Knowledge

Resting potential

Source 📝

222:
potassium, there is no net charge imbalance across the membrane. If the membrane were to become permeable to a type of ion that is more concentrated on one side of the membrane, then that ion would contribute to membrane voltage because the permeant ions would move across the membrane with net movement of that ion type down the concentration gradient. There would be net movement from the side of the membrane with a higher concentration of the ion to the side with lower concentration. Such a movement of one ion across the membrane would result in a net imbalance of charge across the membrane and a membrane potential. This is a common mechanism by which many cells establish a membrane potential.
1158:, of 100mM. For chloride ions (Cl) the sign of the constant must be reversed (−61.54 mV). If calculating the equilibrium potential for calcium (Ca) the 2+ charge halves the simplified constant to 30.77 mV. If working at room temperature, about 21 °C, the calculated constants are approximately 58 mV for K and Na, −58 mV for Cl and 29 mV for Ca. At physiological temperature, about 29.5 °C, and physiological concentrations (which vary for each ion), the calculated potentials are approximately 67 mV for Na, −90 mV for K, −86 mV for Cl and 123 mV for Ca. 31: 204: 226:
potassium (K) ions move out of the cell. Note that potassium ions can move across the membrane in both directions but by the purely statistical process that arises from the higher concentration of potassium ions inside the cell, there will be more potassium ions moving out of the cell. Because there is a higher concentration of potassium ions inside the cells, their random molecular motion is more likely to encounter the permeability pore (
2225:). For such cells there is never any "rest" and the "resting potential" is a theoretical concept. Other cells with little in the way of membrane transport functions that change with time have a resting membrane potential that can be measured by inserting an electrode into the cell. Transmembrane potentials can also be measured optically with dyes that change their optical properties according to the membrane potential. 758:) will have different amounts of various ion transport proteins. Typically, the amount of certain potassium channels is most important for control of the resting potential (see below). Some ion pumps such as the Na+/K+-ATPase are electrogenic, that is, they produce charge imbalance across the cell membrane and can also contribute directly to the membrane potential. Most pumps use metabolic energy (ATP) to function. 250:. Put another way, the tendency of potassium to leave the cell by running down its concentration gradient is now matched by the tendency of the membrane voltage to pull potassium ions back into the cell. K continues to move across the membrane, but the rate at which it enters and leaves the cell are the same, thus, there is no 162:(sodium-potassium pump) which transports 2 potassium ions inside and 3 sodium ions outside at the cost of 1 ATP molecule. In other cases, for example, a membrane potential may be established by acidification of the inside of a membranous compartment (such as the proton pump that generates membrane potential across 774:
of potassium ions, the concentration of potassium is higher inside cells than outside. Most cells have potassium-selective ion channel proteins that remain open all the time. There will be net movement of positively charged potassium ions through these potassium channels with a resulting accumulation
241:
the membrane potential. As potassium continues to leave the cell, separating more charges, the membrane potential will continue to grow. The length of the arrows (green indicating concentration gradient, red indicating voltage), represents the magnitude of potassium ion movement due to each form of
1170:
as mentioned above) for its maintenance. It is a dynamic diffusion potential that takes this mechanism into account—wholly unlike the pillows equilibrium potential, which is true no matter the nature of the system under consideration. The resting membrane potential is dominated by the ionic
362:
Note that even though the membrane potential at 0 mV is stable, it is not an equilibrium condition because neither of the contributing ions is in equilibrium. Ions diffuse down their electrochemical gradients through ion channels, but the membrane potential is upheld by continual K influx and
225:
In panel 2 of the diagram, the cell membrane has been made permeable to potassium ions, but not the anions (An) inside the cell. These anions are mostly contributed by protein. There is energy stored in the potassium ion concentration gradient that can be converted into an electrical gradient when
215:
arrows indicate net movement of K due to the membrane potential. The diagram is misleading in that while the concentration of potassium ions outside of the cell increases, only a small amount of K needs to cross the membrane in order to produce a membrane potential with a magnitude large enough to
