Knowledge (XXG)

Reionization

Source 📝

1331: 1643:
gas through resonant scattering, wherein neutral atoms in the ground (n=1) state absorb Lyman alpha photons and almost immediately re-emit them in a random direction. This obscures Lyman alpha emission from galaxies that are embedded in neutral gas. Thus, experiments to find galaxies by their Lyman alpha light can indicate the ionization state of the surrounding gas.  An average density of galaxies with detectable Lyman alpha emission means the surrounding gas must be ionized; while an absence of detectable Lyman alpha sources may indicate neutral regions.  A closely related class of experiments measures the Lyman alpha line strength in samples of galaxies identified by other methods (primarily
1754:, which means that the primary candidates are all sources which produce a significant amount of energy in the ultraviolet and above. How numerous the source is must also be considered, as well as the longevity, as protons and electrons will recombine if energy is not continuously provided to keep them apart. Altogether, the critical parameter for any source considered can be summarized as its "emission rate of hydrogen-ionizing photons per unit cosmological volume." With these constraints, it is expected that quasars and first generation 1726: 1863: 559: 36: 1846:, and emit a great deal of light above the threshold for ionizing hydrogen. It is unknown, however, how many quasars existed prior to reionization. Only the brightest of quasars present during reionization can be detected, which means there is no direct information about dimmer quasars that existed. However, by looking at the more easily observed quasars in the nearby universe, and assuming that the 5325: 1854:) during reionization will be approximately the same as it is today, it is possible to make estimates of the quasar populations at earlier times. Such studies have found that quasars do not exist in high enough numbers to reionize the IGM alone, saying that "only if the ionizing background is dominated by low-luminosity AGNs can the quasar luminosity function provide enough ionizing photons." 1584:. However, as the universe expands, the density of free electrons will decrease, and scattering will occur less frequently. In the period during and after reionization, but before significant expansion had occurred to sufficiently lower the electron density, the light that composes the CMB will experience observable Thomson scattering. This scattering will leave its mark on the CMB 1405: 5716: 5690: 571: 1823:, populations of LCEs are now being studied at cosmological redshifts greater than 6, allowing for the first time a detailed and direct assessment of the origins of cosmic Reionization. Combining these large samples of galaxies with new constraints on the UV luminosity function indicates that dwarf galaxies overwhelmingly contribute to Reionization. 1467: > 6). At that time, however, matter had been diffused by the expansion of the universe, and the scattering interactions of photons and electrons were much less frequent than before electron-proton recombination. Thus, the universe was full of low density ionized hydrogen and remained transparent, as is the case today. 1491:. Quasars release an extraordinary amount of energy, being among the brightest objects in the universe. As a result, some quasars are detectable from as long ago as the epoch of reionization. Quasars also happen to have relatively uniform spectral features, regardless of their position in the sky or distance from the 1556: = 6 showed a Gunn-Peterson trough, indicating that the IGM was still at least partly neutral, the ones below did not, meaning the hydrogen was ionized. As reionization is expected to occur over relatively short timescales, the results suggest that the universe was approaching the end of reionization at 1593:
anisotropies are actually introduced because of reionization. By looking at the CMB anisotropies observed, and comparing with what they would look like had reionization not taken place, the electron column density at the time of reionization can be determined. With this, the age of the universe when
1535:
The redshifting for a particular quasar provides temporal information about reionization. Since an object's redshift corresponds to the time at which it emitted the light, it is possible to determine when reionization ended. Quasars below a certain redshift (closer in space and time) do not show the
1898:
galaxy also provides indirect evidence of Population III stars. Even without direct observations of Population III stars, they are a compelling source. They are more efficient and effective ionizers than Population II stars, as they emit more ionizing photons, and are capable of reionizing hydrogen
1527:
causes light to undergo noticeable redshifting. This means that as light from the quasar travels through the IGM and is redshifted, wavelengths which had been below the Lyman Alpha limit are stretched, and will in effect begin to fill in the Lyman absorption band. This means that instead of showing
1642:
light from galaxies offers a complementary tool set to study reionization.  The Lyman alpha line is the n=2 to n=1 transition of neutral hydrogen, and can be produced copiously by galaxies with young stars. Moreover, Lyman alpha photons interact strongly with neutral hydrogen in intergalactic
1650:
The earliest application of this method was in 2004, when the tension between late neutral gas indicated by quasar spectra and early reionization suggested by CMB results was strong.  The detection of Lyman alpha galaxies at redshift z=6.5 demonstrated that the intergalactic gas was already
1439:
of photons (of all wavelengths) off free electrons (and free protons, to a significantly lesser extent), but it became increasingly transparent as more electrons and protons combined to form neutral hydrogen atoms. While the electrons of neutral hydrogen can absorb photons of some wavelengths by
1654:
Lyman alpha emission can be used in other ways to further probe reionization. Theory suggests that reionization was patchy, meaning that the clustering of Lyman alpha selected samples should be strongly enhanced during the middle phases of reionization. Moreover, specific ionized regions can be
2216:
Zhu, Yongda; Becker, George D.; Bosman, Sarah E. I.; Keating, Laura C.; D’Odorico, Valentina; Davies, Rebecca L.; Christenson, Holly M.; Bañados, Eduardo; Bian, Fuyan; Bischetti, Manuela; Chen, Huanqing; Davies, Frederick B.; Eilers, Anna-Christina; Fan, Xiaohui; Gaikwad, Prakash (2022-06-01).
4622:
Mascia, S.; Pentericci, L.; Calabrò, A.; Santini, P.; Napolitano, L.; Haro, P. Arrabal; Castellano, M.; Dickinson, M.; Ocvirk, P.; Lewis, J. S. W.; Amorín, R.; Bagley, M.; Cleri, R. N. J.; Costantin, L.; Dekel, A. (2024). "New insight on the nature of cosmic reionizers from the CEERS survey".
1522:
For nearby objects in the universe, spectral absorption lines are very sharp, as only photons with energies just sufficient to cause an atomic transition can cause that transition. However, the distances between quasars and the telescopes which detect them are large, which means that the
5025:
Sobral, David; Matthee, Jorryt; Darvish, Behnam; Schaerer, Daniel; Mobasher, Bahram; Röttgering, Huub J. A.; Santos, Sérgio; Hemmati, Shoubaneh (4 June 2015). "Evidence For POPIII-Like Stellar Populations In The Most Luminous LYMAN-α Emitters At The Epoch Of Re-Ionisation: Spectroscopic
4378:
Saldana-Lopez, Alberto; Schaerer, Daniel; Chisholm, John; Flury, Sophia R.; Jaskot, Anne E.; Worseck, Gábor; Makan, Kirill; Gazagnes, Simon; Mauerhofer, Valentin; Verhamme, Anne; Amorín, Ricardo O.; Ferguson, Harry C.; Giavalisco, Mauro; Grazian, Andrea; Hayes, Matthew J. (July 2022).
1893:
explosions produce such heavy elements, so hot, large, Population III stars which will form supernovae are a possible mechanism for reionization. While they have not been directly observed, they are consistent according to models using numerical simulation and current observations. A
1672:
in hydrogen is potentially a means of studying this period, as well as the "dark ages" that preceded reionization. The 21-cm line occurs in neutral hydrogen, due to differences in energy between the spin triplet and spin singlet states of the electron and proton. This transition is
3033:
Wold, Isak G. B.; Malhotra, Sangeeta; Rhoads, James; Wang, Junxian; Hu, Weida; Perez, Lucia A.; Zheng, Zhen-Ya; Khostovan, Ali Ahmad; Walker, Alistair R.; Barrientos, L. Felipe; González-López, Jorge; Harish, Santosh; Infante, Leopoldo; Jiang, Chunyan; Pharo, John (2022-03-01).
4318:
Flury, Sophia R.; Jaskot, Anne E.; Ferguson, Harry C.; Worseck, Gábor; Makan, Kirill; Chisholm, John; Saldana-Lopez, Alberto; Schaerer, Daniel; McCandliss, Stephan; Wang, Bingjie; Ford, N. M.; Heckman, Timothy; Ji, Zhiyuan; Giavalisco, Mauro; Amorin, Ricardo (2022-05-01).
2975:
Ouchi, Masami; Shimasaku, Kazuhiro; Furusawa, Hisanori; Saito, Tomoki; Yoshida, Makiko; Akiyama, Masayuki; Ono, Yoshiaki; Yamada, Toru; Ota, Kazuaki; Kashikawa, Nobunari; Iye, Masanori; Kodama, Tadayuki; Okamura, Sadanori; Simpson, Chris; Yoshida, Michitoshi (2010-11-01).
1444:, a universe full of neutral hydrogen will be relatively opaque only at those absorbed wavelengths, but transparent throughout most of the spectrum. The Dark Ages of the universe start at that point, because there were no light sources other than the gradually redshifting 3212:
Hu, Weida; Wang, Junxian; Infante, Leopoldo; Rhoads, James E.; Zheng, Zhen-Ya; Yang, Huan; Malhotra, Sangeeta; Barrientos, L. Felipe; Jiang, Chunyan; González-López, Jorge; Prieto, Gonzalo; Perez, Lucia A.; Hibon, Pascale; Galaz, Gaspar; Coughlin, Alicia (2021-01-25).
2917:
Kashikawa, Nobunari; Shimasaku, Kazuhiro; Matsuda, Yuichi; Egami, Eiichi; Jiang, Linhua; Nagao, Tohru; Ouchi, Masami; Malkan, Matthew A.; Hattori, Takashi; Ota, Kazuaki; Taniguchi, Yoshiaki; Okamura, Sadanori; Ly, Chun; Iye, Masanori; Furusawa, Hisanori (2011-06-20).
4444:
Flury, Sophia R.; Jaskot, Anne E.; Ferguson, Harry C.; Worseck, Gábor; Makan, Kirill; Chisholm, John; Saldana-Lopez, Alberto; Schaerer, Daniel; McCandliss, Stephan R.; Xu, Xinfeng; Wang, Bingjie; Oey, M. S.; Ford, N. M.; Heckman, Timothy; Ji, Zhiyuan (2022-05-01).
1651:
predominantly ionized at an earlier time than the quasar spectra suggested.  Subsequent applications of the method suggested some residual neutral gas as recently as z=6.5, but still indicate that a majority of intergalactic gas was ionized prior to z=7.
1737:
While observations have come in which narrow the window during which the epoch of reionization could have taken place, it is still uncertain which objects provided the photons that reionized the IGM. To ionize neutral hydrogen, an energy larger than 13.6
1819:/COS with LyC escape fractions anywhere from ≈ 0 to 88%. The results from the Low-redshift Lyman Continuum Survey have provided the empirical foundation necessary to identify and understand LCEs at the Epoch of Reionization. With new observations from 1792:(LyC)-emitting candidates. Compact dwarf star-forming galaxies like the GPs are considered excellent low-redshift analogs of high-redshift Lyman-alpha and LyC emitters (LAEs and LCEs, respectively). At that time, only two other LCEs were known: 1903:. As a consequence, Population III stars are currently considered the most likely energy source to initiate the reionization of the universe, though other sources are likely to have taken over and driven reionization to completion. 2688:
Pentericci, L.; Fontana, A.; Vanzella, E.; Castellano, M.; Grazian, A.; Dijkstra, M.; Boutsia, K.; Cristiani, S.; Dickinson, M.; Giallongo, E.; Giavalisco, M.; Maiolino, R.; Moorwood, A.; Paris, D.; Santini, P. (2011-12-20).
2647:"Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies - I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission: The Lyα emitting fraction at high redshift" 4504:
Chisholm, J.; Saldana-Lopez, A.; Flury, S.; Schaerer, D.; Jaskot, A.; Amorín, R.; Atek, H.; Finkelstein, S. L.; Fleming, B.; Ferguson, H.; Fernández, V.; Giavalisco, M.; Hayes, M.; Heckman, T.; Henry, A. (2022-11-09).
