Knowledge (XXG)

Respiratory quotient

Source đź“ť

58:. The respiratory quotient value indicates which macronutrients are being metabolized, as different energy pathways are used for fats, carbohydrates, and proteins. If metabolism consists solely of lipids, the respiratory quotient is approximately 0.7, for proteins it is approximately 0.8, and for carbohydrates it is 1.0. Most of the time, however, energy consumption is composed of both fats and carbohydrates. The approximate respiratory quotient of a mixed diet is 0.8. Some of the other factors that may affect the respiratory quotient are energy balance, circulating insulin, and insulin sensitivity. 685:, non-protein respiratory quotient (npRQ) values act as good indicators in the prediction of overall survival rate. Patients having a npRQ < 0.85 show considerably lower survival rates as compared to patients with a npRQ > 0.85. A decrease in npRQ corresponds to a decrease in glycogen storage by the liver. Similar research indicates that non-alcoholic fatty liver diseases are also accompanied by a low respiratory quotient value, and the non protein respiratory quotient value was a good indication of disease severity. 674:, will increase it. Underfeeding is marked by a respiratory quotient below 0.85, while a respiratory quotient greater than 1.0 indicates overfeeding. This is particularly important in patients with compromised respiratory systems, as an increased respiratory quotient significantly corresponds to increased respiratory rate and decreased 610:). Historically, it was assumed that 'average fat' had an RQ of about 0.71, and this holds true for most mammals including humans. However, a recent survey showed that aquatic animals, especially fish, have fat that should yield higher RQs on oxidation, reaching as high as 0.73 due to high amounts of docosahexaenoic acid. 463: 601:
being the predominant fuel source, and a value between 0.7 and 1.0 suggests a mix of both fat and carbohydrate. In general a mixed diet corresponds with an RER of approximately 0.8. For fats, the RQ depends on the specific fatty acids present. Amongst the commonly stored fatty acids in vertebrates,
692:
using different single substrates suggested that RQ is linked to the elemental composition of the respired compounds. By this way, it is demonstrated that bacterioplankton RQ is not only a practical aspect of Bacterioplankton Respiration determination, but also a major ecosystem state variable that
613:
The range of respiratory coefficients for organisms in metabolic balance usually ranges from 1.0 (representing the value expected for pure carbohydrate oxidation) to ~0.7 (the value expected for pure fat oxidation). In general, molecules that are more oxidized (e.g., glucose) require less oxygen to
588: 135:
The RER can exceed 1.0 during intense exercise. A value above 1.0 cannot be attributed to the substrate metabolism, but rather to the aforementioned factors regarding bicarbonate buffering. Calculation of RER is commonly done in conjunction with exercise tests such as the
50:(BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state. Such measurements, like measurements of oxygen uptake, are forms of indirect 324: 614:
be fully metabolized and, therefore, have higher respiratory quotients. Conversely, molecules that are less oxidized (e.g., fatty acids) require more oxygen for their complete metabolism and have lower respiratory quotients. See
658:, in which patients spend a significant amount of energy on respiratory effort. By increasing the proportion of fats in the diet, the respiratory quotient is driven down, causing a relative decrease in the amount of CO 645:
Insulin, which increases lipid storage and decreases fat oxidation, is positively associated with increases in the respiratory quotient. A positive energy balance will also lead to an increased respiratory quotient.
469: 1312:
McClave, Stephen A.; Lowen, Cynthia C.; Kleber, Melissa J.; McConnell, J. Wesley; Jung, Laura Y.; Goldsmith, Linda J. (2003-01-01). "Clinical use of the respiratory quotient obtained from indirect calorimetry".
1489:
Vachon, Dominic; Sadro, Steven; Bogard, Matthew J.; Lapierre, Jean-François; Baulch, Helen M.; Rusak, James A.; Denfeld, Blaize A.; Laas, Alo; Klaus, Marcus; Karlsson, Jan; Weyhenmeyer, Gesa A. (August 2020).
669:
Respiratory Quotient can be used as an indicator of over or underfeeding. Underfeeding, which forces the body to utilize fat stores, will lower the respiratory quotient, while overfeeding, which causes
638:
as measured includes a contribution from the energy produced from protein. However, due to the complexity of the various ways in which different amino acids can be metabolized, no single
1037:
Ramos-Jiménez, Arnulfo; Hernández-Torres, Rosa P.; Torres-Durán, Patricia V.; Romero-Gonzalez, Jaime; Mascher, Dieter; Posadas-Romero, Carlos; Juárez-Oropeza, Marco A. (2008-02-01).
1266:
Kuo, C. D.; Shiao, G. M.; Lee, J. D. (1993-07-01). "The effects of high-fat and high-carbohydrate diet loads on gas exchange and ventilation in COPD patients and normal subjects".