2208:
Although the GHK voltage equation and Millman's equation are related, they are not equivalent. The critical difference is that Millman's equation assumes the current-voltage relationship to be ohmic, whereas the GHK voltage equation takes into consideration the small, instantaneous rectifications
1025:
For common usage the Nernst equation is often given in a simplified form by assuming typical human body temperature (37 °C), reducing the constants and switching to Log base 10. (The units used for concentration are unimportant as they will cancel out into a ratio). For Potassium at normal
1021:
Potassium equilibrium potentials of around −80 millivolts (inside negative) are common. Differences are observed in different species, different tissues within the same animal, and the same tissues under different environmental conditions. Applying the Nernst Equation above, one may account for
221:
Panel 1 of the diagram shows a diagrammatic representation of a simple cell where a concentration gradient has already been established. This panel is drawn as if the membrane has no permeability to any ion. There is no membrane potential because despite there being a concentration gradient for
199:
Cell membranes are typically permeable to only a subset of ions. These usually include potassium ions, chloride ions, bicarbonate ions, and others. To simplify the description of the ionic basis of the resting membrane potential, it is most useful to consider only one ionic species at first, and
1538: 311:
The resting potential of a cell can be most thoroughly understood by thinking of it in terms of equilibrium potentials. In the example diagram here, the model cell was given only one permeant ion (potassium). In this case, the resting potential of this cell would be the same as the equilibrium
371:
energy to pump the ions back. Because no real cell can afford such equal and large ionic permeabilities at rest, resting potential of animal cells is determined by predominant high permeability to potassium and adjusted to the required value by modulating sodium and chloride permeabilities and
182:
is assumed; that is, that there is no measurable charge excess on either side of the membrane. So, although there is an electric potential across the membrane due to charge separation, there is no actual measurable difference in the global concentration of positive and negative ions across the
315:
However, a real cell is more complicated, having permeabilities to many ions, each of which contributes to the resting potential. To understand better, consider a cell with only two permeant ions, potassium, and sodium. Consider a case where these two ions have equal concentration gradients
138:
Because the membrane permeability for potassium is much higher than that for other ions, and because of the strong chemical gradient for potassium, potassium ions flow from the cytosol out to the extracellular space carrying out positive charge, until their movement is balanced by build-up of
2071: 639: 1578:
is the concentration of ion s in compartment Y as above. Another way to view the membrane potential, considering instead the conductance of the ion channels rather than the permeability of the membrane, is using the Millman equation (also called the Chord Conductance Equation):
1175:
across the membrane. For most cells this is potassium. As potassium is also the ion with the most negative equilibrium potential, usually the resting potential can be no more negative than the potassium equilibrium potential. The resting potential can be calculated with the
1828: 242:
energy. The direction of the arrow indicates the direction in which that particular force is applied. Thus, the building membrane voltage is an increasing force that acts counter to the tendency for net movement of potassium ions down the potassium concentration gradient.
234:
doing work by dissipating the concentration gradient. As potassium leaves the cell, it is leaving behind the anions. Therefore, a charge separation is developing as K leaves the cell. This charge separation creates a transmembrane voltage. This transmembrane voltage
779:) and continues until enough excess negative charge accumulates inside the cell to form a membrane potential which can balance the difference in concentration of potassium between inside and outside the cell. "Balance" means that the electrical force ( 245:
In Panel 3, the membrane voltage has grown to the extent that its "strength" now matches the concentration gradients. Since these forces (which are applied to K) are now the same strength and oriented in opposite directions, the system is now in
1547:
has been inserted into the equation, causing the intracellular and extracellular concentrations of Cl to be reversed relative to K and Na, as chloride's negative charge is handled by inverting the fraction inside the logarithmic term.