4556:
Mascia, S.; Pentericci, L.; Calabrò, A.; Treu, T.; Santini, P.; Yang, L.; Napolitano, L.; Roberts-Borsani, G.; Bergamini, P.; Grillo, C.; Rosati, P.; Vulcani, B.; Castellano, M.; Boyett, K.; Fontana, A. (April 2023).
1588:
map, introducing secondary anisotropies (anisotropies introduced after recombination). The overall effect is to erase anisotropies that occur on smaller scales. While anisotropies on small scales are erased,
1605: > 11. This redshift range was in clear disagreement with the results from studying quasar spectra. However, the three year WMAP data returned a different result, with reionization beginning at 1663:
Even with the quasar data roughly in agreement with the CMB anisotropy data, there are still a number of questions, especially concerning the energy sources of reionization and the effects on, and role of,
3539:
Bouwens, R. J.; et al. (2012). "Lower-luminosity Galaxies Could Reionize the Universe: Very Steep Faint-end Slopes to the UV Luminosity Functions at z >= 5-8 from the HUDF09 WFC3/IR Observations".
3152:
Tilvi, V.; Malhotra, S.; Rhoads, J. E.; Coughlin, A.; Zheng, Z.; Finkelstein, S. L.; Veilleux, S.; Mobasher, B.; Wang, J.; Probst, R.; Swaters, R.; Hibon, P.; Joshi, B.; Zabl, J.; Jiang, T. (2020-03-01).
3593:
Atek, Hakim; Richard, Johan; Jauzac, Mathilde; Kneib, Jean-Paul; Natarajan, Priyamvada; Limousin, Marceau; Schaerer, Daniel; Jullo, Eric; Ebeling, Harald; Egami, Eiichi; Clement, Benjamin (2015-11-18).
1690: 1564: > 10. On the other hand, long absorption troughs persisting down to z < 5.5 in the Lyman-alpha and Lyman-beta forests suggest that reionization potentially extends later than 1693:(EDGES) points to a signal from this era, although follow-up observations will be needed to confirm it. Several other projects hope to make headway in this area in the near future, such as the 5491: 160: 4712:
Fan, Xiaohu; et al. (2001). "A Survey of z>5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z~6".
1781:(JWST), constraints on the UV luminosity function at the Epoch of Reionization have become commonplace, allowing for better constraints on the faint, low-mass population of galaxies. 5136: 1694: 3661:"A Comprehensive Study of Galaxies at z ∼ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch" 1773:
are currently considered to be the primary source of ionizing photons during the epoch of reionization. For most scenarios, this would require the log-slope of the UV galaxy
4818:
Limin Lu; et al. (1998). "The Metal Contents of Very Low Column Density Lyman-alpha Clouds: Implications for the Origin of Heavy Elements in the Intergalactic Medium".
5424: 531: 3924: 1714: 5434: 3718:
McLeod, D. J.; Donnan, C. T.; McLure, R. J.; Dunlop, J. S.; Magee, D.; Begley, R.; Carnall, A. C.; Cullen, F.; Ellis, R. S.; Hamadouche, M. L.; Stanton, T. M. (2023).
1627:, the redshift of reionization, assuming it was an instantaneous event. While this is unlikely to be physical, since reionization was very likely not instantaneous, z 1475:
Looking back so far in the history of the universe presents some observational challenges. There are, however, a few observational methods for studying reionization.
1976: 2746:
Tilvi, V.; Papovich, C.; Finkelstein, S. L.; Long, J.; Song, M.; Dickinson, M.; Ferguson, H. C.; Koekemoer, A. M.; Giavalisco, M.; Mobasher, B. (2014-09-17).
1299: 601: 1580:
on different angular scales can also be used to study reionization. Photons undergo scattering when there are free electrons present, in a process known as
5169: 3659:
Harikane, Yuichi; Ouchi, Masami; Oguri, Masamune; Ono, Yoshiaki; Nakajima, Kimihiko; Isobe, Yuki; Umeda, Hiroya; Mawatari, Ken; Zhang, Yechi (2023-03-01).
1098: 5363: 1396:
also experienced a similar reionization phase change, but at a later epoch in the history of the universe. This is usually called "helium reionization".
1815:/COS program which nearly tripled the number of direct measurements of the LyC from dwarf galaxies. To date, at least 50 LCEs have been confirmed using 5085: 3596:"Are ultra-faint galaxies at z = 6–8 responsible for cosmic reionization? Combined constraints from the Hubble frontier fields clusters and parallels" 648: 1330: 5746: 5511: 1516: 835: 5117: 2276:
Kaplinghat, Manoj; et al. (2003). "Probing the Reionization History of the universe using the Cosmic Microwave Background Polarization".
1445: 2382:
Kogut, A.; et al. (2003). "First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature-Polarization Correlation".
2166: 5675: 1598: 335: 1601:
allowed that comparison to be made. The initial observations, released in 2003, suggested that reionization took place from 30 > 
1423: = 1089 (379,000 years after the Big Bang), due to the cooling of the universe to the point where the rate of recombination of 5604: 1528:
sharp spectral absorption lines, a quasar's light which has traveled through a large, spread out region of neutral hydrogen will show a
2435:
Spergel, D. N.; et al. (2007). "Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology".
5329: 4205:
Wang, Bingjie; Heckman, Timothy M.; Leitherer, Claus; Alexandroff, Rachel; Borthakur, Sanchayeeta; Overzier, Roderik A. (2019-10-30).
1540:), while quasars emitting light prior to reionization will feature a Gunn-Peterson trough. In 2001, four quasars were detected by the 3270:
Barkana, Rennan & Loeb, Abraham (2005). "Detecting the Earliest Galaxies through Two New Sources of 21 Centimeter Fluctuations".
1495:. Thus it can be inferred that any major differences between quasar spectra will be caused by the interaction of their emission with 5439: 3832:
Verhamme, A.; Orlitova, I.; Schaerer, D.; Hayes, M. (2014). "On the use of Lyman-alpha to detect Lyman continuum leaking galaxies".
1924:. Such stars are likely to have existed in the very early universe (i.e., at high redshift), and may have started the production of 544: 1689:. By studying 21-cm line emission, it will be possible to learn more about the early structures that formed. Observations from the 2108:
Becker, R. H.; et al. (2001). "Evidence For Reionization at z ~ 6: Detection of a Gunn-Peterson Trough In A z=6.28 Quasar".
594: 5532: 5162: 4919:
Venkatesan, Apama; et al. (2003). "Evolving Spectra of Population III Stars: Consequences for Cosmological Reionization".
4264:
Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G.; Chisholm, J.; Thuan, T. X.; Fricke, K. J.; Verhamme, A. (2021-03-22).
4103:
Izotov, Y. I.; Schaerer, D.; Worseck, G.; Guseva, N. G.; Thuan, T. X.; Verhamme, A.; Orlitová, I.; Fricke, K. J. (2018-03-11).
1847: 1774: 1706: 1685:
that are absorbed and re-emitted by surrounding neutral hydrogen, it will produce a 21-cm line signal in that hydrogen through
177: 3426:
Madau, Piero; et al. (1999). "Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Source".
5594: 5429: 5356: 1800:. Finding local LyC emitters has thus become crucial to the theories about the early universe and the epoch of reionization. 1222: 539: 253: 5537: 5465: 5282: 4892:
Tumlinson, Jason; et al. (2002). "Cosmological Reionization by the First Stars: Evolving Spectra of Population III".
641: 182: 105: 5706: 1158: 1138: 4154:
Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G; Thuan, T. X.; Fricke; Verhamme, A.; Orlitová, I. (2018-08-21).
2691:"SPECTROSCOPIC CONFIRMATION OF z ∼ 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION" 5455: 4839:
Fosbury, R. A. E.; et al. (2003). "Massive Star Formation in a Gravitationally Lensed H II Galaxy at z = 3.357".
1698: 1577: 866: 587: 563: 110: 4765:
Gnedin, Nickolay & Ostriker, Jeremiah (1997). "Reionization of the Universe and the Early Production of Metals".
5650: 5635: 5460: 5396: 5290: 5265: 5260: 5250: 5186: 5178: 5155: 3323:
Alvarez, M. A.; Pen, Ue-Li; Chang, Tzu-Ching (2010). "Enhanced Detectability of Pre-reionization 21 cm Structure".
1954: 800: 618: 329: 309: 117: 62: 3920:"Ionization state of inter-stellar medium in galaxies: evolution, SFR-M*-Z dependence, and ionizing photon escape" 5506: 5349: 5254: 5028: 2805:"Luminosity Functions of Lyα Emitters at Redshifts z = 6.5 and z = 5.7: Evidence against Reionization at z ≤ 6.5" 1702: 1686: 1524: 1456: 1413: 1374: 1118: 155: 4052:
Izotov, Y. I.; Schaerer, D.; Thuan, T. X.; Worseck, G.; Guseva, N. G.; Orlitová, I.; Verhamme, A. (2016-10-01).
3979:
Izotov, Y. I.; Orlitová, I.; Schaerer, D.; Thuan, T. X.; Verhamme, A.; Guseva, N. G.; Worseck, G. (2016-01-14).
1811:/COS) to measure the LyC directly. These efforts culminated in the Low-redshift Lyman Continuum Survey, a large 5670: 5475: 5246: 3774:
Jaskot, A. E. & Oey, M. S. (2014). "Linking Ly-alpha and Low-Ionization Transitions at Low Optical Depth".
1751: 1710: 1541: 1508: 1393: 1359: 822: 634: 324: 89: 4105:"J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons" 2978:"STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS" 1463:. This occurred between 150 million and one billion years after the Big Bang (at a redshift 20 >  5660: 5204: 2329:
Dore, O.; et al. (2007). "Signature of patchy reionization in the polarization anisotropy of the CMB".
973: 292: 172: 5751: 5568: 4381:"The Low-Redshift Lyman Continuum Survey: Unveiling the ISM properties of low- z Lyman-continuum emitters" 1835: 1730: 1560: = 6. This, in turn, suggests that the universe must still have been almost entirely neutral at 875: 5126: 5741: 5614: 5470: 5217: 1900: 497: 299: 241: 3720:"The galaxy UV luminosity function at z ≃ 11 from a suite of public JWST ERS, ERO and Cycle-1 programs" 2219:"Long Dark Gaps in the Lyβ Forest at z < 6: Evidence of Ultra-late Reionization from XQR-30 Spectra" 5645: 5047: 4991: 4938: 4901: 4858: 4784: 4731: 4684: 4642: 4580: 4468: 4402: 4342: 4228: 4002: 3943: 3876: 3853:
Izotov, Y. I.; Guseva, N. G.; Fricke, K. J.; Henkel, C.; Schaerer, D.; Thuan, T. X. (February 2021).
3793: 3741: 3682: 3617: 3559: 3502: 3445: 3342: 3289: 3236: 3176: 3116: 3057: 2999: 2941: 2883: 2826: 2769: 2712: 2611: 2554: 2507: 2454: 2401: 2348: 2295: 2240: 2127: 2080: 2033: 1886: 1590: 1529: 1512: 1351: 857: 510: 482: 304: 5665: 5619: 5496: 5406: 5386: 5114: 4207:"A New Technique for Finding Galaxies Leaking Lyman-continuum Radiation: [S ii]-deficiency" 1991: 1665: 1617: 1459:
energy, the universe reverted from being composed of neutral atoms, to once again being an ionized
1178: 907: 442: 402: 372: 319: 275: 263: 167: 57: 5599: 5213: 5090: 5063: 5037: 5007: 4981: 4954: 4928: 4874: 4848: 4819: 4800: 4774: 4747: 4721: 4632: 4604: 4570: 4518: 4458: 4426: 4392: 4332: 4277: 4218: 4167: 4116: 4065: 4034: 3992: 3961: 3933: 3900: 3866: 3833: 3809: 3783: 3731: 3672: 3641: 3607: 3575: 3549: 3518: 3492: 3461: 3435: 3358: 3332: 3305: 3279: 3226: 3166: 3106: 3047: 2989: 2977: 2931: 2919: 2873: 2861: 2816: 2759: 2702: 2690: 2658: 2601: 2523: 2497: 2470: 2444: 2417: 2391: 2364: 2338: 2311: 2285: 2230: 2178: 2143: 2117: 2023: 1907: 1895: 1870: 1644: 1581: 1537: 1436: 1343: 1242: 1198: 927: 523: 462: 432: 397: 367: 314: 258: 27: 4054:"Detection of high Lyman continuum leakage from four low-redshift compact star-forming galaxies" 3855:"Low-redshift compact star-forming galaxies as analogues of high-redshift star-forming galaxies" 3595: 2645:
Stark, Daniel P.; Ellis, Richard S.; Chiu, Kuenley; Ouchi, Masami; Bunker, Andrew (2010-11-01).