1039:"The Respiratory Exchange Ratio is Associated with Fitness Indicators Both in Trained and Untrained Men: A Possible Application for People with Reduced Exercise Tolerance" 1361:
Nishikawa, Hiroki; Enomoto, Hirayuki; Iwata, Yoshinori; Kishino, Kyohei; Shimono, Yoshihiro; Hasegawa, Kunihiro; Nakano, Chikage; Takata, Ryo; Ishii, Akio (2017-01-01).
1818: 458:{\displaystyle 23\ \mathrm {O} _{2}+\mathrm {C} _{16}\mathrm {H} _{32}\mathrm {O} _{2}\to 16\ \mathrm {CO} _{2}+16\ \mathrm {H} _{2}\mathrm {O} +129\ \mathrm {ATP} } 1201: 688:
Recently the respiratory quotient is also used from aquatic scientists to illuminate its environmental applications. Experimental studies with natural
2184: 681:
Because of its role in metabolism, respiratory quotient can be used in analysis of liver function and diagnosis of liver disease. In patients with
721:. Using this quotient we could shed light on the metabolic behavior and the simultaneous roles of chemical and physical forcing that shape the 583:{\displaystyle \mathrm {RER} ={\frac {\mathrm {VCO} _{2}}{\mathrm {VO} _{2}}}={\frac {16\ \mathrm {CO} _{2}}{23\ \mathrm {O} _{2}}}\approx 0.7} 148:
and the limits of their cardio-respiratory system. An RER greater than or equal to 1.0 is often used as a secondary endpoint criterion of a VO
2313: 655: 108:
The ratio is determined by comparing exhaled gases to room air. Measuring this ratio is equal to RQ only at rest or during mild to moderate
1811: 632:
consumption numbers are available, they are usually used directly, since they are more direct and reliable estimates of energy production.
618:
for a discussion of how these numbers are derived. A mixed diet of fat and carbohydrate results in an average value between these numbers.
2255: 2110: 1177: 1144: 1108: 1021: 934: 1541:"Using O<sub>2</sub> to study the relationships between soil CO<sub>2</sub> efflux and soil respiration" 2308: 1804: 124:. The body tries to compensate for the accumulation of lactate and minimize the acidification of the blood by expelling more CO 2174: 195:
must be given in the same units, and in quantities proportional to the number of molecules. Acceptable inputs would be either
2293: 1901: 1688:
Phinney, Stephen D.; Horton, Edward S.; Sims, Ethan A. H.; Hanson, John S.; Danforth, Elliot; Lagrange, Betty M. (1980).
2023: 744:) can be used to derive an apparent respiratory quotient (ARQ). This value reflects a cumulative effect of not only the 2193: 2142: 1993: 2298: 2147: 2055: 1986: 1967: 728:
Moving from a molecular and cellular level to an ecosystem level, various processes account for the exchange of O
697:
functioning. Based on the stoichiometry of the different metabolized substrates, the scientists can predict that
121: 1998: 2131: 1962: 1856: 718: 1423:"Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients" 2164: 2033: 1647:
Johnston, Carol S; Tjonn, Sherrie L; Swan, Pamela D; White, Andrea; Hutchins, Heather; Sears, Barry (2006).
1981: 1928: 1918: 1827: 43: 1103:(4th ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health. pp. 219–223. 2169: 2105: 62: 1649:"Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets" 2079: 2043: 1878: 1873: 1552: 1503: 1434: 1224: 893: 749: 736:
between the biosphere and atmosphere. Field measurements of the concurrent consumption of oxygen (-ΔO
615: 607: 47: 1690:"Capacity for Moderate Exercise in Obese Subjects after Adaptation to a Hypocaloric, Ketogenic Diet" 2303: 1906: 745: 2234: 2229: 2209: 2067: 1943: 1648: 1629: 1248: 1195: 129: 117: 1737:
Owen, O. E.; Morgan, A. P.; Kemp, H. G.; Sullivan, J. M.; Herrera, M. G.; Cahill, G. F. (1967).
1539:
Angert, A.; Yakir, D.; Rodeghiero, M.; Preisler, Y.; Davidson, E. A.; Weiner, T. (2015-04-07).
2272: 2188: 2154: 1956: 1911: 1893: 1768: 1719: 1670: 1621: 1580: 1521: 1468: 1450: 1400: 1382: 1338: 1330: 1291: 1283: 1240: 1215:
Price, E. R.; Mager, E. M. (2020). "Respiratory quotient: Effects of fatty acid composition".
