mismatch affecting a 1004:
of the reflection coefficient in a lossless transmission line is constant along the line (as are the powers in the forward and reflected waves). However its
1726: 104: 70: 53:
is a parameter that describes how much of a wave is reflected by an impedance discontinuity in the transmission medium. It is equal to the ratio of the
785:
will remain the same (the powers of the forward and reflected waves stay the same) but with a different phase. In the case of a short circuited load (
65:
to calculate the amount of light that is reflected from a surface with a different index of refraction, such as a glass surface, or in an electrical
87: 1637:
at the transmitter side of a transmission line, but having, as explained, the same value as would be measured at the antenna (load) itself.
287: 281:
associated with the reflected and forward waves, but introducing a minus sign to account for the opposite orientations of the two currents:
1873: 1808: 682:
denotes the proportion of that power that is reflected back to the source, with the power actually delivered toward the load being
1868: 1858: 1781: 1775: 1403:) can directly be read. Before the advent of modern electronic computers, the Smith chart was of particular use as a sort of 920: 1878: 1435: 1707:
Acousticians use reflection coefficients to understand the effect of different materials on their acoustic environments.
1000:
This is the coefficient at the load. The reflection coefficient can also be measured at other points on the line. The
1853: 1126: 230: 855:
The reflection coefficient is determined by the load impedance at the end of the transmission line, as well as the
1746: 1863: 1832:
Application for drawing standing wave diagrams including the reflection coefficient, input impedance, SWR, etc.
1736: 856: 138: 75: 1317:
is given directly by the distance of a point to the center (with the edge of the Smith chart corresponding to
1834: 1751: 385: 1058: 458: 46: 1731: 1646: 1376:
around the chart's center. Using the scales on a Smith chart, the resulting impedance (normalized to
1240: 685: 1422: 1416: 648: 395: 30:
This article is about reflections of waves. For the use of the term with capillary membrames, see
1828:
A flash program that shows how a reflected wave is generated, the reflection coefficient and VSWR
1579: 1320: 645:
implying no reflected power. More generally, the squared-magnitude of the reflection coefficient
582: 576: 538: 365: 114: 73:
is reflected by an impedance discontinuity. The reflection coefficient is closely related to the
821: 758: 622: 1804: 1686: 1660: 1185: 1098: 1052: 1009: 126: 118: 108: 66: 31: 1612: 1554: 1523: 1300: 1280: 889: 788: 518: 203: 1825: 1356: 1585: 1379: 1210: 1014: 862: 731: 491: 464: 433: 406: 176: 149: 1838: 1741: 1034: 728:
Anywhere along an intervening (lossless) transmission line of characteristic impedance
143: 86: 17: 1847: 1721: 1702: 1630: 399:
Simple circuit configuration showing measurement location of reflection coefficient.
1785: 1353:). Its evolution along a transmission line is likewise described by a rotation of 1791: 1674: 1673:
can refer to either the amplitude reflection coefficient described here, or the
1274: 80: 35: 1677:, depending on context. Typically, the reflectance is represented by a capital 1716: 1681:, while the amplitude reflection coefficient is represented by a lower-case 1651:
Reflection coefficient is used in feeder testing for reliability of medium.
1634: 389: 54: 1571:, the SWR intentionally ignores the specific value of the load impedance 1404: 364:
The reflection coefficient may also be established using other field or
1273:, corresponding to passive loads) may be displayed graphically using a 42: 354:{\displaystyle \Gamma =-{\frac {I^{-}}{I^{+}}}={\frac {V^{-}}{V^{+}}}} 1690: 1666: 430:
possibly followed by a transmission line of characteristic impedance
62: 58: 403:
In the accompanying figure, a signal source with internal impedance
57:
of the reflected wave to the incident wave, with each expressed as
394: 221: 122: 85: 1831: 1177:
Note that the phase of the reflection coefficient is changed by
95:
Different specialties have different applications for the term.
1513:
Along a lossless transmission line of characteristic impedance
1207:, corresponds to an impedance which is generally dissimilar to 83:
of a system is also sometimes called a reflection coefficient.