1198: 107:), membrane voltage in the majority of non-excitable cells can also undergo changes in response to environmental or intracellular stimuli. The resting potential exists due to the differences in membrane permeabilities for 1839: 367:. Such situation with similar permeabilities for counter-acting ions, like potassium and sodium in animal cells, can be extremely costly for the cell if these permeabilities are relatively large, as it takes a lot of 931: 2607:
Cheng, K; Haspel, HC; Vallano, ML; Osotimehin, B; Sonenberg, M (1980). "Measurement of membrane potentials (psi) of erythrocytes and white adipocytes by the accumulation of triphenylmethylphosphonium cation".
434: 1145: 230:) that is the case for the potassium ions that are outside and at a lower concentration. An internal K is simply "more likely" to leave the cell than an extracellular K is to enter it. It is a matter of 1585: 2433:, 2nd edition, by Dale Purves, George J. Augustine, David Fitzpatrick, Lawrence C. Katz, Anthony-Samuel LaMantia, James O. McNamara, S. Mark Williams. Sunderland (MA): Sinauer Associates, Inc.; 2001. 290:
render the membrane voltage in plants and fungi much more negative than in the more extensively investigated animal cells, where the resting voltage is mainly determined by selective ion channels.
797:) of K is zero. A good approximation for the equilibrium potential of a given ion only needs the concentrations on either side of the membrane and the temperature. It can be calculated using the 787:, and which impedes outward diffusion, increases until it is equal in magnitude but opposite in direction to the tendency for outward diffusive movement of potassium. This balance point is an 428:
of each contributing ion's equilibrium potential. The size of each weight is the relative conductance of each ion. In the normal case, where three ions contribute to the membrane potential:
139:
negative charge on the inner surface of the membrane. Again, because of the high relative permeability for potassium, the resulting membrane potential is almost always close to the potassium
1150:
Likewise the equilibrium potential for sodium (Na) at normal human body temperature is calculated using the same simplified constant. You can calculate E assuming an outside concentration,
2398: 2429:
experiment to demonstrate the importance of K for the resting potential. The dependence of the resting potential on the extracellular concentration of K is shown in Figure 2.6 of
2213:
caused by the concentration gradient of ions. Thus, a more accurate estimate of membrane potential can be calculated using the GHK equation than with Millman's equation.
2197:
stops the heart by shifting the resting potential to a more positive value, which depolarizes and contracts the cardiac cells permanently, not allowing the heart to
134:, and exchangers. Conventionally, resting membrane potential can be defined as a relatively stable, ground value of transmembrane voltage in animal and plant cells. 2103:). During the action potential, these weights change. If the conductances of Na and Cl are zero, the membrane potential reduces to the Nernst potential for K (as 316:
directed in opposite directions, and that the membrane permeabilities to both ions are equal. K leaving the cell will tend to drag the membrane potential toward
308:
that are in the cell membrane. How the concentrations of ions and the membrane transport proteins influence the value of the resting potential is outlined below.
200:
consider the others later. Since trans-plasma-membrane potentials are almost always determined primarily by potassium permeability, that is where to start.
1533:{\displaystyle E_{m}={\frac {RT}{F}}\ln {\left({\frac {P_{Na^{+}}_{o}+P_{K^{+}}_{o}+P_{Cl^{-}}_{i}}{P_{Na^{+}}_{i}+P_{K^{+}}_{i}+P_{Cl^{-}}_{o}}}\right)}} 293:
In most neurons the resting potential has a value of approximately −70 mV. The resting potential is mostly determined by the concentrations of the
330:. Since the permeabilities to both ions were set to be equal, the membrane potential will, at the end of the Na/K tug-of-war, end up halfway between 2066:{\displaystyle E_{m}={\frac {g_{K^{+}}}{g_{tot}}}E_{eq,K^{+}}+{\frac {g_{Na^{+}}}{g_{tot}}}E_{eq,Na^{+}}+{\frac {g_{Cl^{-}}}{g_{tot}}}E_{eq,Cl^{-}}} 56:, as well as effects of diffusion of the involved ions, are major mechanisms to maintain the resting potential across the membranes of animal cells. 2465: 2083:
is the combined conductance of all ionic species, again in arbitrary units. The latter equation portrays the resting membrane potential as a
191:
is hugely greater than the effect of concentration so an undetectable change in concentration creates a great change in electric potential.