1183: 1173: 1150: 1140: 1114: 1104: 1076: 1058: 1017: 994: 976: 930: 694: 1363:"Prognostic significance of nonprotein respiratory quotient in patients with liver cirrhosis" 748:
of all organisms (microorganisms and higher consumers) in the sample, but also all the other
2089: 2038: 1948: 1863: 1758: 1750: 1709: 1701: 1660: 1611: 1570: 1560: 1511: 1458: 1442: 1390: 1374: 1322: 1275: 1232: 1066: 1050: 984: 968: 698: 689: 109: 2267: 2115: 2084: 722: 17: 1492:"Paired O 2 –CO 2 measurements provide emergent insights into aquatic ecosystem function" 1600:"Ketogenic diet treatment in adults with refractory epilepsy: A prospective pilot study" 1556: 1507: 1438: 1228: 2213: 2203: 2060: 2018: 1883: 1598:
Mosek, Amnon; Natour, Haitham; Neufeld, Miri Y.; Shiff, Yaffa; Vaisman, Nachum (2009).
1463: 1422: 1395: 1362: 1071: 1038: 989: 956: 899: 714: 706: 90: 1763: 1738: 1714: 1689: 2287: 2219: 1975: 1888: 1252: 864: 779: 315: 223: 2159: 2028: 2010: 1868: 1633: 1540: 675: 654:
Practical applications of the respiratory quotient can be found in severe cases of
603: 598: 55: 1616: 1599: 2198: 1378: 874: 843: 671: 227: 215: 196: 113: 51: 1326: 2260: 2179: 2074: 1851: 1846: 1187: 1168:
Widmaier, Eric P.; Vander, Arthur J.; Raff, Hershel; Strang, Kevin T. (2018).
854: 832: 86: 1665: 1584: 1525: 1454: 1386: 1334: 1287: 1154: 1118: 1062: 980: 955:
Ellis, Amy C; Hyatt, Tanya C; Gower, Barbara A; Hunter, Gary R (2017-05-02).
2136: 1565: 1279: 682: 27:
Ratio of carbon dioxide produced by the body to oxygen consumed by the body
1674: 1625: 1472: 1446: 1421:
Berggren, Martin; Lapierre, Jean-François; del Giorgio, Paul A (May 2012).
1404: 1342: 1244: 1080: 998: 1772: 1723: 1295: 896: â€“ Measurement of the heat of living organisms through indirect means 1796: 821: 789: 713:) in aquatic ecosystems should covary inversely due to the processing of 219: 207: 1575: 972: 1516: 1491: 1054: 810: 799: 264:
and thus metabolism of this compound gives an RQ of x/(x + y/4 - z/2).
231: 202:
Many metabolized substances are compounds containing only the elements
145: 137: 1754: 1705: 902: â€“ Principle applied to the measurement of blood flow to an organ 1841: 1236: 234:. For complete oxidation of such compounds, the chemical equation is 211: 203: 144:. This can be used as an indicator that the participants are nearing 98: 957:"Respiratory Quotient Predicts Fat Mass Gain in Premenopausal Women" 1043:
Clinical Medicine. Circulatory, Respiratory and Pulmonary Medicine
82: 1139:(5th ed.). Champaign, IL: Human Kinetics. pp. 117–118. 2238: 1937: 597:
is the predominant fuel source, a value of 1.0 is indicative of
1800: 1135:
Kenney, W. Larry.; Wilmore, Jack H.; Costill, David L. (2012).
1099:
Katch, Victor L.; McArdle, William D.; Katch, Frank I. (2011).
666:, thereby reducing the amount of energy spent on respirations. 199:, or else volumes of gas at standard temperature and pressure. 594: 662:
produced. This reduces the respiratory burden to eliminate CO
624:
value corresponds to a caloric value for each liter (L) of CO
925:
Widmaier, Eric P.; Raff, Hershel; Strang, Kevin T. (2016).
1170:
Vander's human physiology: the mechanisms of body function
1016:. Cambridge, UK: Cambridge University Press. p. 171. 927:
Vander's Human Physiology: The Mechanisms of Body Function
642:
can be assigned to the oxidation of protein in the diet.
180:
where the term "eliminated" refers to carbon dioxide (CO
760:
production and vice versa influencing the observed RQ.