1578:
responsible for it, but only the magnitude of the resulting
1803:. Upper Saddle River, New Jersey: Pearson Education, Inc. 1031:
from the load. If the coefficient is measured at a point
392:
one uses the acoustic pressure and velocity respectively.
990:{\displaystyle \Gamma ={Z_{L}-Z_{0} \over Z_{L}+Z_{0}}.} 886:
terminating a line with a characteristic impedance of
1615: 1588: 1557: 1526: 1438: 1382: 1359: 1323: 1303: 1283: 1243: 1213: 1188: 1129: 1101: 1061: 1037: 1017: 923: 892: 865: 824: 791: 761: 734: 688: 651: 625: 585: 541: 521: 494: 467: 436: 409: 290: 233: 206: 179: 152: 1503:{\displaystyle SWR={1+|\Gamma | \over 1-|\Gamma |}.} 1547:as the reference impedance. Since it uses only the 1621: 1601: 1563: 1532: 1502: 1395: 1368: 1345: 1309: 1289: 1265: 1237:The complex reflection coefficient (in the region 1234:present at the far side of the transmission line. 1226: 1199: 1166: 1112: 1087: 1043: 1023: 989: 906: 878: 839: 810: 777: 747: 717: 674: 637: 611: 567: 527: 507: 480: 449: 422: 353: 266: 212: 192: 165: 137:. The reference impedance used is typically the 32:Starling equation § Reflection coefficient 1167:{\displaystyle \Gamma '=\Gamma e^{-i\,2\phi }} 1008:will be shifted by an amount dependent on the 755:, the magnitude of the reflection coefficient 267:{\displaystyle \Gamma ={\frac {V^{-}}{V^{+}}}} 8: 146:ratio of the voltage of the reflected wave ( 1826:Flash tutorial for understanding reflection 1727:Reflections of signals on conducting lines 488:. For a real (resistive) source impedance 121:theory, the reflection coefficient is the 105:Reflections of signals on conducting lines 1614: 1609:only changes the phase, not magnitude of 1593: 1587: 1556: 1525: 1489: 1481: 1468: 1460: 1451: 1437: 1387: 1381: 1358: 1332: 1324: 1322: 1302: 1282: 1252: 1244: 1242: 1218: 1212: 1187: 1155: 1148: 1128: 1100: 1077: 1060: 1036: 1016: 975: 962: 950: 937: 930: 922: 903: 897: 891: 870: 864: 823: 796: 790: 770: 762: 760: 739: 733: 709: 704: 695: 687: 666: 661: 652: 650: 624: 603: 590: 584: 559: 546: 540: 520: 499: 493: 472: 466: 441: 435: 414: 408: 343: 333: 327: 316: 306: 300: 289: 256: 246: 240: 232: 205: 184: 178: 157: 151: 1685:. These related concepts are covered by 200:). This is typically represented with a 914:will have a reflection coefficient of 1277:. The Smith chart is a polar plot of 1088:{\displaystyle \phi =2\pi L/\lambda } 7: 1633:or antenna system. It is most often 277:It can as well be defined using the 1616: 1558: 1527: 1486: 1465: 1425:(SWR) is determined solely by the 1329: 1304: 1284: 1249: 1190: 1141: 1131: 1103: 924: 825: 767: 700: 657: 626: 522: 291: 234: 207: 25: 1669:and electromagnetics in general, 859:of the line. A load impedance of 1769: This article incorporates 1764: 173:) to that of the incident wave ( 1815:Figure 8-2 and Eqn. 8-1 Pg. 279 1782:General Services Administration 