807: 775:
of excess negative charge inside of the cell. The outward movement of positively charged potassium ions is due to random molecular motion (
634:{\displaystyle E_{m}={\frac {g_{K^{+}}}{g_{tot}}}E_{K^{+}}+{\frac {g_{Na^{+}}}{g_{tot}}}E_{Na^{+}}+{\frac {g_{Cl^{-}}}{g_{tot}}}E_{Cl^{-}}} 2770: 1823:{\displaystyle E_{m}={\frac {g_{K^{+}}E_{eq,K^{+}}+g_{Na^{+}}E_{eq,Na^{+}}+g_{Cl^{-}}E_{eq,Cl^{-}}}{g_{K^{+}}+g_{Na^{+}}+g_{Cl^{-}}}}} 2728: 2705: 1032: 143:. But in order for this process to occur, a concentration gradient of potassium ions must first be set up. This work is done by the 2711: 2354:
in 1902 where he proposed a "Membrane Theory" that explained the resting potential of nerve and muscle as a diffusion potential.
207:
A diagram showing the progression in the development of a membrane potential from a concentration gradient (for potassium).
2556:
Ashmore, J. F.; Meech, R. W. (1986-07-24). "Ionic basis of membrane potential in outer hair cells of guinea pig cochlea".
2499:
Lewis, Rebecca; Asplin, Katie E.; Bruce, Gareth; Dart, Caroline; Mobasheri, Ali; Barrett-Jolley, Richard (2011-11-01).
1166:
The resting membrane potential is not an equilibrium potential as it relies on the constant expenditure of energy (for
2373: 187:), that is, there is no actual measurable charge excess on either side. That occurs because the effect of charge on 2797: 188: 375:
In a healthy animal cell Na permeability is about 5% of the K permeability or even less, whereas the respective
274:) in the plasma membrane, steadily operating in parallel, whereby each ion-translocator has its characteristic 2792: 2089:
of the reversal potentials of the system, where the weights are the relative conductances of each ion species (
358:
were equal but of opposite signs, halfway in between is zero, meaning that the membrane will rest at 0 mV.
2651:
Seyfarth, Ernst-August (2006-01-01). "Julius Bernstein (1839-1917): pioneer neurobiologist and biophysicist".
722:
For determination of membrane potentials, the two most important types of membrane ion transport proteins are
2422: 282:= 'equilibrium voltage'), depending on the particular substrate concentrations inside and outside (internal 1181: 1172: 368: 323:. Na entering the cell will tend to drag the membrane potential toward the reversal potential for sodium 283: 148: 2473: 2246: 789: 734:
without direct expenditure of metabolic energy. They have selectivity for certain ions, thus, there are
35: 30: 2565: 2289: 970: 1180:
using the concentrations of ions as for the equilibrium potential while also including the relative
2802: 275: 203: 2759: 2684: 2633: 2589: 2378: 2299: 2276: 794: 743: 376: 302: 279: 254:
potassium current. Because the K is at equilibrium, membrane potential is stable, or "resting" (E
247: 140: 92: 77: 61: 2751: 2724: 2676: 2668: 2625: 2581: 2538: 2520: 2426: 2222: 2210: 984: 735: 2743: 2660: 2617: 2573: 2528: 2512: 2451:
An illustrated example of measuring membrane potentials with electrodes is in Figure 2.1 of
2363: 2351: 2194: 2190: 2182: 1177: 994: 784: 771: 739: 175: 163: 73: 1184:
of each ionic species. Under normal conditions, it is safe to assume that only potassium,
730:. Ion channel proteins create paths across cell membranes through which ions can passively 1167: 798: 755: 727: 364: 271: 159: 144: 131: 72:(or resting voltage), as opposed to the specific dynamic electrochemical phenomena called 17: 1543:
This equation resembles the Nernst equation, but has a term for each permeant ion. Also,
2569: 1022:
these differences by changes in relative K concentration or differences in temperature.