678:, placing compromised patients at a significant risk. 472: 327: 2248: 2124: 2098: 2009: 1927: 1834: 582: 457: 314:For oxidation of a fatty acid molecule, namely 1785:Telugu Academi, Botany text book, 2007 Version 1812: 120:is among others due to factors including the 8: 1172:(15th ed.). New York, NY. p. 460. 1094: 1092: 1090: 1315:Journal of Parenteral and Enteral Nutrition 184:) removed from the body in a steady state. 116:. The loss of accuracy during more intense 1819: 1805: 1797: 1653:The American Journal of Clinical Nutrition 1200:: CS1 maint: location missing publisher ( 267:For glucose, with the molecular formula, C 1762: 1713: 1664: 1615: 1574: 1564: 1515: 1462: 1394: 1070: 988: 565: 560: 545: 537: 527: 516: 508: 501: 490: 487: 473: 471: 444: 430: 424: 419: 403: 395: 379: 374: 367: 362: 355: 350: 340: 335: 326: 929:(14th ed.). New York: McGraw Hill. 767: 764:Respiratory quotients of some substances 912: 740:) and production of carbon dioxide (ΔCO 1193: 279:, the complete oxidation equation is C 1484: 1482: 1416: 1414: 1356: 1354: 1352: 1307: 1305: 1130: 1128: 656:chronic obstructive pulmonary disease 7: 2185:oxygen–hemoglobin dissociation curve 950: 948: 946: 920: 918: 916: 2111:hypoxic pulmonary vasoconstriction 1739:"Brain Metabolism during Fasting*" 1496:Limnology and Oceanography Letters 693:provides unique information about 561: 541: 538: 512: 509: 497: 494: 491: 480: 477: 474: 451: 448: 445: 431: 420: 399: 396: 375: 363: 351: 336: 25: 1743:Journal of Clinical Investigation 1694:Journal of Clinical Investigation 1101:Essentials of exercise physiology 1137:Physiology of sport and exercise 1217:Journal of Experimental Zoology 1012:Schmidt-Nielsen, Knut (1997). 385: 1: 1617:10.1016/j.seizure.2008.06.001 593:A RQ near 0.7 indicates that 2314:Underwater diving physiology 112:without the accumulation of 2143:Ventilation/perfusion ratio 1994:pulmonary stretch receptors 1379:10.1097/MD.0000000000005800 187:In this calculation, the CO 2330: 2175:alveolar–arterial gradient 1327:10.1177/014860710302700121 1083:– via SAGE journals. 756:without a corresponding CO 160:The respiratory quotient ( 75:respiratory exchange ratio 69:Respiratory exchange ratio 18:Respiratory exchange ratio 2056:respiratory minute volume 1968:ventral respiratory group 752:processes which consume O 122:bicarbonate buffer system 54:. It is measured using a 1963:dorsal respiratory group 1857:obligate nasal breathing 46:used in calculations of 2165:pulmonary gas pressures 1566:10.5194/bg-12-2089-2015 1280:10.1378/chest.104.1.189 725:of aquatic ecosystems. 606:) to as high as 0.759 ( 40:respiratory coefficient 2309:Respiratory physiology 1919:mechanical ventilation 1828:Respiratory physiology 1666:10.1093/ajcn/83.5.1055 1447:10.1038/ismej.2011.157 771:Name of the substance 602:RQ varies from 0.692 ( 584: 459: 61:It can be used in the 2170:alveolar gas equation 2106:pulmonary circulation 774:Respiratory Quotient 585: 460: 303:O. Thus, the RQ= 6 CO 63:alveolar gas equation 2294:Biochemistry methods 2225:respiratory quotient 2080:body plethysmography 1999:Hering–Breuer reflex 1874:pulmonary surfactant 894:Indirect calorimetry 608:docosahexaenoic acid 470: 325: 97:) and the uptake of 48:basal metabolic rate 44:dimensionless number 32:respiratory quotient 2068:Lung function tests 1902:hyperresponsiveness 