1623:
The parameter usually quoted here is τ, the "optical depth to reionization," or alternatively, z
4156:"Low-redshift Lyman continuum leaking galaxies with high [O iii]/[O ii] ratios" 3155:"Onset of Cosmic Reionization: Evidence of an Ionized Bubble Merely 680 Myr after the Big Bang" 2747: 1838:(AGN), were considered a good candidate source because they are highly efficient at converting 5736: 5655: 5640: 5209: 4596: 4538: 4486: 4418: 4360: 4297: 4246: 4187: 4136: 4085: 4026: 4018: 3892: 3700: 3633: 3252: 3194: 3134: 3075: 3015: 2957: 2899: 2842: 2785: 2728: 2627: 2590:"Searching for the Earliest Galaxies Using the Gunn-Peterson Trough and the Lyα Emission Line" 2570: 2258: 2198: 2049: 1911: 1777:, often denoted α, to be steeper than it is today, approaching α = -2. With the advent of the 492: 4559:"Closing in on the sources of cosmic reionization: First results from the GLASS-JWST program" 3981:"Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy" 5720: 5694: 5573: 5055: 4999: 4946: 4866: 4792: 4739: 4692: 4650: 4646: 4588: 4584: 4528: 4507:"The far-ultraviolet continuum slope as a Lyman Continuum escape estimator at high redshift" 4506: 4476: 4410: 4406: 4350: 4287: 4265: 4236: 4177: 4155: 4126: 4075: 4010: 3951: 3884: 3880: 3801: 3749: 3690: 3625: 3567: 3510: 3453: 3350: 3297: 3244: 3184: 3124: 3065: 3007: 2949: 2891: 2834: 2777: 2720: 2668: 2619: 2562: 2515: 2511: 2462: 2409: 2356: 2303: 2248: 2188: 2135: 2088: 2041: 1925: 1725: 1460: 1366: 1014: 575: 387: 377: 362: 213: 82: 4104: 5589: 5121: 4668: 2860:
Hu, E. M.; Cowie, L. L.; Barger, A. J.; Capak, P.; Kakazu, Y.; Trouille, L. (2010-12-10).
2162: 1968: 1878: 1797: 502: 437: 422: 407: 392: 382: 246: 5501: 4321:"The Low-redshift Lyman Continuum Survey. I. New, Diverse Local Lyman Continuum Emitters" 143: 5051: 4995: 4942: 4905: 4862: 4788: 4735: 4688: 4472: 4346: 4232: 4006: 3947: 3797: 3745: 3686: 3621: 3563: 3506: 3449: 3346: 3293: 3240: 3180: 3120: 3093:
McQuinn, Matthew; Hernquist, Lars; Zaldarriaga, Matias; Dutta, Suvendra (October 2007).
3061: 3003: 2945: 2887: 2830: 2773: 2716: 2615: 2558: 2458: 2405: 2352: 2299: 2244: 2167:"Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six" 2131: 2084: 2037: 5081: 1770: 1674: 1074: 994: 487: 447: 5059: 3805: 3514: 3354: 3011: 2953: 2895: 2724: 1862: 1455:
that were energetic enough to re-ionize neutral hydrogen. As these objects formed and
5730: 4751: 4608: 4430: 3965: 3904: 3813: 3629: 3579: 3571: 3522: 3376: 3362: 3214: 3129: 3094: 2673: 2646: 2527: 2368: 1881:, the only elements that formed aside from hydrogen and helium were trace amounts of 1669: 1408:
Schematic timeline of the universe, depicting reionization's place in cosmic history.
1319: 472: 457: 357: 5067: 5011: 4958: 4878: 4558: 4380: 3854: 3645: 3465: 2804: 2781: 2589: 2421: 2315: 2147: 2011: 5324: 5242: 5237: 5232: 5221: 5199: 4804: 4038: 3481:"In the Beginning: The First Sources of Light and the Reionization of the Universe" 3398: 3309: 2474: 1739: 1504: 1441: 1218: 947: 477: 452: 427: 412: 4654: 4592: 4414: 3888: 2519: 1451:
The second phase change occurred once gas clouds started to condense in the early
2488:
Planck Collaboration (2020). "Planck 2018 results. VI. Cosmological parameters".
5563: 5553: 5227: 4447:"The Low-redshift Lyman Continuum Survey. II. New Insights into LyC Diagnostics" 1747: 1681:
dependent, meaning that as objects form in the "dark ages" and emit Lyman-alpha
1678: 1639: 1094: 225: 218: 4673:"Cosmological H II regions and the photoionization of the intergalactic medium" 4481: 4446: 4355: 4320: 4241: 4206: 3695: 3660: 3248: 3189: 3154: 3070: 3035: 2542: 2360: 2253: 2218: 5558: 5305: 5300: 3980: 1981: 1851: 1789: 1785: 1585: 1500: 886: 467: 4600: 4542: 4533: 4490: 4422: 4364: 4301: 4250: 4191: 4140: 4089: 4022: 3896: 3754: 3719: 3704: 3637: 3256: 3198: 3138: 3079: 3019: 2961: 2903: 2846: 2789: 2732: 2631: 2574: 2262: 2202: 2053: 1873:
were the earliest stars, which had no elements more massive than hydrogen or
5372: 5310: 4292: 4182: 4131: 4080: 4053: 2193: 1890: 1743: 1034: 417: 5147: 4972:
Alvarez, Marcelo; et al. (2006). "The H II Region of the First Star".
4030: 3956: 3919: 1404: 16:
Process that caused matter to reionize early in the history of the Universe
1620:
mission, yield an instantaneous reionization redshift of z = 7.68 ± 0.79.
5516: 5401: 5391: 5194: 4986: 4933: 4853: 4824: 4779: 4726: 3497: 3440: 3284: 2821: 2606: 2449: 2396: 2343: 2290: 2122: 1949: 1929: 1885:. Yet quasar spectra have revealed the presence of heavy elements in the 1866:
Simulated image of the first stars, 400 million years after the Big Bang.
1484: 1452: 1424: 1417: 1386: 1355: 1339: 150: 52: 45: 4014: 2920:"COMPLETING THE CENSUS OF Lyα EMITTERS AT THE REIONIZATION EPOCH $ ^,$ " 5295: 3036:"LAGER Lyα Luminosity Function at z ∼ 7: Implications for Reionization" 1962: 1882: 1831: 1803:
Subsequently, motivated, a series of surveys have been conducted using
1793: 1613: = 7. This is in much better agreement with the quasar data. 1054: 1511:
is large, meaning that even for low levels of neutral hydrogen in the
35: 5129:, website of the group researching Epoch of Reionization using LOFAR. 4266:"Lyman continuum leakage from low-mass galaxies with M ⋆ < 108 M⊙" 1986: 1933: 1914: 1874: 1843: 1759: 1682: 1488: 1432: 1428: 1382: 1378: 1262: 969: 5141: 3838: 3480: 1959:
Galaxies in the local universe that 'leak' Lyman continuum photons.
1742:
is required, which corresponds to photons with a wavelength of 91.2
1677:, meaning it occurs extremely rarely. The transition is also highly 5042: 5003: 4950: 4870: 4796: 4743: 4697: 4672: 4637: 4575: 4523: 4463: 4397: 4337: 4282: 4223: 4172: 4121: 4070: 3997: 3871: 3736: 3677: 3612: 3457: 3301: 3231: 3171: 3052: 2838: 2623: 2566: 2502: 2466: 2413: 2307: 2235: 2139: 2093: 2068: 2045: 1435:
rate. The universe was opaque before the recombination, due to the
3938: 3788: 3554: 3337: 3111: 2994: 2936: 2878: 2764: 2707: 2663: 2183: 2028: 1861: 1724: 1492: 1403: 1329: 1286: 846: 2161:
Becker, George D.; Bolton, James S.; Madau, Piero; Pettini, Max;
5086:"Astronomers Report Finding Earliest Stars That Enriched Cosmos" 1937: 1839: 1755: 1496: 5345: 5151: 1733:
image to answer the question of how the Universe was reionised.
1691:
Experiment to Detect the Global Epoch of Reionization Signature
1385:, reionization usually refers strictly to the reionization of 1370: 1282: 613: 5341: 5132: 2748:"RAPID DECLINE OF Lyα EMISSION TOWARD THE REIONIZATION ERA" 2069:"On the Density of Neutral Hydrogen in Intergalactic Space" 1631:
provides an estimate of the mean redshift of reionization.
3377:"Astronomers detect light from the Universe's first stars" 1655:
pinpointed by identifying groups of Lyman alpha emitters.
1899:
on their own in some reionization models with reasonable
1729:
Astronomers hope to use observations such as this 2018
1709:(GMRT), Mapper of the IGM Spin Temperature (MIST), the 1412:
The first phase change of hydrogen in the universe was
5704: 5137:
Precision Array for Probing the Epoch of Reionization
2588:
Miralda-Escude, Jordi; Rees, Martin J. (1998-04-10).
