Knowledge (XXG)

Relatively hyperbolic group

Source 📝

92:
and, moreover, it satisfies a technical condition which implies that quasi-geodesics with common endpoints travel through approximately the same collection of cosets and enter and exit these cosets in approximately the same place.
564: 283: 169: 315:
The definition of the coned off Cayley graph can be generalized to the case of a collection of subgroups and yields the corresponding notion of relative hyperbolicity. A group
319:
which contains no collection of subgroups with respect to which it is relatively hyperbolic is said to be a non relatively hyperbolic group.
457:
for virtually torsion-free relatively hyperbolic groups when the peripheral subgroups are finitely generated nilpotent (Dahmani, Touikan)
514: 582:
The semi-direct product of a free group by an infinite cyclic group is relatively hyperbolic, relative to some canonical subgroups.
441:
More generally, in many cases (but not all, and not easily or systematically), a property satisfied by all hyperbolic groups and by
701: 637: 579:
Limit groups appearing as limits of free groups are relatively hyperbolic, relative to some free abelian subgroups.
371: 454: 475:
of finite rank or the fundamental group of a hyperbolic surface, is hyperbolic relative to the trivial subgroup.
429: 102: 244: 130: 585:
Combination theorems and small cancellation techniques allow to construct new examples from previous ones.
25: 290: 89: 589: 494: 490: 486: 482: 220: 55: 43: 624: 620: 593: 501: 40: 653:
Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems
670: 479: 408: 383: 354: 37: 33: 609: 468: 29: 644:, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, 75-263, Springer, New York, 1987. 666: 616:
is the number of punctures) or is not relatively hyperbolic with respect to any subgroup.
300:: for each integer L, every edge belongs to only finitely many simple cycles of length L. 227: 695: 507:
of rank 2 is weakly hyperbolic, but not hyperbolic, relative to the cyclic subgroup
73: 17: 647: 627:
group of a free group of finite rank at least 3 are not relatively hyperbolic.
472: 676:
Thick metric spaces, relative hyperbolicity, and quasi-isometric rigidity
66: 674: 651: 683: 88:, the resulting graph equipped with the usual graph metric becomes a 226:
The definition of a relatively hyperbolic group, as formulated by
85: 32:. The motivating examples of relatively hyperbolic groups are the 573:
with any hyperbolic group, is relatively hyperbolic, relative to
559:{\displaystyle {\hat {\Gamma }}(\mathbb {Z} ^{2},\mathbb {Z} )} 399:
is torsion-free relatively hyperbolic with respect to a group
332:
is relatively hyperbolic with respect to a hyperbolic group
308:
is said to be weakly relatively hyperbolic with respect to
489:. A similar result holds for any complete finite volume 517: 247: 133: 558: 277: 219:). This results in a metric space that may not be 163: 436:satisfies the Farrell-jones conjecture (Bartels). 424:is relatively hyperbolic with respect to a group 366:is relatively hyperbolic with respect to a group 349:is relatively hyperbolic with respect to a group 304:If only the first condition holds then the group 679:, arXiv:math/0512592v5 (math.GT), December 2005. 485:of finite volume is hyperbolic relative to its 116:) equipped with the path metric and a subgroup 656:, arXiv:math/0404040v1 (math.GR), April 2004. 8: 685:Dehn filling in relatively hyperbolic groups 549: 548: 539: 535: 534: 519: 518: 516: 378:has solvable word problem (Farb), and if 357:on a compact space, its Bowditch boundary 249: 248: 246: 223:(i.e. closed balls need not be compact). 135: 134: 132: 390:has solvable conjugacy problem (Bumagin) 688:, arXiv:math/0601311v4 , January 2007. 663:, Geom. Funct. Anal. 8 (1998), 810–840. 353:then it acts as a geometrically finite 24:is an important generalization of the 682:Daniel Groves and Jason Fox Manning, 278:{\displaystyle {\hat {\Gamma }}(G,H)} 164:{\displaystyle {\hat {\Gamma }}(G,H)} 7: 445:can be suspected to be satisfied by 521: 251: 236:hyperbolic relative to a subgroup 137: 14: 171:as follows: For each left coset 566:is hyperbolic, it is not fine. 553: 530: 524: 272: 260: 254: 241:if the coned off Cayley graph 158: 146: 140: 1: 592:of an orientable finite type 661:Relatively hyperbolic groups 596:is either hyperbolic (when 3 569:The free product of a group 478:The fundamental group of a 22:relatively hyperbolic group 718: 72:if, after contracting the 230:goes as follows. A group 511:: even though the graph 430:Farrell-Jones conjecture 124:, one can construct the 103:finitely generated group 191:) and for each element 702:Geometric group theory 560: 493:with pinched negative 279: 183:) to the Cayley graph 165: 126:coned off Cayley graph 26:geometric group theory 561: 340:itself is hyperbolic. 