1557:2015BGeo...12.2089A 1508:2020LimOL...5..287V 1439:2012ISMEJ...6..984B 1229:2020JEZA..333..613P 973:10.1038/oby.2010.96 746:aerobic respiration 249:+ (x + y/4 - z/2) O 214:. Examples include 2235:diffusion capacity 2230:arterial blood gas 2210:carbonic anhydrase 1944:pneumotaxic center 1517:10.1002/lol2.10135 1055:10.4137/CCRPM.S449 580: 455: 130:respiratory system 118:anaerobic exercise 2299:Energy conversion 2281: 2280: 2189:Oxygen saturation 2155:zones of the lung 1894:airway resistance 1755:10.1172/JCI105650 1706:10.1172/JCI109945 1014:Animal Physiology 967:(12): 2255–2259. 883: 882: 695:aquatic ecosystem 572: 558: 535: 522: 443: 417: 393: 333: 16:(Redirected from 2321: 2090:nitrogen washout 1949:apneustic center 1864:respiratory rate 1821: 1814: 1807: 1798: 1786: 1783: 1777: 1776: 1766: 1734: 1728: 1727: 1717: 1685: 1679: 1678: 1668: 1644: 1638: 1637: 1619: 1595: 1589: 1588: 1578: 1568: 1551:(7): 2089–2099. 1536: 1530: 1529: 1519: 1486: 1477: 1476: 1466: 1427:The ISME Journal 1418: 1409: 1408: 1398: 1358: 1347: 1346: 1309: 1300: 1299: 1263: 1257: 1256: 1237:10.1002/jez.2422 1212: 1206: 1205: 1199: 1191: 1165: 1159: 1158: 1132: 1123: 1122: 1096: 1085: 1084: 1074: 1034: 1028: 1027: 1009: 1003: 1002: 992: 952: 941: 940: 922: 768: 699:dissolved oxygen 690:bacterioplankton 589: 587: 586: 581: 573: 571: 570: 569: 564: 556: 551: 550: 549: 544: 533: 528: 523: 521: 520: 515: 506: 505: 500: 488: 483: 464: 462: 461: 456: 454: 441: 434: 429: 428: 423: 415: 408: 407: 402: 391: 384: 383: 378: 372: 371: 366: 360: 359: 354: 345: 344: 339: 331: 164:) is the ratio: 110:aerobic exercise 21: 2329: 2328: 2324: 2323: 2322: 2320: 2319: 2318: 2284: 2283: 2282: 2277: 2268:oxygen toxicity 2244: 2132:ventilation (V) 2120: 2116:pulmonary shunt 2094: 2085:peak flow meter 2005: 1923: 1830: 1825: 1795: 1790: 1789: 1784: 1780: 1749:(10): 1589–95. 1736: 1735: 1731: 1687: 1686: 1682: 1646: 1645: 1641: 1597: 1596: 1592: 1538: 1537: 1533: 1488: 1487: 1480: 1420: 1419: 1412: 1360: 1359: 1350: 1311: 1310: 1303: 1265: 1264: 1260: 1214: 1213: 1209: 1192: 1180: 1167: 1166: 1162: 1147: 1134: 1133: 1126: 1111: 1098: 1097: 1088: 1036: 1035: 1031: 1024: 1011: 1010: 1006: 954: 953: 944: 937: 924: 923: 914: 909: 890: 766: 759: 755: 743: 739: 735: 731: 723:biogeochemistry 712: 704: 683:liver cirrhosis 665: 661: 652: 631: 627: 559: 552: 536: 529: 507: 489: 468: 467: 418: 394: 373: 361: 349: 334: 323: 322: 310: 306: 302: 298: 294: 290: 286: 282: 278: 274: 270: 260: 256: 252: 248: 244: 240: 194: 190: 183: 177: 173: 158: 151: 141: 127: 104: 96: 71: 28: 23: 22: 15: 12: 11: 5: 2327: 2325: 2317: 2316: 2311: 2306: 2301: 2296: 2286: 2285: 2279: 2278: 2276: 2275: 2270: 2265: 2264: 2263: 2252: 2250: 2246: 2245: 2243: 2242: 2232: 2227: 2222: 2217: 2214:chloride shift 2207: 2204:Haldane effect 2201: 2196: 2191: 2182: 2177: 2172: 2167: 2162: 2157: 2152: 2151: 2150: 2145: 2134: 2128: 2126: 2122: 2121: 2119: 2118: 2113: 2108: 2102: 2100: 2096: 2095: 2093: 2092: 2087: 2082: 2077: 2072: 2070: 2064: 2063: 2061:FEV1/FVC ratio 2058: 2053: 2051: 2047: 2046: 2041: 2036: 2031: 2026: 2021: 2015: 2013: 2007: 2006: 2004: 2003: 2002: 2001: 1991: 1990: 1989: 1984: 1976:chemoreceptors 1972: 1971: 1970: 1965: 1953: 1952: 1951: 1946: 1933: 1931: 1925: 1924: 1922: 1921: 1916: 1915: 1914: 1909: 1904: 1896: 1891: 1886: 1884:elastic recoil 1881: 1876: 1871: 1866: 1861: 1860: 1859: 1854: 1849: 1838: 1836: 1832: 1831: 1826: 1824: 1823: 1816: 1809: 1801: 1794: 1793:External links 1791: 1788: 1787: 1778: 1729: 1700:(5): 1152–61. 