1695:
Precision Array for Probing the Epoch of Reionization
5628: 5582: 5546: 5525: 5484: 5448: 5415: 5379: 5281: 5185: 2803:Malhotra, Sangeeta; Rhoads, James E. (2004-12-10). 2012:"The History and Morphology of Helium Reionization" 2541:Partridge, R. B.; Peebles, P. J. E. (March 1967). 4511:Monthly Notices of the Royal Astronomical Society 4270:Monthly Notices of the Royal Astronomical Society 4160:Monthly Notices of the Royal Astronomical Society 4109:Monthly Notices of the Royal Astronomical Society 4058:Monthly Notices of the Royal Astronomical Society 3925:Monthly Notices of the Royal Astronomical Society 3769: 3767: 3765: 3724:Monthly Notices of the Royal Astronomical Society 3099:Monthly Notices of the Royal Astronomical Society 2651:Monthly Notices of the Royal Astronomical Society 2171:Monthly Notices of the Royal Astronomical Society 1715:Large-Aperture Experiment to Detect the Dark Ages 3827: 3825: 3823: 2010:Furlanetto, Steven R.; Oh, S. Peng (July 2008). 1906:In June 2015, astronomers reported evidence for 1536:Gunn-Peterson trough (though they may show the 1431:to form neutral hydrogen was higher than the re 1381:in the universe is in the form of hydrogen and 3534: 3532: 3421: 3419: 2862:"AN ATLAS OF z = 5.7 AND z = 6.5 Lyα EMITTERS" 1594:reionization occurred can then be calculated. 5357: 5163: 1977:List of the most distant astronomical objects 1784:In 2014, two separate studies identified two 642: 595: 8: 1609: = 11 and the universe ionized by 1483:One means of studying reionization uses the 4325:The Astrophysical Journal Supplement Series 3665:The Astrophysical Journal Supplement Series 2437:The Astrophysical Journal Supplement Series 2384:The Astrophysical Journal Supplement Series 1932:that are needed for the later formation of 1552: = 6.28. While the quasars above 5364: 5350: 5342: 5170: 5156: 5148: 2067:Gunn, J. E. & Peterson, B. A. (1965). 649: 635: 602: 588: 202: 76: 34: 18: 5435:Religious interpretations of the Big Bang 5041: 4985: 4932: 4852: 4823: 4778: 4725: 4696: 4636: 4574: 4532: 4522: 4480: 4462: 4396: 4354: 4336: 4291: 4281: 4240: 4222: 4181: 4171: 4130: 4120: 4079: 4069: 3996: 3955: 3937: 3870: 3837: 3787: 3753: 3735: 3694: 3676: 3611: 3553: 3496: 3439: 3336: 3283: 3230: 3188: 3170: 3128: 3110: 3095:"Studying reionization with Lyα emitters" 3069: 3051: 2993: 2935: 2877: 2820: 2763: 2706: 2672: 2662: 2605: 2501: 2448: 2395: 2342: 2289: 2252: 2234: 2192: 2182: 2121: 2092: 2027: 5425:Discovery of cosmic microwave background 3215:"A Lyman-α protocluster at redshift 6.9" 1365:Reionization is the second of two major 5711: 2002: 1519:at those wavelengths is highly likely. 1503:of light at the energies of one of the 233: 205: 97: 26: 4313: 4311: 3918:Nakajima, K. & Ouchi, M. (2014). 1446:cosmic microwave background radiation 7: 5144:, Mapper of the IGM Spin Temperature 1850:(number of quasars as a function of 1599:Wilkinson Microwave Anisotropy Probe 1479:Quasars and the Gunn-Peterson trough 1358:to reionize after the lapse of the " 1271: 1251: 1231: 1207: 1187: 1167: 1147: 1127: 1107: 1083: 1063: 1043: 1023: 1003: 983: 956: 936: 916: 896: 5330:Graphical timeline of the Big Bang 2165:; Venemans, Bram P. (2015-03-11). 330:2dF Galaxy Redshift Survey ("2dF") 14: 5440:Timeline of cosmological theories 3776:The Astrophysical Journal Letters 3542:The Astrophysical Journal Letters 3325:The Astrophysical Journal Letters 3159:The Astrophysical Journal Letters 1762:were the main sources of energy. 545:Timeline of cosmological theories 310:Cosmic Background Explorer (COBE) 5714: 5688: 5323: 3130:10.1111/j.1365-2966.2007.12085.x 2674:10.1111/j.1365-2966.2010.17227.x 1807:'s Cosmic Origins Spectrograph ( 569: 558: 557: 5533:Future of an expanding universe 1707:Giant Metrewave Radio Telescope 1572:CMB anisotropy and polarization 325:Sloan Digital Sky Survey (SDSS) 178:Future of an expanding universe 5747:Physical cosmological concepts 5430:History of the Big Bang theory 3479:Barkana, R.; Loeb, A. (2001). 1373:in the universe (the first is 540:History of the Big Bang theory 336:Wilkinson Microwave Anisotropy 1: 5538:Ultimate fate of the universe 5466:Gravitational wave background 3515:10.1016/S0370-1573(01)00019-9 2543:"Are Young Galaxies Visible?" 1499:along the line of sight. For 532:Discovery of cosmic microwave 183:Ultimate fate of the universe 4563:Astronomy & Astrophysics 4385:Astronomy & Astrophysics 3859:Astronomy & Astrophysics 3399:"Hubble opens its eye again" 2490:Astronomy & Astrophysics 1544:with redshifts ranging from 5456:Cosmic microwave background 5060:10.1088/0004-637x/808/2/139 4671:& Giroux, Mark (1987). 4655:10.1051/0004-6361/202347884 4593:10.1051/0004-6361/202345866 4415:10.1051/0004-6361/202141864 3889:10.1051/0004-6361/202039772 3806:10.1088/2041-8205/791/2/L19 3355:10.1088/2041-8205/723/1/L17 3012:10.1088/0004-637X/723/1/869 2954:10.1088/0004-637X/734/2/119 2896:10.1088/0004-637X/725/1/394 2725:10.1088/0004-637X/743/2/132 2520:10.1051/0004-6361/201833910 1746:or shorter. This is in the 1578:cosmic microwave background 1350:is the process that caused 300:Black Hole Initiative (BHI) 5768: 5461:Cosmic neutrino background 5397:Chronology of the universe 5291:Heat death of the universe 5187:Chronology of the universe 4894:ASP Conference Proceedings 4625:Astronomy and Astrophysics 3630:10.1088/0004-637X/814/1/69 3572:10.1088/2041-8205/752/1/L5 3249:10.1038/s41550-020-01291-y 2361:10.1103/PhysRevD.76.043002 1955:Chronology of the universe 1779:James Webb Space Telescope 1334:Phases of the reionization 63:Chronology of the universe 5684: 5507:Expansion of the universe 5319: 5133:Official website of PAPER 5029:The Astrophysical Journal 4677:The Astrophysical Journal 4451:The Astrophysical Journal 4211:The Astrophysical Journal 3600:The Astrophysical Journal 3428:The Astrophysical Journal 3272:The Astrophysical Journal 3040:The Astrophysical Journal 2982:The Astrophysical Journal 2924:The Astrophysical Journal 2866:The Astrophysical Journal 2809:The Astrophysical Journal 2782:10.1088/0004-637X/794/1/5 2752:The Astrophysical Journal 2695:The Astrophysical Journal 2594:The Astrophysical Journal 2547:The Astrophysical Journal 2278:The Astrophysical Journal 2223:The Astrophysical Journal 2073:The Astrophysical Journal 2016:The Astrophysical Journal 1703:Murchison Widefield Array 1687:Wouthuysen-Field coupling 1668:during reionization. The 1525:expansion of the universe 1377:). While the majority of 1315: 627: 616: 156:Expansion of the universe 5247:Big Bang nucleosynthesis 5179:Timeline of the Big Bang 4714:The Astronomical Journal 4482:10.3847/1538-4357/ac61e4 4356:10.3847/1538-4365/ac5331 4242:10.3847/1538-4357/ab418f 3696:10.3847/1538-4365/acaaa9 3190:10.3847/2041-8213/ab75ec 3071:10.3847/1538-4357/ac4997 2254:10.3847/1538-4357/ac6e60 1971:– second of two galaxies 1879:Big Bang nucleosynthesis 1752:electromagnetic spectrum 1713:(DARE) mission, and the 1711:Dark Ages Radio Explorer 1542:Sloan Digital Sky Survey 1509:scattering cross-section 1392:It is believed that the 320:Planck space observatory 106:Gravitational wave (GWB) 5661:Observational cosmology 5205:Grand unification epoch 4647:2024A&A...685A...3M 4585:2023A&A...672A.155M 4407:2022A&A...663A..59S 3881:2021A&A...646A.138I 2512:2020A&A...641A...6P 1965:– first of two galaxies 173:Inhomogeneous cosmology 5512:Accelerating expansion 4534:10.1093/mnras/stac2874 3755:10.1093/mnras/stad3471 3403:www.spacetelescope.org 1901:initial mass functions 1896:gravitationally lensed 1867: 1836:active galactic nuclei 1805:Hubble Space Telescope 1734: 1731:Hubble Space Telescope 1576:The anisotropy of the 1416:, which occurred at a 1409: 1335: 692:−10 — 682:−11 — 672:−12 — 662:−13 — 5615:Shape of the universe 5605:Large-scale structure 5418:cosmological theories 4974:Astrophysical Journal 4921:Astrophysical Journal 4841:Astrophysical Journal 4767:Astrophysical Journal 4293:10.1093/mnras/stab612 4183:10.1093/mnras/sty1378 4132:10.1093/mnras/stx3115 4081:10.1093/mnras/stw1205 2194:10.1093/mnras/stu2646 1865: 1728: 1616:Results in 2018 from 1548: = 5.82 to 1407: 1333: 837:Accelerated expansion 782:−1 — 772:−2 — 762:−3 — 752:−4 — 742:−5 — 732:−6 — 722:−7 — 712:−8 — 702:−9 — 264:Large-scale structure 242:Shape of the universe 5695:astronomy portal 5283:Fate of the universe 5115:End of the Dark Ages 3957:10.1093/mnras/stu902 2110:Astronomical Journal 1998:Notes and references 1908:Population III stars 1887:intergalactic medium 1871:Population