280: 207:) of length 1/2 from 166: 63:relatively hyperbolic 515: 285:has the properties: 245: 131: 50:Intuitive definition 44:hyperbolic manifolds 590:mapping class group 495:sectional curvature 491:Riemannian manifold 483:hyperbolic manifold 455:isomorphism problem 428:that satisfies the 20:, the concept of a 625:outer automorphism 621:automorphism group 556: 502:free abelian group 370:that has solvable 275: 161: 108:with Cayley graph 90:δ-hyperbolic space 65:with respect to a 46:of finite volume. 34:fundamental groups 642:Hyperbolic groups 527: 409:classifying space 384:conjugacy problem 355:convergence group 257: 143: 97:Formal definition 709: 565: 563: 562: 557: 552: 544: 543: 538: 529: 528: 520: 469:hyperbolic group 284: 282: 281: 276: 259: 258: 250: 175:, add a vertex 170: 168: 167: 162: 145: 144: 136: 30:hyperbolic group 717: 716: 712: 711: 710: 708: 707: 706: 692: 691: 667:Jason Behrstock 634: 533: 513: 512: 464: 411:, then so does 325: 243: 242: 129: 128: 99: 52: 12: 11: 5: 715: 713: 705: 704: 694: 693: 690: 689: 680: 673:, Lee Mosher, 671:Cornelia Druţu 664: 657: 645: 638:Mikhail Gromov 633: 630: 629: 628: 617: 586: 583: 580: 577: 567: 555: 551: 547: 542: 537: 532: 526: 523: 498: 476: 463: 460: 459: 458: 450: 449: 438: 437: 417: 416: 392: 391: 359: 358: 342: 341: 324: 321: 302: 301: 294: 274: 271: 268: 265: 262: 256: 253: 234:is said to be 211:to the vertex 199:, add an edge 160: 157: 154: 151: 148: 142: 139: 98: 95: 51: 48: 13: 10: 9: 6: 4: 3: 2: 714: 703: 700: 699: 697: 687: 686: 681: 678: 677: 672: 668: 665: 662: 659:Benson Farb, 658: 655: 654: 649: 646: 643: 639: 636: 635: 631: 626: 622: 618: 615: 611: 607: 604:<5, where 603: 599: 595: 591: 587: 584: 581: 578: 576: 572: 568: 545: 540: 510: 506: 503: 499: 496: 492: 488: 487:cusp subgroup 484: 481: 477: 474: 470: 466: 465: 461: 456: 452: 451: 448: 444: 440: 439: 435: 431: 427: 423: 419: 418: 414: 410: 407:has a finite 406: 402: 398: 394: 393: 389: 385: 382:has solvable 381: 377: 373: 369: 365: 361: 360: 356: 352: 348: 344: 343: 339: 335: 331: 327: 326: 322: 320: 318: 313: 311: 307: 299: 295: 292: 288: 287: 286: 269: 266: 263: 240: 239: 233: 229: 224: 222: 218: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 155: 152: 149: 127: 123: 119: 115: 111: 107: 104: 96: 94: 91: 87: 83: 79: 75: 71: 68: 64: 60: 57: 49: 47: 45: 42: 39: 35: 31: 28:concept of a 27: 23: 19: 684: 675: 660: 652: 641: 613: 605: 601: 597: 574: 570: 508: 504: 471:, such as a 446: 442: 433: 425: 421: 412: 404: 400: 396: 387: 379: 375: 372:word problem 367: 363: 350: 346: 337: 333: 329: 316: 314: 309: 305: 303: 297: 291:δ-hyperbolic 237: 235: 231: 225: 216: 212: 208: 204: 200: 196: 192: 188: 184: 180: 176: 172: 125: 121: 117: 113: 109: 105: 100: 81: 77: 74:Cayley graph 69: 62: 58: 53: 21: 15: 420:If a group 395:If a group 362:If a group 345:If a group 328:If a group 18:mathematics 648:Denis Osin 632:References 473:free group 323:Properties 41:noncompact 525:^ 522:Γ 415:(Dahmani) 255:^ 252:Γ 141:^ 138:Γ 696:Category 623:and the 480:complete 462:Examples 228:Bowditch 101:Given a 67:subgroup 38:complete 608:is the 594:surface 432:, then 386:, then 374:, then 336:, then 403:, and 296:it is 289:It is 221:proper 185:Γ 110:Γ 86:cosets 80:along 610:genus 56:group 619:The 612:and 588:The 500:The 467:Any 453:The 298:fine 293:and 195:of 120:of 76:of 61:is 36:of 16:In 698:: 669:, 650:, 640:, 312:. 217:gH 197:gH 181:gH 173:gH 54:A 614:n 606:g 602:n 600:+ 598:g 575:H 571:H 554:) 550:Z 546:, 541:2 536:Z 531:( 509:Z 505:Z 497:. 447:G 443:H 434:G 426:H 422:G 413:G 405:H 401:H 397:G 388:G 380:H 376:G 368:H 364:G 351:H 347:G 338:G 334:H 330:G 317:G 310:H 306:G 273:) 270:H 267:, 264:G 261:( 238:H 232:G 215:( 213:v 209:x 205:x 203:( 201:e 193:x 189:G 187:( 179:( 177:v 159:) 156:H 153:, 150:G 147:( 122:G 118:H 114:G 112:( 106:G 84:- 82:H 78:G 70:H 59:G

Index

mathematics
geometric group theory
hyperbolic group
fundamental groups
complete
noncompact
hyperbolic manifolds
group
subgroup
Cayley graph
cosets
δ-hyperbolic space
finitely generated group
proper
Bowditch
δ-hyperbolic
convergence group
word problem
conjugacy problem
classifying space
Farrell-Jones conjecture
isomorphism problem
hyperbolic group
free group
complete
hyperbolic manifold
cusp subgroup
Riemannian manifold
sectional curvature
free abelian group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.