1680: 1659:(5): 1055–61. 1639: 1590: 1545:Biogeosciences 1531: 1502:(4): 287–294. 1478: 1433:(5): 984–993. 1410: 1348: 1301: 1274:(1): 189–196. 1258: 1223:(9): 613–618. 1207: 1178: 1160: 1145: 1124: 1109: 1086: 1029: 1022: 1004: 942: 935: 911: 910: 908: 905: 904: 903: 900:Fick principle 897: 889: 886: 881: 880: 877: 871: 870: 867: 861: 860: 857: 851: 850: 847: 840: 839: 836: 829: 828: 825: 818: 817: 814: 813:(hypocaloric) 807: 806: 803: 796: 795: 792: 786: 785: 782: 776: 775: 772: 765: 762: 757: 753: 750:biogeochemical 741: 737: 733: 729: 715:photosynthesis 710: 707:carbon dioxide 702: 663: 659: 651: 648: 629: 628:produced. If O 625: 591: 590: 579: 576: 568: 563: 555: 548: 543: 540: 532: 526: 519: 514: 511: 504: 499: 496: 493: 486: 482: 479: 476: 465: 453: 450: 447: 440: 437: 433: 427: 422: 414: 411: 406: 401: 398: 390: 387: 382: 377: 370: 365: 358: 353: 348: 343: 338: 330: 308: 304: 300: 296: 292: 288: 284: 280: 276: 272: 268: 258: 254: 250: 246: 242: 238: 230:products, and 192: 188: 181: 175: 171: 157: 154: 149: 139: 125: 102: 94: 91:carbon dioxide 89:production of 70: 67: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2326: 2315: 2312: 2310: 2307: 2305: 2302: 2300: 2297: 2295: 2292: 2291: 2289: 2274: 2271: 2269: 2266: 2262: 2259: 2258: 2257: 2256:high altitude 2254: 2253: 2251: 2249:Insufficiency 2247: 2240: 2236: 2233: 2231: 2228: 2226: 2223: 2221: 2220:oxyhemoglobin 2218: 2215: 2211: 2208: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2186: 2183: 2181: 2178: 2176: 2173: 2171: 2168: 2166: 2163: 2161: 2158: 2156: 2153: 2149: 2146: 2144: 2141: 2140: 2138: 2135: 2133: 2130: 2129: 2127: 2123: 2117: 2114: 2112: 2109: 2107: 2104: 2103: 2101: 2097: 2091: 2088: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2069: 2066: 2065: 2062: 2059: 2057: 2054: 2052: 2049: 2048: 2045: 2042: 2040: 2037: 2035: 2032: 2030: 2027: 2025: 2022: 2020: 2017: 2016: 2014: 2012: 2008: 2000: 1997: 1996: 1995: 1992: 1988: 1985: 1983: 1980: 1979: 1978: 1977: 1973: 1969: 1966: 1964: 1961: 1960: 1959: 1958: 1954: 1950: 1947: 1945: 1942: 1941: 1940: 1939: 1935: 1934: 1932: 1930: 1926: 1920: 1917: 1913: 1910: 1908: 1905: 1903: 1900: 1899: 1897: 1895: 1892: 1890: 1889:hysteresivity 1887: 1885: 1882: 1880: 1877: 1875: 1872: 1870: 1867: 1865: 1862: 1858: 1855: 1853: 1850: 1848: 1845: 1844: 1843: 1840: 1839: 1837: 1833: 1829: 1822: 1817: 1815: 1810: 1808: 1803: 1802: 1799: 1792: 1782: 1779: 1774: 1770: 1765: 1760: 1756: 1752: 1748: 1744: 1740: 1733: 1730: 1725: 1721: 1716: 1711: 1707: 1703: 1699: 1695: 1691: 1684: 1681: 1676: 1672: 1667: 1662: 1658: 1654: 1650: 1643: 1640: 1635: 1631: 1627: 1623: 1618: 1613: 1609: 1605: 1601: 1594: 1591: 1586: 1582: 1577: 1572: 1567: 1562: 1558: 1554: 1550: 1546: 1542: 1535: 1532: 1527: 1523: 1518: 1513: 1509: 1505: 1501: 1497: 1493: 1485: 1483: 1479: 1474: 1470: 1465: 1460: 1456: 1452: 1448: 1444: 1440: 1436: 1432: 1428: 1424: 1417: 1415: 1411: 1406: 1402: 1397: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1364: 1357: 1355: 1353: 1349: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1308: 1306: 1302: 1297: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1262: 