III stars 1858:Population III stars 1635:Lyman alpha emission 1530:Gunn-Peterson trough 1513:intergalactic medium 1352:electrically neutral 1055:NGC 188 star cluster 576:Astronomy portal 534:background radiation 511:List of cosmologists 5620:Structure formation 5583:Structure formation 5497:Friedmann equations 5407:Observable universe 5387:Age of the universe 5052:2015ApJ...808..139S 4996:2006ApJ...639..621A 4943:2003ApJ...584..621V 4906:2002ASPC..267..433T 4863:2003ApJ...596..797F 4789:1997ApJ...486..581G 4736:2001AJ....122.2833F 4689:1987ApJ...321L.107S 4473:2022ApJ...930..126F 4347:2022ApJS..260....1F 4233:2019ApJ...885...57W 4015:10.1038/nature16456 4007:2016Natur.529..178I 3948:2014MNRAS.442..900N 3798:2014ApJ...791L..19J 3746:2024MNRAS.527.5004M 3687:2023ApJS..265....5H 3622:2015ApJ...814...69A 3564:2012ApJ...752L...5B 3507:2001PhR...349..125B 3450:1999ApJ...514..648M 3347:2010ApJ...723L..17A 3294:2005ApJ...626....1B 3241:2021NatAs...5..485H 3181:2020ApJ...891L..10T 3121:2007MNRAS.381...75M 3062:2022ApJ...927...36W 3004:2010ApJ...723..869O 2946:2011ApJ...734..119K 2888:2010ApJ...725..394H 2831:2004ApJ...617L...5M 2774:2014ApJ...794....5T 2717:2011ApJ...743..132P 2616:1998ApJ...497...21M 2559:1967ApJ...147..868P 2459:2007ApJS..170..377S 2406:2003ApJS..148..161K 2353:2007PhRvD..76d3002D 2300:2003ApJ...583...24K 2245:2022ApJ...932...76Z 2163:Ryan-Weber, Emma V. 2132:2001AJ....122.2850B 2085:1965ApJ...142.1633G 2038:2008ApJ...681....1F 1848:luminosity function 1788:(GPs) to be likely 1775:luminosity function 1699:Low Frequency Array 1666:structure formation 1179:Sexual reproduction 1119:Earliest known life 276:Structure formation 168:Friedmann equations 58:Age of the universe 22:Part of a series on 5600:Large quasar group 5214:Inflationary epoch 5120:2005-03-09 at the 5091:The New York Times 3379:. 28 February 2018 1868: 1786:Green Pea galaxies 1735: 1645:Lyman break galaxy 1582:Thomson scattering 1538:Lyman-alpha forest 1410: 1336: 1243:Cambrian explosion 1159:Atmospheric oxygen 858:Single-celled life 315:Dark Energy Survey 259:Large quasar group 28:Physical cosmology 5702: 5701: 5656:Illustris project 5339: 5338: 5251:Matter domination 5210:Electroweak epoch 3991:(7585): 178–180. 2331:Physical Review D 1926:chemical elements 1912:Cosmos Redshift 7 1889:at an early era. 1507:of hydrogen, the 1505:Lyman transitions 1471:Detection methods 1394:primordial helium 1367:phase transitions 1338:In the fields of 1328: 1327: 1320:billion years ago 1294: 1293: 1270: 1269: 1250: 1249: 1230: 1229: 1206: 1205: 1186: 1185: 1166: 1165: 1146: 1145: 1126: 1125: 1106: 1105: 1082: 1081: 1062: 1061: 1042: 1041: 1035:Milky Way spirals 1022: 1021: 1002: 1001: 982: 981: 955: 954: 935: 934: 915: 914: 908:Earliest Universe 612: 611: 283: 282: 125: 124: 5759: 5719: 5718: 5717: 5710: 5693: 5692: 5691: 5595:Galaxy formation 5574:Lambda-CDM model 5485:Present universe 5366: 5359: 5352: 5343: 5327: 5172: 5165: 5158: 5149: 5103: 5102: 5100: 5098: 5084:(17 June 2015). 5078: 5072: 5071: 5045: 5022: 5016: 5015: 4989: 4987:astro-ph/0507684 4969: 4963: 4962: 4936: 4934:astro-ph/0206390 4916: 4910: 4909: 4889: 4883: 4882: 4856: 4854:astro-ph/0307162 4836: 4830: 4829: 4827: 4825:astro-ph/9802189 4815: 4809: 4808: 4782: 4780:astro-ph/9612127 4762: 4756: 4755: 4729: 4727:astro-ph/0108063 4720:(6): 2833–2849. 4709: 4703: 4702: 4700: 4665: 4659: 4658: 4640: 4619: 4613: 4612: 4578: 4553: 4547: 4546: 4536: 4526: 4517:(4): 5104–5120. 4501: 4495: 4494: 4484: 4466: 4441: 4435: 4434: 4400: 4375: 4369: 4368: 4358: 4340: 4315: 4306: 4305: 4295: 4285: 4276:(2): 1734–1752. 4261: 4255: 4254: 4244: 4226: 4202: 4196: 4195: 4185: 4175: 4166:(4): 4851–4865. 4151: 4145: 4144: 4134: 4124: 4115:(4): 4514–4527. 4100: 4094: 4093: 4083: 4073: 4064:(4): 3683–3701. 4049: 4043: 4042: 4000: 3976: 3970: 3969: 3959: 3941: 3915: 3909: 3908: 3874: 3850: 3844: 3843: 3841: 3829: 3818: 3817: 3791: 3771: 3760: 3759: 3757: 3739: 3715: 3709: 3708: 3698: 3680: 3656: 3650: 3649: 3615: 3590: 3584: 3583: 3557: 3536: 3527: 3526: 3500: 3498:astro-ph/0010468 3476: 3470: 3469: 3443: 3441:astro-ph/9809058 3423: 3414: 3413: 3411: 3409: 3395: 3389: 3388: 3386: 3384: 3373: 3367: 3366: 3340: 3320: 3314: 3313: 3287: 3285:astro-ph/0410129 3267: 3261: 3260: 3234: 3219:Nature Astronomy 3209: 3203: 3202: 3192: 3174: 3149: 3143: 3142: 3132: 3114: 3090: 3084: 3083: 3073: 3055: 3030: 3024: 3023: 2997: 2972: 2966: 2965: 2939: 2914: 2908: 2907: 2881: 2857: 2851: 2850: 2824: 2822:astro-ph/0407408 2800: 2794: 2793: 2767: 2743: 2737: 2736: 2710: 2685: 2679: 2678: 2676: 2666: 2657:(3): 1628–1648. 2642: 2636: 2635: 2609: 2607:astro-ph/9707193 2585: 2579: 2578: 2538: 2532: 2531: 2505: 2485: 2479: 2478: 2452: 2450:astro-ph/0603449 2432: 2426: 2425: 2399: 2397:astro-ph/0302213 2379: 2373: 2372: 2346: 2344:astro-ph/0701784 2326: 2320: 2319: 2293: 2291:astro-ph/0207591 2273: 2267: 2266: 2256: 2238: 2213: 2207: 2206: 2196: 2186: 2177:(4): 3402–3419. 2158: 2152: 2151: 2125: 2123:astro-ph/0108097 2116:(6): 2850–2857. 2105: 2099: 2098: 2096: 2064: 2058: 2057: 2031: 2007: 1992:Strömgren sphere 1923: 1568: = 6. 1308: 1277: 1272: 1263:Earliest mammals 1257: 1252: 1237: 1232: 1219:Earliest animals 1213: 1208: 1193: 1188: 1173: 1168: 1153: 1148: 1133: 1128: 1113: 1108: 1089: 1084: 1069: 1064: 1049: 1044: 1029: 1024: 1015:Andromeda Galaxy 1009: 1004: 989: 984: 976: 962: 957: 942: 937: 922: 917: 902: 897: 889: 849: 838: 827: 824:Matter-dominated 814: 803: 793: 788: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 651: 644: 637: 631: 621: 614: 604: 597: 590: 574: 573: 572: 561: 560: 254:Galaxy formation 214:Lambda-CDM model 203: 195:Components  77: 38: 19: 5767: 5766: 5762: 5761: 5760: 5758: 5757: 5756: 5727: 5726: 5725: 5715: 5713: 5705: 5703: 5698: 5689: 5687: 5680: 5624: 5590:Galaxy filament 5578: 5542: 5526:Future universe 5521: 5480: 5476:Nucleosynthesis 5444: 5417: 5411: 5375: 5370: 5340: 5335: 5315: 5277: 5266:Habitable epoch 5181: 5176: 5142:Website of MIST 5122:Wayback Machine 5111: 5106: 5096: 5094: 5082:Overbye, Dennis 5080: 5079: 5075: 5026:Confirmation". 5024: 5023: 5019: 4971: 4970: 4966: 4918: 4917: 4913: 4891: 4890: 4886: 4838: 4837: 4833: 4817: 4816: 4812: 4764: 4763: 4759: 4711: 4710: 4706: 4667: 4666: 4662: 4621: 4620: 4616: 4555: 4554: 4550: 4503: 4502: 4498: 4443: 4442: 4438: 4377: 4376: 4372: 4317: 4316: 4309: 4263: 4262: 4258: 4204: 4203: 4199: 4153: 4152: 4148: 4102: 4101: 4097: 4051: 4050: 4046: 3978: 3977: 3973: 3917: 3916: 3912: 3852: 3851: 3847: 3831: 3830: 3821: 3773: 3772: 3763: 3717: 3716: 3712: 3658: 3657: 3653: 3592: 3591: 3587: 3538: 3537: 3530: 3485:Physics Reports 3478: 3477: 3473: 3425: 3424: 3417: 3407: 3405: 3397: 3396: 3392: 3382: 3380: 3375: 3374: 3370: 3322: 3321: 3317: 3269: 3268: 3264: 3211: 3210: 3206: 3151: 3150: 3146: 3092: 3091: 3087: 3032: 3031: 3027: 2974: 2973: 2969: 2916: 2915: 2911: 2859: 2858: 2854: 2802: 2801: 2797: 2745: 2744: 2740: 2687: 2686: 2682: 2644: 2643: 2639: 2587: 2586: 2582: 2540: 2539: 2535: 2487: 2486: 2482: 2434: 2433: 2429: 2381: 2380: 2376: 2328: 2327: 2323: 2275: 2274: 2270: 2215: 2214: 2210: 2160: 2159: 2155: 2107: 2106: 2102: 2066: 2065: 2061: 2009: 2008: 2004: 2000: 1969:Tololo-1247-232 1946: 1940:as we know it. 1918: 1860: 1829: 1798:Tololo-1247-232 1790:Lyman Continuum 1768: 1723: 1661: 1637: 1630: 1626: 1574: 1481: 1473: 1402: 1389:, the element. 1379:baryonic matter 1324: 1323: 1311: 1310: 1309: 1305: 1303: 1301: 1298: 1290: 1289: 1275: 1266: 1265: 1255: 1246: 1245: 1235: 1226: 1225: 1211: 1202: 1201: 1191: 1182: 1181: 1171: 1162: 1161: 1151: 1142: 1141: 1139:Earliest oxygen 1131: 1122: 1121: 1111: 1102: 1101: 1087: 1078: 1077: 1067: 1058: 1057: 1047: 1038: 1037: 1027: 1018: 1017: 1007: 998: 997: 987: 978: 977: 967: 960: 951: 950: 948:Earliest galaxy 940: 931: 930: 920: 911: 910: 900: 893: 892: 891: 887: 882: 881: 880: 877: 871: 870: 869: 862: 861: 860: 853: 852: 851: 847: 842: 841: 840: 836: 831: 830: 829: 825: 823: 818: 817: 816: 812: 807: 806: 805: 801: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 655: 629: 623: 620:Nature timeline 619: 608: 570: 568: 550: 549: 536: 533: 526: 524:Subject history 516: 515: 507: 352: 344: 343: 340: 337: 295: 285: 284: 247:Galaxy filament 200: 188: 187: 139: 134:Expansion  127: 126: 111:Microwave (CMB) 90:Nucleosynthesis 74: 17: 12: 11: 5: 5765: 5763: 5755: 5754: 5749: 5744: 5739: 5729: 5728: 5724: 5723: 5700: 5699: 5685: 5682: 5681: 5679: 5678: 5673: 5668: 5663: 5658: 5653: 5648: 5643: 5638: 5632: 5630: 5626: 5625: 5623: 5622: 5617: 5612: 5607: 5602: 5597: 5592: 5586: 5584: 5580: 5579: 5577: 5576: 5571: 5566: 5561: 5556: 5550: 5548: 5544: 5543: 5541: 5540: 5535: 5529: 5527: 5523: 5522: 5520: 5519: 5514: 5509: 5504: 5499: 5494: 5488: 5486: 5482: 5481: 5479: 5478: 5473: 5468: 5463: 5458: 5452: 5450: 5446: 5445: 5443: 5442: 5437: 5432: 5427: 5421: 5419: 5413: 5412: 5410: 5409: 5404: 5399: 5394: 5389: 5383: 5381: 5377: 5376: 5371: 5369: 5368: 5361: 5354: 5346: 5337: 5336: 5334: 5333: 5320: 5317: 5316: 5314: 5313: 5308: 5303: 5298: 5293: 5287: 5285: 5279: 5278: 5276: 5275: 5270: 5269: 5268: 5258: 5240: 5235: 5230: 5225: 5207: 5202: 5197: 5191: 5189: 5183: 5182: 5177: 5175: 5174: 5167: 5160: 5152: 5146: 5145: 5139: 5130: 5124: 5110: 5109:External links 5107: 5105: 5104: 5073: 5017: 5004:10.1086/499578 4980:(2): 621–632. 