1703:Acoustic wave § Reflection 1429:of the reflection coefficient: 1266:{\displaystyle |\Gamma |\leq 1} 718:{\displaystyle 1-|\Gamma |^{2}} 1490: 1482: 1469: 1461: 1333: 1325: 1253: 1245: 771: 763: 705: 696: 662: 653: 535:using the reference impedance 61:. For example, it is used in 1: 1801:Signal Integrity - Simplified 1297:, therefore the magnitude of 1051:meters from the load, so the 675:{\displaystyle |\Gamma |^{2}} 69:to calculate how much of the 34:. For intensity ratios, see 27:Measure of wave reflectivity 1346:{\displaystyle |\Gamma |=1} 612:{\displaystyle Z_{L}=Z_{0}} 568:{\displaystyle Z_{0}=Z_{S}} 388:in a vacuum). Similarly in 1895: 1700: 1658: 1644: 1540:has been calculated using 1414: 851:Relation to load impedance 840:{\displaystyle \Gamma =-1} 577:maximum power is delivered 102: 29: 1095:radians, the coefficient 778:{\displaystyle |\Gamma |} 638:{\displaystyle \Gamma =0} 224:) and can be written as: 1874:Telecommunication theory 1737:Transmission coefficient 1200:{\displaystyle \Gamma '} 1113:{\displaystyle \Gamma '} 857:characteristic impedance 139:characteristic impedance 76:transmission coefficient 1752:Reflection phase change 1622:{\displaystyle \Gamma } 1564:{\displaystyle \Gamma } 1533:{\displaystyle \Gamma } 1310:{\displaystyle \Gamma } 1290:{\displaystyle \Gamma } 1120:at that point will be 907:{\displaystyle Z_{0}\,} 811:{\displaystyle Z_{L}=0} 528:{\displaystyle \Gamma } 386:impedance of free space 213:{\displaystyle \Gamma } 1869:Seismology measurement 1859:Electronic engineering 1799:Bogatin, Eric (2004). 1777:Federal Standard 1037C 1771:public domain material 1671:reflection coefficient 1623: 1603: 1565: 1534: 1504: 1397: 1370: 1369:{\displaystyle 2\phi } 1347: 1311: 1291: 1267: 1228: 1201: 1168: 1114: 1089: 1045: 1025: 991: 908: 880: 841: 812: 779: 749: 719: 676: 639: 613: 569: 529: 509: 482: 457:is represented by its 451: 424: 400: 377:is again an impedance 373:to its magnetic field 355: 268: 214: 194: 167: 92: 51:reflection coefficient 47:electrical engineering 18:Reflection Coefficient 1879:Dimensionless numbers 1790: (in support of 1747:Hagen–Rubens relation 1732:Scattering parameters 1655:Optics and microwaves 1647:Reflection seismology 1624: 1604: 1602:{\displaystyle Z_{L}} 1566: 1535: 1505: 1398: 1396:{\displaystyle Z_{0}} 1371: 1348: 1312: 1292: 1268: 1229: 1227:{\displaystyle Z_{L}} 1202: 1169: 1115: 1090: 1046: 1026: 1024:{\displaystyle \phi } 992: 909: 881: 879:{\displaystyle Z_{L}} 842: 813: 780: 750: 748:{\displaystyle Z_{0}} 720: 677: 640: 614: 570: 530: 510: 508:{\displaystyle Z_{S}} 483: 481:{\displaystyle Z_{L}} 452: 450:{\displaystyle Z_{S}} 425: 423:{\displaystyle Z_{S}} 398: 356: 269: 215: 195: 193:{\displaystyle V^{+}} 168: 166:{\displaystyle V^{-}} 89: 1613: 1586: 1555: 1524: 1436: 1417:Standing wave ratio 1411:Standing wave ratio 1380: 1357: 1321: 1301: 1281: 1241: 1211: 1186: 1127: 1099: 1059: 1035: 1015: 921: 890: 863: 822: 789: 759: 732: 686: 649: 623: 583: 539: 519: 492: 465: 434: 407: 288: 231: 204: 177: 150: 71:electromagnetic wave 1423:standing wave ratio 1053:electrical distance 1010:electrical distance 461:, driving the load 459:ThĂ©venin equivalent 1854:Geometrical optics 1837:2020-11-25 at the 1619: 1599: 1580:impedance mismatch 1561: 1530: 1500: 1407:for this purpose. 