1259: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1211: 1208: 1203: 1197: 1189: 1185: 1181: 1179:9781259903885 1175: 1171: 1164: 1161: 1156: 1152: 1148: 1146:9780736094092 1142: 1138: 1131: 1129: 1125: 1120: 1116: 1112: 1110:9781608312672 1106: 1102: 1095: 1093: 1091: 1087: 1082: 1078: 1073: 1068: 1064: 1060: 1056: 1052: 1048: 1044: 1040: 1033: 1030: 1025: 1023:0-521-57098-0 1019: 1015: 1008: 1005: 1000: 996: 991: 986: 982: 978: 974: 970: 966: 962: 958: 951: 949: 947: 943: 938: 936:9781259294099 932: 928: 921: 919: 917: 913: 906: 901: 898: 895: 892: 891: 887: 885: 878: 876: 873: 872: 868: 866: 865:Tartaric acid 863: 862: 858: 856: 853: 852: 848: 845: 842: 841: 837: 834: 831: 830: 826: 823: 820: 819: 815: 812: 809: 808: 804: 801: 798: 797: 793: 791: 788: 787: 783: 781: 780:Carbohydrates 778: 777: 773: 770: 769: 763: 761: 751: 747: 726: 724: 720: 716: 708: 700: 696: 691: 686: 684: 679: 677: 673: 667: 657: 649: 647: 643: 641: 637: 633: 623: 619: 617: 611: 609: 605: 600: 596: 577: 574: 566: 553: 546: 530: 524: 517: 502: 484: 466: 438: 435: 425: 412: 409: 404: 388: 380: 368: 356: 346: 341: 328: 321: 320: 319: 317: 316:palmitic acid 312: 265: 262: 235: 233: 229: 225: 224:carbohydrates 221: 217: 213: 209: 205: 200: 198: 185: 178: 169: 165: 163: 155: 153: 147: 143: 133: 131: 123: 119: 115: 111: 106: 100: 92: 88: 84: 80: 76: 68: 66: 64: 59: 57: 53: 49: 45: 41: 37: 33: 19: 2224: 2160:gas exchange 2125:Interactions 2050:calculations 2011:Lung volumes 1974: 1955: 1936: 1907:constriction 1869:respirometer 1781: 1746: 1742: 1732: 1697: 1693: 1683: 1656: 1652: 1642: 1607: 1603: 1593: 1576:11572/225681 1548: 1544: 1534: 1499: 1495: 1430: 1426: 1373:(3): e5800. 1370: 1366: 1321:(1): 21–26. 1318: 1314: 1271: 1267: 1261: 1220: 1216: 1210: 1169: 1163: 1136: 1100: 1046: 1042: 1032: 1013: 1007: 964: 960: 926: 884: 802:(eucaloric) 727: 687: 680: 676:tidal volume 668: 653: 650:Applications 644: 639: 635: 634: 621: 620: 612: 604:stearic acid 599:carbohydrate 592: 313: 266: 263: 236: 201: 186: 179: 172:2 eliminated 167: 166: 161: 159: 134: 128:through the 107: 85:between the 78: 74: 72: 60: 56:respirometer 39: 35: 31: 29: 2199:Bohr effect 2099:Circulation 1835:Respiration 1610:(1): 30–3. 875:Oxalic acid 844:Tripalmitin 719:respiration 672:lipogenesis 228:deamination 216:fatty acids 156:Calculation 52:calorimetry 2304:Metabolism 2288:Categories 2261:death zone 2180:hemoglobin 2075:spirometry 2034:dead space 1987:peripheral 1912:dilatation 1898:bronchial 1879:compliance 1852:exhalation 1847:inhalation 1188:1006516790 907:References 855:Malic acid 833:Oleic acid 794:0.8 - 0.9 176:2 consumed 152:max test. 146:exhaustion 2137:Perfusion 1585:1726-4189 1526:2378-2242 1455:1751-7362 1387:1536-5964 1335:0148-6071 1288:0012-3692 1253:222833275 1196:cite book 1155:747903364 1119:639161214 1063:1178-1157 981:1930-7381 575:≈ 386:→ 257:+ (y/2) H 87:metabolic 81:) is the 2148:V/Q scan 1675:16685046 1626:18675556 1473:22094347 1405:28099336 1367:Medicine 1343:12549594 1245:33063463 1081:21157516 999:20448540 888:See also 822:Triolein 790:Proteins 220:glycerol 208:hydrogen 142:max test 2273:hypoxia 2194:2,3-BPG 1982:central 1957:medulla 1929:Control 1773:6061736 1724:7000826 1634:2393385 1604:Seizure 1553:Bibcode 1504:Bibcode 1464:3329109 1435:Bibcode 1396:5279081 1296:8325067 1225:Bibcode 1072:2990231 1049:: 1–9. 