4964: 4951:10.1086/345738 4927:(2): 621–632. 4911: 4884: 4871:10.1086/378228 4847:(1): 797–809. 4831: 4810: 4797:10.1086/304548 4773:(2): 581–598. 4757: 4744:10.1086/324111 4704: 4698:10.1086/185015 4660: 4614: 4548: 4496: 4436: 4370: 4307: 4256: 4197: 4146: 4095: 4044: 3971: 3932:(1): 900–916. 3910: 3845: 3819: 3761: 3710: 3651: 3585: 3528: 3491:(2): 125–238. 3471: 3458:10.1086/306975 3434:(2): 648–659. 3415: 3390: 3368: 3331:(1): L17–L21. 3315: 3302:10.1086/429954 3262: 3225:(5): 485–490. 3204: 3144: 3085: 3025: 2988:(1): 869–894. 2967: 2909: 2872:(1): 394–423. 2852: 2839:10.1086/427182 2795: 2738: 2680: 2637: 2624:10.1086/305458 2580: 2567:10.1086/149079 2533: 2480: 2467:10.1086/513700 2443:(2): 377–408. 2427: 2414:10.1086/377219 2390:(1): 161–173. 2374: 2321: 2308:10.1086/344927 2268: 2208: 2153: 2140:10.1086/324231 2100: 2094:10.1086/148444 2059: 2046:10.1086/588546 2001: 1999: 1996: 1995: 1994: 1989: 1984: 1979: 1974: 1973: 1972: 1966: 1957: 1952: 1945: 1942: 1859: 1856: 1828: 1825: 1771:Dwarf galaxies 1767: 1766:Dwarf galaxies 1764: 1722: 1721:Energy sources 1719: 1660: 1657: 1636: 1633: 1628: 1624: 1573: 1570: 1480: 1477: 1472: 1469: 1401: 1398: 1326: 1325: 1317: 1316: 1313: 1312: 1297: 1296: 1295: 1292: 1291: 1281: 1280: 1278: 1268: 1267: 1261: 1260: 1258: 1248: 1247: 1241: 1240: 1238: 1228: 1227: 1217: 1216: 1214: 1204: 1203: 1199:Earliest fungi 1197: 1196: 1194: 1184: 1183: 1177: 1176: 1174: 1164: 1163: 1157: 1156: 1154: 1144: 1143: 1137: 1136: 1134: 1124: 1123: 1117: 1116: 1114: 1104: 1103: 1093: 1092: 1090: 1080: 1079: 1075:Alpha Centauri 1073: 1072: 1070: 1060: 1059: 1053: 1052: 1050: 1040: 1039: 1033: 1032: 1030: 1020: 1019: 1013: 1012: 1010: 1000: 999: 995:Omega Centauri 993: 992: 990: 980: 979: 966: 965: 963: 953: 952: 946: 945: 943: 933: 932: 928:Earliest stars 926: 925: 923: 913: 912: 906: 905: 903: 894: 885: 884: 883: 874: 873: 872: 867:Photosynthesis 865: 864: 863: 856: 855: 854: 848:Water on Earth 845: 844: 843: 834: 833: 832: 821: 820: 819: 810: 809: 808: 799: 798: 797: 795: 792:0 — 790: 785: 780: 775: 770: 765: 760: 755: 750: 745: 740: 735: 730: 725: 720: 715: 710: 705: 700: 695: 690: 685: 680: 675: 670: 665: 660: 657: 656: 654: 653: 646: 639: 628: 625: 624: 617: 610: 609: 607: 606: 599: 592: 584: 581: 580: 579: 578: 566: 552: 551: 548: 547: 542: 537: 530: 527: 522: 521: 518: 517: 514: 513: 506: 505: 500: 495: 490: 485: 480: 475: 470: 465: 460: 455: 450: 445: 440: 435: 430: 425: 420: 415: 410: 405: 400: 395: 390: 385: 380: 375: 370: 365: 360: 354: 353: 350: 349: 346: 345: 342: 341: 334: 332: 327: 322: 317: 312: 307: 302: 296: 291: 290: 287: 286: 281: 280: 279: 278: 266: 261: 256: 244: 236: 235: 231: 230: 229: 228: 216: 208: 207: 201: 194: 193: 190: 189: 186: 185: 180: 175: 170: 158: 153: 140: 133: 132: 129: 128: 123: 122: 121: 120: 118:Neutrino (CNB) 108: 100: 99: 95: 94: 93: 92: 75: 73:Early universe 72: 71: 68: 67: 66: 65: 60: 55: 40: 39: 31: 30: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 5764: 5753: 5752:Space plasmas 5750: 5748: 5745: 5743: 5740: 5738: 5735: 5734: 5732: 5722: 5712: 5708: 5697: 5696: 5683: 5677: 5674: 5672: 5669: 5667: 5664: 5662: 5659: 5657: 5654: 5652: 5649: 5647: 5644: 5642: 5639: 5637: 5634: 5633: 5631: 5627: 5621: 5618: 5616: 5613: 5611: 5608: 5606: 5603: 5601: 5598: 5596: 5593: 5591: 5588: 5587: 5585: 5581: 5575: 5572: 5570: 5567: 5565: 5562: 5560: 5557: 5555: 5552: 5551: 5549: 5545: 5539: 5536: 5534: 5531: 5530: 5528: 5524: 5518: 5515: 5513: 5510: 5508: 5505: 5503: 5500: 5498: 5495: 5493: 5490: 5489: 5487: 5483: 5477: 5474: 5472: 5469: 5467: 5464: 5462: 5459: 5457: 5454: 5453: 5451: 5449:Past universe 5447: 5441: 5438: 5436: 5433: 5431: 5428: 5426: 5423: 5422: 5420: 5414: 5408: 5405: 5403: 5400: 5398: 5395: 5393: 5390: 5388: 5385: 5384: 5382: 5378: 5374: 5367: 5362: 5360: 5355: 5353: 5348: 5347: 5344: 5332: 5331: 5326: 5322: 5321: 5318: 5312: 5309: 5307: 5304: 5302: 5299: 5297: 5294: 5292: 5289: 5288: 5286: 5284: 5280: 5274: 5271: 5267: 5264: 5263: 5262: 5259: 5256: 5255:Recombination 5252: 5248: 5244: 5241: 5239: 5236: 5234: 5231: 5229: 5226: 5223: 5219: 5215: 5211: 5208: 5206: 5203: 5201: 5198: 5196: 5193: 5192: 5190: 5188: 5184: 5180: 5173: 5168: 5166: 5161: 5159: 5154: 5153: 5150: 5143: 5140: 5138: 5134: 5131: 5128: 5125: 5123: 5119: 5116: 5113: 5112: 5108: 5093: 5092: 5087: 5083: 5077: 5074: 5069: 5065: 5061: 5057: 5053: 5049: 5044: 5039: 5035: 5031: 5030: 5021: 5018: 5013: 5009: 5005: 5001: 4997: 4993: 4988: 4983: 4979: 4975: 4968: 4965: 4960: 4956: 4952: 4948: 4944: 4940: 4935: 4930: 4926: 4922: 4915: 4912: 4907: 4903: 4899: 4895: 4888: 4885: 4880: 4876: 4872: 4868: 4864: 4860: 4855: 4850: 4846: 4842: 4835: 4832: 4826: 4821: 4814: 4811: 4806: 4802: 4798: 4794: 4790: 4786: 4781: 4776: 4772: 4768: 4761: 4758: 4753: 4749: 4745: 4741: 4737: 4733: 4728: 4723: 4719: 4715: 4708: 4705: 4699: 4694: 4690: 4686: 4682: 4678: 4674: 4670: 4669:Shapiro, Paul 4664: 4661: 4656: 4652: 4648: 4644: 4639: 4634: 4630: 4626: 4618: 4615: 4610: 4606: 4602: 4598: 4594: 4590: 4586: 4582: 4577: 4572: 4568: 4564: 4560: 4552: 4549: 4544: 4540: 4535: 4530: 4525: 4520: 4516: 4512: 4508: 4500: 4497: 4492: 4488: 4483: 4478: 4474: 4470: 4465: 4460: 4456: 4452: 4448: 4440: 4437: 4432: 4428: 4424: 4420: 4416: 4412: 4408: 4404: 4399: 4394: 4390: 4386: 4382: 4374: 4371: 4366: 4362: 4357: 4352: 4348: 4344: 4339: 4334: 4330: 4326: 4322: 4314: 4312: 4308: 4303: 4299: 4294: 4289: 4284: 4279: 4275: 4271: 4267: 4260: 4257: 4252: 4248: 4243: 4238: 4234: 4230: 4225: 4220: 4216: 4212: 4208: 4201: 4198: 4193: 4189: 4184: 4179: 4174: 4169: 4165: 4161: 4157: 4150: 4147: 4142: 4138: 4133: 4128: 4123: 4118: 4114: 4110: 4106: 4099: 4096: 4091: 4087: 4082: 4077: 4072: 4067: 4063: 4059: 4055: 4048: 4045: 4040: 4036: 4032: 4028: 4024: 4020: 4016: 4012: 4008: 4004: 3999: 3994: 3990: 3986: 3982: 3975: 3972: 3967: 3963: 3958: 3953: 3949: 3945: 3940: 3935: 3931: 3927: 3926: 3921: 3914: 3911: 3906: 3902: 3898: 3894: 3890: 3886: 3882: 3878: 3873: 3868: 3864: 3860: 3856: 3849: 3846: 3840: 3835: 3828: 3826: 3824: 3820: 3815: 3811: 3807: 3803: 3799: 3795: 3790: 3785: 3781: 3777: 3770: 3768: 3766: 3762: 3756: 3751: 3747: 3743: 3738: 3733: 3729: 3725: 3721: 3714: 3711: 3706: 3702: 3697: 3692: 3688: 3684: 3679: 3674: 3670: 3666: 3662: 3655: 3652: 3647: 3643: 3639: 3635: 3631: 3627: 3623: 3619: 3614: 3609: 3605: 3601: 3597: 3589: 3586: 3581: 3577: 3573: 3569: 3565: 3561: 3556: 3551: 3547: 3543: 3535: 3533: 3529: 3524: 3520: 3516: 3512: 3508: 3504: 3499: 3494: 3490: 3486: 3482: 3475: 3472: 3467: 3463: 3459: 3455: 3451: 3447: 3442: 3437: 3433: 3429: 3422: 3420: 3416: 3404: 3400: 3394: 3391: 3378: 3372: 3369: 3364: 3360: 3356: 3352: 3348: 3344: 3339: 3334: 3330: 3326: 3319: 3316: 3311: 3307: 3303: 3299: 3295: 3291: 3286: 3281: 3277: 3273: 3266: 3263: 3258: 3254: 3250: 3246: 3242: 3238: 3233: 3228: 3224: 3220: 3216: 3208: 3205: 3200: 3196: 3191: 3186: 3182: 3178: 3173: 3168: 3164: 3160: 3156: 3148: 3145: 3140: 3136: 3131: 3126: 3122: 3118: 3113: 3108: 3104: 3100: 3096: 3089: 3086: 3081: 3077: 3072: 3067: 3063: 3059: 3054: 3049: 3045: 3041: 3037: 3029: 3026: 3021: 3017: 3013: 3009: 3005: 3001: 2996: 2991: 2987: 2983: 2979: 2971: 2968: 2963: 2959: 2955: 2951: 2947: 2943: 2938: 2933: 2929: 2925: 2921: 2913: 2910: 2905: 2901: 2897: 2893: 2889: 2885: 2880: 2875: 2871: 2867: 2863: 2856: 2853: 2848: 2844: 2840: 2836: 2832: 2828: 2823: 2818: 2814: 2810: 2806: 2799: 2796: 2791: 2787: 2783: 2779: 2775: 2771: 2766: 2761: 2757: 2753: 2749: 2742: 2739: 2734: 2730: 2726: 2722: 2718: 2714: 2709: 2704: 2700: 2696: 2692: 2684: 2681: 2675: 2670: 2665: 2660: 2656: 2652: 2648: 2641: 2638: 2633: 2629: 2625: 2621: 2617: 2613: 2608: 2603: 2599: 2595: 2591: 2584: 2581: 2576: 2572: 2568: 2564: 2560: 2556: 2552: 2548: 2544: 2537: 2534: 2529: 2525: 2521: 2517: 2513: 2509: 2504: 2499: 2495: 2491: 2484: 2481: 2476: 2472: 2468: 2464: 2460: 2456: 2451: 2446: 2442: 2438: 2431: 2428: 2423: 2419: 2415: 2411: 2407: 2403: 2398: 2393: 2389: 2385: 2378: 2375: 2370: 2366: 2362: 2358: 2354: 2350: 2345: 2340: 2337:(4): 043002. 