1393: 1366: 1343: 1307: 1287: 1263: 1224: 1197: 1164: 1110: 1085: 1041: 1021: 987: 904: 876: 837: 808: 775: 745: 715: 672: 635: 609: 575:then the source's 565: 525: 505: 478: 447: 420: 401: 351: 264: 210: 190: 163: 115:telecommunications 99:Transmission lines 93: 1687:Fresnel equations 1661:Fresnel equations 1495: 1055:from the load is 1044:{\displaystyle L} 982: 349: 322: 262: 127:complex amplitude 119:transmission line 109:Signal reflection 67:transmission line 16:(Redirected from 1886: 1814: 1795: 1789: 1784:. Archived from 1768: 1767: 1691:classical optics 1628: 1626: 1625: 1620: 1608: 1606: 1605: 1600: 1598: 1597: 1570: 1568: 1567: 1562: 1539: 1537: 1536: 1531: 1509: 1507: 1506: 1501: 1496: 1494: 1493: 1485: 1473: 1472: 1464: 1452: 1402: 1400: 1399: 1394: 1392: 1391: 1375: 1373: 1372: 1367: 1352: 1350: 1349: 1344: 1336: 1328: 1316: 1314: 1313: 1308: 1296: 1294: 1293: 1288: 1272: 1270: 1269: 1264: 1256: 1248: 1233: 1231: 1230: 1225: 1223: 1222: 1206: 1204: 1203: 1198: 1196: 1173: 1171: 1170: 1165: 1163: 1162: 1137: 1119: 1117: 1116: 1111: 1109: 1094: 1092: 1091: 1086: 1081: 1050: 1048: 1047: 1042: 1030: 1028: 1027: 1022: 996: 994: 993: 988: 983: 981: 980: 979: 967: 966: 956: 955: 954: 942: 941: 931: 913: 911: 910: 905: 902: 901: 885: 883: 882: 877: 875: 874: 846: 844: 843: 838: 817: 815: 814: 809: 801: 800: 784: 782: 781: 776: 774: 766: 754: 752: 751: 746: 744: 743: 724: 722: 721: 716: 714: 713: 708: 699: 681: 679: 678: 673: 671: 670: 665: 656: 644: 642: 641: 636: 619:, in which case 618: 616: 615: 610: 608: 607: 595: 594: 574: 572: 571: 566: 564: 563: 551: 550: 534: 532: 531: 526: 514: 512: 511: 506: 504: 503: 487: 485: 484: 479: 477: 476: 456: 454: 453: 448: 446: 445: 429: 427: 426: 421: 419: 418: 360: 358: 357: 352: 350: 348: 347: 338: 337: 328: 323: 321: 320: 311: 310: 301: 273: 271: 270: 265: 263: 261: 260: 251: 250: 241: 219: 217: 216: 211: 199: 197: 196: 191: 189: 188: 172: 170: 169: 164: 162: 161: 21: 1894: 1893: 1889: 1888: 1887: 1885: 1884: 1883: 1864:Physical optics 1844: 1843: 1839:Wayback Machine 1822: 1811: 1798: 1774: 1765: 1763: 1760: 1742:Target strength 1713: 1705: 1699: 1663: 1657: 1649: 1643: 1611: 1610: 1589: 1584: 1583: 1576: 1553: 1552: 1546: 1522: 1521: 1519: 1474: 1453: 1434: 1433: 1419: 1413: 1405:analog computer 1383: 1378: 1377: 1355: 1354: 1319: 1318: 1299: 1298: 1279: 1278: 1239: 1238: 1214: 1209: 1208: 1189: 1184: 1183: 1144: 1130: 1125: 1124: 1102: 1097: 