990:3075532 961:Obesity 811:Ketones 800:Ketones 232:ethanol 114:lactate 42:) is a 1842:breath 1771:  1764:292907 1761:  1722:  1715:371554 1712:  1673:  1632:  1624:  1583:  1524:  1471:  1461:  1453:  1403:  1393:  1385:  1341:  1333:  1294:  1286:  1251:  1243:  1186:  1176:  1153:  1143:  1117:  1107:  1079:  1069:  1061:  1020:  997:  987:  979:  933:  846:(Fat) 835:(Fat) 824:(Fat) 732:and CO 705:) and 557:  534:  442:  416:  392:  332:  295:→ 6 CO 253:→ x CO 212:oxygen 210:, and 204:carbon 99:oxygen 1630:S2CID 1268:Chest 1249:S2CID 859:1.33 838:0.71 827:0.71 816:0.66 805:0.73 307:/ 6 O 299:+ 6 H 291:+ 6 O 197:moles 191:and O 83:ratio 2239:DLCO 2139:(Q) 1938:pons 1769:PMID 1720:PMID 1671:PMID 1622:PMID 1581:ISSN 1522:ISSN 1469:PMID 1451:ISSN 1401:PMID 1383:ISSN 1339:PMID 1331:ISSN 1292:PMID 1284:ISSN 1241:PMID 1202:link 1184:OCLC 1174:ISBN 1151:OCLC 1141:ISBN 1115:OCLC 1105:ISBN 1077:PMID 1059:ISSN 1018:ISBN 995:PMID 977:ISSN 931:ISBN 879:4.0 869:1.6 849:0.7 717:and 311:=1. 170:= CO 73:The 30:The 2044:PEF 2024:FRC 1759:PMC 1751:doi 1710:PMC 1702:doi 1661:doi 1612:doi 1571:hdl 1561:doi 1512:doi 1459:PMC 1443:doi 1391:PMC 1375:doi 1323:doi 1276:doi 1272:104 1233:doi 1221:333 1067:PMC 1051:doi 985:PMC 969:doi 709:(CO 616:BMR 595:fat 578:0.7 439:129 174:/ O 105:). 93:(CO 79:RER 38:or 2290:: 2039:CC 2029:Vt 2019:VC 1767:. 1757:. 1747:46 1745:. 1741:. 1718:. 1708:. 1698:66 1696:. 1692:. 1669:. 1657:83 1655:. 1651:. 1628:. 1620:. 1608:18 1606:. 1602:. 1579:. 1569:. 1559:. 1549:12 1547:. 1543:. 1520:. 1510:. 1498:. 1494:. 1481:^ 1467:. 1457:. 1449:. 1441:. 1429:. 1425:. 1413:^ 1399:. 1389:. 1381:. 1371:96 1369:. 1365:. 1351:^ 1337:. 1329:. 1319:27 1317:. 1304:^ 1290:. 1282:. 1270:. 1247:. 1239:. 1231:. 1219:. 1198:}} 1194:{{ 1182:. 1149:. 1127:^ 1113:. 1089:^ 1075:. 1065:. 1057:. 1045:. 1041:. 993:. 983:. 975:. 965:18 963:. 959:. 945:^ 915:^ 784:1 701:(O 640:RQ 636:RQ 622:RQ 554:23 531:16 413:16 389:16 369:32 357:16 329:23 318:: 285:12 273:12 261:O 226:, 222:, 218:, 206:, 168:RQ 162:RQ 138:VO 132:. 101:(O 65:. 36:RQ 2241:) 2237:( 2216:) 2212:( 2206:) 2187:( 1820:e 1813:t 1806:v 1775:. 1753:: 1726:. 1704:: 1677:. 1663:: 1636:. 1614:: 1587:. 1573:: 1563:: 1555:: 1528:. 1514:: 1506:: 1500:5 1475:. 1445:: 1437:: 1431:6 1407:. 1377:: 1345:. 1325:: 1298:. 1278:: 1255:. 1235:: 1227:: 1204:) 1190:. 1157:. 1121:. 1053:: 1047:2 1026:. 1001:. 971:: 939:. 758:2 754:2 742:2 738:2 734:2 730:2 711:2 703:2 664:2 660:2 630:2 626:2 567:2 562:O 547:2 542:O 539:C 525:= 518:2 513:O 510:V 503:2 498:O 495:C 492:V 485:= 481:R 478:E 475:R 452:P 449:T 446:A 436:+ 432:O 426:2 421:H 410:+ 405:2 400:O 397:C 381:2 376:O 364:H 352:C 347:+ 342:2 337:O 309:2 305:2 301:2 297:2 293:2 289:6 287:O 283:H 281:6 277:6 275:O 271:H 269:6 259:2 255:2 251:2 247:z 245:O 243:y 241:H 239:x 237:C 193:2 189:2 182:2 150:2 140:2 126:2 103:2 95:2 77:( 34:( 20:)

Index

Respiratory exchange ratio
dimensionless number
basal metabolic rate
calorimetry
respirometer
alveolar gas equation
ratio
metabolic
carbon dioxide
oxygen
aerobic exercise
lactate
anaerobic exercise
bicarbonate buffer system
respiratory system
VO2 max test
exhaustion
moles
carbon
hydrogen
oxygen
fatty acids
glycerol
carbohydrates
deamination
ethanol
palmitic acid
fat
carbohydrate
stearic acid

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