2336: 2332: 2325: 2322: 2317: 2313: 2309: 2305: 2301: 2297: 2292: 2287: 2283: 2279: 2272: 2269: 2264: 2260: 2255: 2250: 2246: 2242: 2237: 2232: 2228: 2224: 2220: 2212: 2209: 2204: 2200: 2195: 2190: 2185: 2180: 2176: 2172: 2168: 2164: 2157: 2154: 2149: 2145: 2141: 2137: 2133: 2129: 2124: 2119: 2115: 2111: 2104: 2101: 2095: 2090: 2086: 2082: 2079:: 1633–1641. 2078: 2074: 2070: 2063: 2060: 2055: 2051: 2047: 2043: 2039: 2035: 2030: 2025: 2021: 2017: 2013: 2006: 2003: 1997: 1993: 1990: 1988: 1985: 1983: 1980: 1978: 1975: 1970: 1967: 1964: 1961: 1960: 1958: 1956: 1953: 1951: 1948: 1947: 1943: 1941: 1939: 1935: 1931: 1928:heavier than 1927: 1921: 1916: 1913: 1909: 1904: 1902: 1897: 1892: 1888: 1884: 1880: 1876: 1872: 1864: 1857: 1855: 1853: 1849: 1845: 1841: 1837: 1834:, a class of 1833: 1826: 1824: 1822: 1818: 1814: 1810: 1806: 1801: 1799: 1795: 1791: 1787: 1782: 1780: 1776: 1772: 1765: 1763: 1761: 1757: 1753: 1749: 1745: 1741: 1732: 1727: 1720: 1718: 1716: 1712: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1671: 1667: 1658: 1656: 1652: 1648: 1646: 1641: 1634: 1632: 1621: 1619: 1614: 1612: 1608: 1604: 1600: 1595: 1592: 1587: 1583: 1579: 1571: 1569: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1533: 1531: 1526: 1520: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1490: 1486: 1478: 1476: 1470: 1468: 1466: 1462: 1458: 1454: 1449: 1447: 1443: 1442:excited state 1440:rising to an 1438: 1434: 1430: 1426: 1422: 1419: 1415: 1414:recombination 1406: 1399: 1397: 1395: 1390: 1388: 1384: 1380: 1376: 1375:recombination 1372: 1368: 1363: 1361: 1357: 1354:atoms in the 1353: 1349: 1345: 1341: 1332: 1321: 1314: 1307: 1288: 1284: 1283:Earliest apes 1279: 1274: 1273: 1264: 1259: 1254: 1253: 1244: 1239: 1234: 1233: 1224: 1220: 1215: 1210: 1209: 1200: 1195: 1190: 1189: 1180: 1175: 1170: 1169: 1160: 1155: 1150: 1149: 1140: 1135: 1130: 1129: 1120: 1115: 1110: 1109: 1100: 1096: 1091: 1086: 1085: 1076: 1071: 1066: 1065: 1056: 1051: 1046: 1045: 1036: 1031: 1026: 1025: 1016: 1011: 1006: 1005: 996: 991: 986: 985: 975: 971: 964: 959: 958: 949: 944: 939: 938: 929: 924: 919: 918: 909: 904: 899: 898: 895: 890: 879: 876:Multicellular 868: 859: 850: 839: 828: 815: 804: 796: 659: 658: 652: 647: 645: 640: 638: 633: 632: 626: 622: 615: 605: 600: 598: 593: 591: 586: 585: 583: 582: 577: 567: 565: 556: 555: 554: 553: 546: 543: 541: 538: 535: 529: 528: 525: 520: 519: 512: 509: 508: 504: 501: 499: 496: 494: 491: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 441: 439: 436: 434: 431: 429: 426: 424: 421: 419: 416: 414: 411: 409: 406: 404: 401: 399: 396: 394: 391: 389: 386: 384: 381: 379: 376: 374: 371: 369: 366: 364: 361: 359: 356: 355: 348: 347: 339: 333: 331: 328: 326: 323: 321: 318: 316: 313: 311: 308: 306: 303: 301: 298: 297: 294: 289: 288: 277: 274: 270: 267: 265: 262: 260: 257: 255: 252: 248: 245: 243: 240: 239: 238: 237: 232: 227: 224: 220: 217: 215: 212: 211: 210: 209: 204: 198: 192: 191: 184: 181: 179: 176: 174: 171: 169: 166: 162: 159: 157: 154: 152: 149: 145: 142: 141: 137: 131: 130: 119: 116: 112: 109: 107: 104: 103: 102: 101: 96: 91: 88: 84: 81: 80: 79: 78: 70: 69: 64: 61: 59: 56: 54: 51: 47: 44: 43: 42: 41: 37: 33: 32: 29: 25: 21: 20: 5742:Astrophysics 5686: 5610:Reionization 5609: 5569:Quintessence 5502:Hubble's law 5328: 5273:Reionization 5272: 5243:Photon epoch 5238:Lepton epoch 5233:Hadron epoch 5222:Baryogenesis 5200:Planck epoch 5095:. Retrieved 5089: 5076: 5033: 5027: 5020: 4977: 4973: 4967: 4924: 4920: 4914: 4897: 4893: 4887: 4844: 4840: 4834: 4813: 4770: 4766: 4760: 4717: 4713: 4707: 4680: 4676: 4663: 4628: 4624: 4617: 4566: 4562: 4551: 4514: 4510: 4499: 4454: 4450: 4439: 4388: 4384: 4373: 4328: 4324: 4273: 4269: 4259: 4214: 4210: 4200: 4163: 4159: 4149: 4112: 4108: 4098: 4061: 4057: 4047: 3988: 3984: 3974: 3929: 3923: 3913: 3862: 3858: 3848: 3779: 3775: 3727: 3723: 3713: 3668: 3664: 3654: 3603: 3599: 3588: 3545: 3541: 3488: 3484: 3474: 3431: 3427: 3406:. Retrieved 3402: 3393: 3381:. Retrieved 3371: 3328: 3324: 3318: 3275: 3271: 3265: 3222: 3218: 3207: 3162: 3158: 3147: 3105:(1): 75–96. 3102: 3098: 3088: 3043: 3039: 3028: 2985: 2981: 2970: 2927: 2923: 2912: 2869: 2865: 2855: 2815:(1): L5–L8. 2812: 2808: 2798: 2755: 2751: 2741: 2698: 2694: 2683: 2654: 2650: 2640: 2600:(1): 21–27. 2597: 2593: 2583: 2550: 2546: 2536: 2493: 2489: 2483: 2440: 2436: 2430: 2387: 2383: 2377: 2334: 2330: 2324: 2284:(1): 24–32. 2281: 2277: 2271: 2226: 2222: 2211: 2174: 2170: 2156: 2113: 2109: 2103: 2076: 2072: 2062: 2019: 2015: 2005: 1919: 1905: 1869: 1830: 1820: 1816: 1812: 1808: 1804: 1802: 1783: 1778: 1769: 1750:part of the 1736: 1662: 1653: 1649: 1638: 1622: 1615: 1610: 1606: 1602: 1596: 1591:polarization 1575: 1565: 1561: 1557: 1553: 1549: 1545: 1534: 1521: 1482: 1474: 1464: 1450: 1420: 1411: 1391: 1364: 1348:reionization 1347: 1337: 1099:Solar System 813:Reionization 811: 338:Probe (WMAP) 272: 269:Reionization 268: 250: 222: 196: 164: 147: 144:Hubble's law 135: 114: 86: 49: 5629:Experiments 5564:Dark matter 5554:Dark energy 5492:FLRW metric 5228:Quark epoch 4900:: 433–434. 4683:: 107–112. 3839:1404.2958v1 3730:(3): 5004. 3408:17 December 3278:(1): 1–11. 2022:(1): 1–17. 1748:ultraviolet 1679:temperature 1647:searches). 1640:Lyman alpha 1501:wavelengths 1487:of distant 1342:theory and 888:Vertebrates 630:This box: 293:Experiments 226:Dark matter 219:Dark energy 161:FLRW metric 98:Backgrounds 5731:Categories 5559:Dark fluid 5547:Components 5416:History of 5380:Background 5306:Big Bounce 5301:Big Crunch 5043:1504.01734 5036:(2): 139. 4638:2309.02219 4576:2301.02816 4524:2207.05771 4464:2203.15649 4457:(2): 126. 4398:2201.11800 4338:2201.11716 4283:2103.01514 4224:1909.01368 4173:1805.09865 4122:1711.11449 4071:1605.05160 3998:1601.03068 3872:2103.01505 3782:(2): L19. 3737:2304.14469 3678:2208.01612 3613:1509.06764 3232:2101.10204 3172:2001.00873 3165:(1): L10. 3053:2105.12191 2930:(2): 119. 2701:(2): 132. 2503:1807.06209 2236:2205.04569 1982:Pea galaxy 1852:luminosity 1670:21-cm line 1659:21-cm line 1586:anisotropy 1517:absorption 1437:scattering 1433:ionization 1400:Background 974:black hole 373:Copernicus 351:Scientists 206:Components 5721:Astronomy 5646:BOOMERanG 5471:Inflation 5373:Cosmology 5311:Big Slurp 5261:Dark ages 5218:Reheating 5127:LOFAR EoR 4752:119339804 4609:255546596 4601:0004-6361 4543:0035-8711 4491:0004-637X 4431:246411216 4423:0004-6361 4365:0067-0049 4302:0035-8711 4251:1538-4357 4217:(1): 57. 4192:0035-8711 4141:0035-8711 4090:0035-8711 4023:0028-0836 3966:118617426 3939:1309.0207 3905:232092358 3897:0004-6361 3814:119294145 3789:1406.4413 3705:0067-0049 3638:1538-4357 3606:(1): 69. 3580:118856513 3555:1105.2038 3548:(1): L5. 3523:119094218 3363:118436837 3338:1007.0001 3257:2397-3366 3199:2041-8205 3139:0035-8711 3112:0704.2239 3080:0004-637X 3046:(1): 36. 3020:0004-637X 2995:1007.2961 2962:0004-637X 2937:1104.2330 2904:0004-637X 2879:1009.1144 2847:0004-637X 2790:1538-4357 2765:1405.4869 2733:0004-637X 2708:1107.1376 2664:1003.5244 2632:0004-637X 2575:0004-637X 2528:119335614 2369:119360903 2263:0004-637X 2229:(2): 76. 2203:1365-2966 2184:1407.4850 2054:0004-637X 2029:0711.1542 1891:Supernova 1877:. During 1701:(LOFAR), 1697:(PAPER), 1675:forbidden 1425:electrons 1360:dark ages 1344:cosmology 968:Earliest 802:Dark Ages 503:Zeldovich 403:Friedmann 378:de Sitter 305:BOOMERanG 234:Structure 199:Structure 83:Inflation 5737:Big Bang 5517:Redshift 5402:Universe 5392:Big Bang 5195:Big Bang 5118:Archived 5068:18471887 5012:12753436 4959:17737785 4879:17808828 4569:: A155. 4331:(1): 1. 4031:26762455 3865:: A138. 3671:(1): 5. 3646:73567045 3466:17932350 2758:(1): 5. 2422:15253442 2316:11253251 2148:14117521 1950:Big Bang 1944:See also 1930:hydrogen 1760:galaxies 1717:(LEDA). 1457:radiated 1453:universe 1418:redshift 1387:hydrogen 1356:universe 1340:Big Bang 564:Category 483:Suntzeff 443:Lemaître 393:Einstein 358:Aaronson 151:Redshift 53:Universe 46:Big Bang 5296:Big Rip 5097:17 June 5048:Bibcode 4992:Bibcode 4939:Bibcode 4902:Bibcode 4859:Bibcode 4805:5758398 4785:Bibcode 4732:Bibcode 4685:Bibcode 4643:Bibcode 4581:Bibcode 4469:Bibcode 4403:Bibcode 4391:: A59. 