1096: 1057: 1056: 1033: 1032: 1013: 1012: 971: 958: 957: 946: 933: 932: 919: 918: 893: 888: 887: 866: 861: 860: 853: 820: 819: 792: 787: 786: 757: 756: 735: 730: 729: 703: 684: 683: 660: 647: 646: 621: 620: 599: 586: 581: 580: 555: 542: 537: 536: 517: 516: 515:, if we define 495: 490: 489: 468: 463: 462: 437: 432: 431: 410: 405: 404: 383: 369:electric field 339: 329: 312: 302: 286: 285: 252: 242: 229: 228: 202: 201: 180: 175: 174: 153: 148: 147: 135: 111: 101: 39: 28: 23: 22: 15: 12: 11: 5: 1892: 1890: 1882: 1881: 1876: 1871: 1866: 1861: 1856: 1846: 1845: 1842: 1841: 1829: 1821: 1820:External links 1818: 1817: 1816: 1809: 1796: 1788:on 2022-01-22. 1759: 1756: 1755: 1754: 1749: 1744: 1739: 1734: 1729: 1724: 1719: 1712: 1709: 1701:Main article: 1698: 1695: 1659:Main article: 1656: 1653: 1645:Main article: 1642: 1639: 1618: 1596: 1592: 1574: 1560: 1544: 1529: 1517: 1511: 1510: 1499: 1492: 1488: 1484: 1480: 1477: 1471: 1467: 1463: 1459: 1456: 1450: 1447: 1444: 1441: 1415:Main article: 1412: 1409: 1390: 1386: 1365: 1362: 1342: 1339: 1335: 1331: 1327: 1306: 1286: 1262: 1259: 1255: 1251: 1247: 1221: 1217: 1195: 1192: 1175: 1174: 1161: 1158: 1154: 1151: 1147: 1143: 1140: 1136: 1133: 1108: 1105: 1084: 1080: 1076: 1073: 1070: 1067: 1064: 1040: 1020: 998: 997: 986: 978: 974: 970: 965: 961: 953: 949: 945: 940: 936: 929: 926: 900: 896: 873: 869: 852: 849: 836: 833: 830: 827: 807: 804: 799: 795: 773: 769: 765: 742: 738: 712: 707: 702: 698: 694: 691: 669: 664: 659: 655: 634: 631: 628: 606: 602: 598: 593: 589: 562: 558: 554: 549: 545: 524: 502: 498: 475: 471: 444: 440: 417: 413: 384:(equal to the 381: 362: 361: 346: 342: 336: 332: 326: 319: 315: 309: 305: 299: 296: 293: 275: 274: 259: 255: 249: 245: 239: 236: 209: 187: 183: 160: 156: 133: 100: 97: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1891: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1855: 1852: 1851: 1849: 1840: 1836: 1833: 1830: 1827: 1824: 1823: 1819: 1812: 1810:0-13-066946-6 1806: 1802: 1797: 1793: 1787: 1783: 1779: 1778: 1772: 1762: 1761: 1757: 1753: 1750: 1748: 1745: 1743: 1740: 1738: 1735: 1733: 1730: 1728: 1725: 1723: 1722:Mismatch loss 1720: 1718: 1715: 1714: 1710: 1708: 1704: 1696: 1694: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1662: 1654: 1652: 1648: 1640: 1638: 1636: 1632: 1631:radio antenna 1594: 1590: 1581: 1577: 1550: 1543: 1516: 1497: 1478: 1475: 1457: 1454: 1448: 1445: 1442: 1439: 1432: 1431: 1430: 1428: 1424: 1418: 1410: 1408: 1406: 1388: 1384: 1363: 1360: 1340: 1337: 1276: 1260: 1257: 1235: 1219: 1215: 1193: 1180: 1159: 1156: 1152: 1149: 1145: 1138: 1134: 1123: 1122: 1121: 1106: 1082: 1078: 1074: 1071: 1068: 1065: 1062: 1054: 1038: 1018: 1011: 1007: 1003: 984: 976: 972: 968: 963: 959: 951: 947: 943: 938: 934: 927: 917: 916: 915: 898: 894: 871: 867: 858: 850: 848: 834: 831: 828: 818:), one finds 805: 802: 797: 793: 740: 736: 