4343:Bibcode 4229:Bibcode 4039:3033749 4003:Bibcode 3944:Bibcode 3877:Bibcode 3794:Bibcode 3742:Bibcode 3683:Bibcode 3618:Bibcode 3560:Bibcode 3503:Bibcode 3446:Bibcode 3383:1 March 3343:Bibcode 3310:7343629 3290:Bibcode 3237:Bibcode 3177:Bibcode 3117:Bibcode 3058:Bibcode 3000:Bibcode 2942:Bibcode 2884:Bibcode 2827:Bibcode 2770:Bibcode 2713:Bibcode 2612:Bibcode 2555:Bibcode 2553:: 868. 2508:Bibcode 2475:1386346 2455:Bibcode 2402:Bibcode 2349:Bibcode 2296:Bibcode 2241:Bibcode 2128:Bibcode 2081:Bibcode 2034:Bibcode 1987:Quasars 1963:Haro 11 1934:planets 1910:in the 1883:lithium 1832:Quasars 1827:Quasars 1794:Haro 11 1705:(MWA), 1683:photons 1515:(IGM), 1489:quasars 1485:spectra 1429:protons 1276:← 1256:← 1236:← 1212:← 1192:← 1172:← 1152:← 1132:← 1112:← 1088:← 1068:← 1048:← 1028:← 1008:← 988:← 961:← 941:← 921:← 901:← 787:– 777:– 767:– 757:– 747:– 737:– 727:– 717:– 707:– 697:– 687:– 677:– 667:– 488:Sunyaev 473:Schmidt 463:Penzias 458:Penrose 433:Huygens 423:Hawking 408:Galileo 5707:Portal 5666:Planck 5135:, the 5066:  5010:  4957:  4877:  4803:  4750:  4631:: A3. 4607:  4599:  4541:  4489:  4429:  4421:  4363:  4300:  4249:  4190:  4139:  4088:  4037:  4029:  4021:  3985:Nature 3964:  3903:  3895:  3812:  3703:  3644:  3636:  3578:  3521:  3464:  3361:  3308:  3255:  3197:  3137:  3078:  3018:  2960:  2902:  2845:  2788:  2731:  2630:  2573:  2526:  2496:: A6. 2473:  2420:  2367:  2314:  2261:  2201:  2146:  2052:  1922:= 6.60 1915:galaxy 1875:helium 1844:energy 1618:Planck 1461:plasma 1383:helium 1287:humans 1223:plants 970:quasar 562:  498:Wilson 493:Tolman 453:Newton 448:Mather 438:Kepler 428:Hubble 388:Ehlers 368:Alpher 363:Alfvén 271:  249:  221:  163:  146:  138:Future 113:  85:  48:  5064:S2CID 5038:arXiv 5008:S2CID 4982:arXiv 4955:S2CID 4929:arXiv 4875:S2CID 4849:arXiv 4820:arXiv 4801:S2CID 4775:arXiv 4748:S2CID 4722:arXiv 4633:arXiv 4605:S2CID 4571:arXiv 4519:arXiv 4459:arXiv 4427:S2CID 4393:arXiv 4333:arXiv 4278:arXiv 4219:arXiv 4168:arXiv 4117:arXiv 4066:arXiv 4035:S2CID 3993:arXiv 3962:S2CID 3934:arXiv 3901:S2CID 3867:arXiv 3834:arXiv 3810:S2CID 3784:arXiv 3732:arXiv 3673:arXiv 3642:S2CID 3608:arXiv 3576:S2CID 3550:arXiv 3519:S2CID 3493:arXiv 3462:S2CID 3436:arXiv 3359:S2CID 3333:arXiv 3306:S2CID 3280:arXiv 3227:arXiv 3167:arXiv 3107:arXiv 3048:arXiv 2990:arXiv 2932:arXiv 2874:arXiv 2817:arXiv 2760:arXiv 2703:arXiv 2659:arXiv 2602:arXiv 2524:S2CID 2498:arXiv 2471:S2CID 2445:arXiv 2418:S2CID 2392:arXiv 2365:S2CID 2339:arXiv 2312:S2CID 2286:arXiv 2231:arXiv 2179:arXiv 2144:S2CID 2118:arXiv 2024:arXiv 1756:stars 1497:atoms 1493:Earth 1095:Earth 478:Smoot 468:Rubin 413:Gamow 398:Ellis 383:Dicke 5676:WMAP 5671:SDSS 5651:COBE 5099:2015 4597:ISSN 4539:ISSN 4487:ISSN 4419:ISSN 4361:ISSN 4298:ISSN 4247:ISSN 4188:ISSN 4137:ISSN 4086:ISSN 4027:PMID 4019:ISSN 3893:ISSN 3701:ISSN 3634:ISSN 3410:2018 3385:2018 3253:ISSN 3195:ISSN 3135:ISSN 3076:ISSN 3016:ISSN 2958:ISSN 2900:ISSN 2843:ISSN 2786:ISSN 2729:ISSN 2628:ISSN 2571:ISSN 2259:ISSN 2199:ISSN 2050:ISSN 1938:life 1936:and 1840:mass 1821:JWST 1796:and 1758:and 1597:The 1427:and 878:life 650:edit 643:talk 636:view 418:Guth 5641:6dF 5636:2dF 5056:doi 5034:808 5000:doi 4978:639 4947:doi 4925:584 4898:267 4867:doi 4845:596 4793:doi 4771:486 4740:doi 4718:122 4693:doi 4681:321 4651:doi 4629:685 4589:doi 4567:672 4529:doi 4515:517 4477:doi 4455:930 4411:doi 4389:663 4351:doi 4329:260 4288:doi 4274:503 4237:doi 4215:885 4178:doi 4164:478 4127:doi 4113:474 4076:doi 4062:461 4011:doi 3989:529 3952:doi 3930:442 3885:doi 3863:646 3802:doi 3780:791 3750:doi 3728:527 3691:doi 3669:265 3626:doi 3604:814 3568:doi 3546:752 3511:doi 3489:349 3454:doi 3432:514 3351:doi 3329:723 3298:doi 3276:626 3245:doi 3185:doi 3163:891 3125:doi 3103:381 3066:doi 3044:927 3008:doi 2986:723 2950:doi 2928:734 2892:doi 2870:725 2835:doi 2813:617 2778:doi 2756:794 2721:doi 2699:743 2669:doi 2655:408 2620:doi 2598:497 2563:doi 2551:147 2516:doi 2494:641 2463:doi 2441:170 2410:doi 2388:148 2357:doi 2304:doi 2282:583 2249:doi 2227:932 2189:doi 2175:447 2136:doi 2114:122 2089:doi 2077:142 2042:doi 2020:681 1917:at 1842:to 1817:HST 1813:HST 1809:HST 1371:gas 1369:of 1362:". 826:era 5733:: 5253:, 5249:, 5220:, 5216:, 5088:. 5062:. 5054:. 5046:. 5032:. 5006:. 4998:. 4990:. 4976:. 4953:. 4945:. 4937:. 4923:. 4896:. 4873:. 4865:. 4857:. 4843:. 4799:. 4791:. 4783:. 4769:. 4746:. 4738:. 4730:. 4716:. 4691:. 4679:. 4675:. 4649:. 4641:. 4627:. 4603:. 4595:. 4587:. 4579:. 4565:. 4561:. 4537:. 4527:. 4513:. 4509:. 4485:. 4475:. 4467:. 4453:. 4449:. 4425:. 4417:. 4409:. 4401:. 4387:. 4383:. 4359:. 4349:. 4341:. 4327:. 4323:. 4310:^ 4296:. 4286:. 4272:. 4268:. 4245:. 4235:. 4227:. 4213:. 4209:. 4186:. 4176:. 4162:. 4158:. 4135:. 4125:. 4111:. 4107:. 4084:. 4074:. 4060:. 4056:. 4033:. 4025:. 4017:. 4009:. 4001:. 3987:. 3983:. 3960:. 3950:. 3942:. 3928:. 3922:. 3899:. 3891:. 3883:. 3875:. 3861:. 3857:. 3822:^ 3808:. 3800:. 3792:. 3778:. 3764:^ 3748:. 3740:. 3726:. 3722:. 3699:. 3689:. 3681:. 3667:. 3663:. 3640:. 3632:. 3624:. 3616:. 3602:. 3598:. 3574:. 3566:. 3558:. 3544:. 3531:^ 3517:. 3509:. 3501:. 3487:. 3483:. 3460:. 3452:. 3444:. 3430:. 3418:^ 3401:. 3357:. 3349:. 3341:. 3327:. 3304:. 3296:. 3288:. 3274:. 3251:. 3243:. 3235:. 3221:. 3217:. 3193:. 3183:. 3175:. 3161:. 3157:. 3133:. 3123:. 3115:. 3101:. 3097:. 3074:. 3064:. 3056:. 3042:. 3038:. 3014:. 3006:. 2998:. 2984:. 2980:. 2956:. 2948:. 2940:. 2926:. 2922:. 2898:. 2890:. 2882:. 2868:. 2864:. 2841:. 2833:. 2825:. 2811:. 2807:. 2784:. 2776:. 2768:. 2754:. 2750:. 2727:. 2719:. 2711:. 2697:. 2693:. 2667:. 2653:. 2649:. 2626:. 2618:. 2610:. 2596:. 2592:. 2569:. 2561:. 2549:. 2545:. 2522:. 2514:. 2506:. 2492:. 2469:. 2461:. 2453:. 2439:. 2416:. 2408:. 2400:. 2386:. 2363:. 2355:. 2347:. 2335:76 2333:. 2310:. 2302:. 2294:. 2280:. 2257:. 2247:. 2239:. 2225:. 2221:. 2197:. 2187:. 2173:. 2169:. 2142:. 2134:. 2126:. 2112:. 2087:. 2075:. 2071:. 2048:. 2040:. 2032:. 2018:. 2014:. 1744:nm 1740:eV 1629:re 1625:re 1532:. 1448:. 1346:, 1285:/ 1221:/ 1097:/ 972:/ 5709:: 5365:e 5358:t 5351:v 5257:) 5245:( 5224:) 5212:( 5171:e 5164:t 5157:v 5101:. 5070:. 5058:: 5050:: 5040:: 5014:. 5002:: 4994:: 4984:: 4961:. 4949:: 4941:: 4931:: 4908:. 4904:: 4881:. 4869:: 4861:: 4851:: 4828:. 4822:: 4807:. 4795:: 4787:: 4777:: 4754:. 4742:: 4734:: 4724:: 4701:. 4695:: 4687:: 4657:. 4653:: 4645:: 4635:: 4611:. 4591:: 4583:: 4573:: 4545:. 4531:: 4521:: 4493:. 4479:: 4471:: 4461:: 4433:. 4413:: 4405:: 4395:: 4367:. 4353:: 4345:: 4335:: 4304:. 4290:: 4280:: 4253:. 4239:: 4231:: 4221:: 4194:. 4180:: 4170:: 4143:. 4129:: 4119:: 4092:. 4078:: 4068:: 4041:. 4013:: 4005:: 3995:: 3968:. 3954:: 3946:: 3936:: 3907:. 3887:: 3879:: 3869:: 3842:. 3836:: 3816:. 3804:: 3796:: 3786:: 3758:. 3752:: 3744:: 3734:: 3707:. 3693:: 3685:: 3675:: 3648:. 3628:: 3620:: 3610:: 3582:. 3570:: 3562:: 3552:: 3525:. 3513:: 3505:: 3495:: 3468:. 3456:: 3448:: 3438:: 3412:. 3387:. 3365:. 3353:: 3345:: 3335:: 3312:. 3300:: 3292:: 3282:: 3259:. 3247:: 3239:: 3229:: 3223:5 3201:. 3187:: 3179:: 3169:: 3141:. 3127:: 3119:: 3109:: 3082:. 3068:: 3060:: 3050:: 3022:. 3010:: 3002:: 2992:: 2964:. 2952:: 2944:: 2934:: 2906:. 2894:: 2886:: 2876:: 2849:. 2837:: 2829:: 2819:: 2792:. 2780:: 2772:: 2762:: 2735:. 2723:: 2715:: 2705:: 2677:. 2671:: 2661:: 2634:. 2622:: 2614:: 2604:: 2577:. 2565:: 2557:: 2530:. 2518:: 2510:: 2500:: 2477:. 2465:: 2457:: 2447:: 2424:. 2412:: 2404:: 2394:: 2371:. 2359:: 2351:: 2341:: 2318:. 2306:: 2298:: 2288:: 2265:. 2251:: 2243:: 2233:: 2205:. 2191:: 2181:: 2150:. 2138:: 2130:: 2120:: 2097:. 2091:: 2083:: 2056:. 2044:: 2036:: 2026:: 1920:z 1611:z 1607:z 1603:z 1566:z 1562:z 1558:z 1554:z 1550:z 1546:z 1465:z 1421:z 1322:) 1318:( 1306:e 1304:f 1302:i 1300:L 603:e 596:t 589:v 273:· 251:· 223:· 197:· 165:· 148:· 136:· 115:· 87:· 50:·

Index

Physical cosmology
Full-sky image derived from nine years' WMAP data
Big Bang
Universe
Age of the universe
Chronology of the universe
Inflation
Nucleosynthesis
Gravitational wave (GWB)
Microwave (CMB)
Neutrino (CNB)
Hubble's law
Redshift
Expansion of the universe
FLRW metric
Friedmann equations
Inhomogeneous cosmology
Future of an expanding universe
Ultimate fate of the universe
Lambda-CDM model
Dark energy
Dark matter
Shape of the universe
Galaxy filament
Galaxy formation
Large quasar group
Large-scale structure
Reionization
Structure formation
Experiments

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.