726: 710: 692: 689: 667: 632: 629: 604: 600: 596: 591: 587: 578: 560: 556: 552: 547: 543: 500: 496: 473: 469: 460: 442: 438: 415: 411: 397: 393: 391: 387: 380: 376: 372: 367: 344: 340: 334: 330: 324: 317: 313: 307: 303: 297: 294: 284: 283: 282: 280: 257: 253: 247: 243: 237: 227: 226: 225: 223: 185: 181: 158: 154: 145: 140: 136: 128: 124: 120: 116: 110: 106: 98: 96: 88: 84: 82: 78: 77: 72: 68: 64: 60: 56: 52: 48: 44: 37: 33: 19: 1800: 1786:the original 1776: 1706: 1682: 1678: 1670: 1664: 1650: 1572: 1548: 1541: 1514: 1512: 1426: 1420: 1236: 1178: 1176: 1005: 1001: 999: 854: 727: 402: 378: 374: 370: 363: 278: 276: 131: 112: 94: 74: 50: 40: 1792:MIL-STD-188 1675:reflectance 1275:Smith chart 81:reflectance 36:Reflectance 1848:Categories 1758:References 1641:Seismology 579:to a load 103:See also: 91:amplitude. 1717:Microwave 1697:Acoustics 1617:Γ 1559:Γ 1549:magnitude 1528:Γ 1487:Γ 1479:− 1466:Γ 1427:magnitude 1364:ϕ 1330:Γ 1305:Γ 1285:Γ 1258:≤ 1250:Γ 1191:Γ 1160:ϕ 1150:− 1142:Γ 1132:Γ 1104:Γ 1083:λ 1072:π 1063:ϕ 1019:ϕ 1002:magnitude 944:− 925:Γ 832:− 826:Γ 768:Γ 701:Γ 693:− 658:Γ 627:Γ 523:Γ 390:acoustics 335:− 308:− 298:− 292:Γ 248:− 235:Γ 220:(capital 208:Γ 159:− 55:amplitude 1835:Archived 1711:See also 1635:measured 1194:′ 1135:′ 1107:′ 279:currents 366:circuit 144:complex 125:of the 59:phasors 43:physics 1807:  1667:optics 79:. The 63:optics 1773:from 1179:twice 1006:phase 222:gamma 123:ratio 1805:ISBN 1421:The 117:and 107:and 49:the 45:and 1689:in 1665:In 1551:of 113:In 41:In 1850:: 1794:). 1780:. 1693:. 725:. 1813:. 1683:r 1679:R 1595:L 1591:Z 1575:L 1573:Z 1545:0 1542:Z 1518:0 1515:Z 1498:. 1491:| 1483:| 1476:1 1470:| 1462:| 1458:+ 1455:1 1449:= 1446:R 1443:W 1440:S 1389:0 1385:Z 1361:2 1341:1 1338:= 1334:| 1326:| 1261:1 1254:| 1246:| 1220:L 1216:Z 1157:2 1153:i 1146:e 1139:= 1079:/ 1075:L 1069:2 1066:= 1039:L 985:. 977:0 973:Z 969:+ 964:L 960:Z 952:0 948:Z 939:L 935:Z 928:= 899:0 895:Z 872:L 868:Z 835:1 829:= 806:0 803:= 798:L 794:Z 772:| 764:| 741:0 737:Z 711:2 706:| 697:| 690:1 668:2 663:| 654:| 633:0 630:= 605:0 601:Z 597:= 592:L 588:Z 561:S 557:Z 553:= 548:0 544:Z 501:S 497:Z 474:L 470:Z 443:S 439:Z 416:S 412:Z 382:0 379:Z 375:H 371:E 345:+ 341:V 331:V 325:= 318:+ 314:I 304:I 295:= 258:+ 254:V 244:V 238:= 186:+ 182:V 155:V 134:0 132:Z 38:. 20:)

Index

Reflection Coefficient
Starling equation § Reflection coefficient
Reflectance
physics
electrical engineering
amplitude
phasors
optics
transmission line
electromagnetic wave
transmission coefficient
reflectance

Reflections of signals on conducting lines
Signal reflection
telecommunications
transmission line
ratio
complex amplitude
characteristic impedance
complex
gamma
circuit
impedance of free space
acoustics

Thévenin equivalent
maximum power is delivered
characteristic impedance
electrical distance

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