2776: 2533: 2500: 2368: 2198: 2186: 780: 690: 2786: 2085: 425: 298: 267: 155: 65: 2637: 184: 2763: 2717: 2688: 2593: 2160: 2153: 956: 216:
counter the tendency of the potassium ions to move down the concentration gradient.
174:
In most quantitative treatments of membrane potential, such as the derivation of
2334: 2324: 1008: 723: 227: 127: 1026:
body temperature one may calculate the equilibrium potential in millivolts as:
2664: 2236: 263: 2747: 2672: 2524: 2309: 2256: 776: 767: 751: 731: 231: 108: 2755: 2680: 2542: 2629: 2585: 2202: 1189: 747: 120: 262:
The resting voltage is the result of several ion-translocating enzymes (
2621: 2313: 998: 689:
is the total conductance of all permeant ions in arbitrary units (e.g.
407:
by an amount of approximately 5% of the 140 mV difference between
305: 116: 2516: 926:{\displaystyle E_{eq,K^{+}}={\frac {RT}{zF}}\ln {\frac {_{o}}{_{i}}},} 770:
ions (K) are the most important for the resting potential. Due to the
154:
In the case of the resting membrane potential across an animal cell's
2577: 2501:"The role of the membrane potential in chondrocyte volume regulation" 2266: 1185: 974: 287: 112: 100: 96: 2286: 2221:
In some cells, the membrane potential is always changing (such as
2157: 960: 104: 29: 211:
arrows indicate net movement of K down a concentration gradient.
947: 421:. Thus, the cell's resting potential will be about −73 mV. 2734:
Wright, SH (2004). "Generation of resting membrane potential".
2442:
Hille, Bertil (2001) Ion Channels of Excitable Membranes, 3 ed.
2229:
Summary of resting potential values in different types of cells
1140:{\displaystyle E_{eq,K^{+}}=61.54mV\log {\frac {_{o}}{_{i}}},} 294: 123: 1007:
is the extracellular concentration of potassium, measured in
680:
is the relative conductance of ion X, which is dimensionless
126:, which in turn result from functional activity of various 2714:
Molecular, Cellular, and Medical Aspects by Siegel, et al.
2350:
Resting currents in nerves were measured and described by
158:, potassium (and sodium) gradients are established by the 424:
In a more formal notation, the membrane potential is the
2773:- Online lecture notes on the resting membrane potential 1017:
is likewise the intracellular concentration of potassium
946:
is the equilibrium potential for potassium, measured in
746:. Different cells and even different parts of one cell ( 2723:, 3rd ed., Sinauer Associates, Sunderland, MA (2001). 1192:(Cl) ions play large roles for the resting potential: 1842: 1588: 1201: 1035: 810: 664:
is the equilibrium potential for ion X, also in volts
437: 393:). Thus the membrane potential will not be right at 2399:"Resting Membrane Potential - Nernst - Generation" 2167:) is changed are very dangerous since they offset 2065: 1822: 1532: 1139: 925: 633: 2455:by Dale Purves, et al. (see reference #1, above). 2193:injection of potassium chloride in executions by 987:of the ion in question involved in the reaction 1555:is the membrane potential, measured in volts * 147:and/or exchangers and generally is powered by 2131:are not zero, but they are much smaller than 286:included in case of some pumps). H exporting 8: 2777:The Origin of the Resting Membrane Potential 1171:species in the system that has the greatest 655:is the membrane potential, measured in volts 783:) that results from the build-up of ionic 693:for electrical conductance), in this case 91:Apart from the latter two, which occur in 2532: 2055: 2038: 2020: 2008: 2000: 1994: 1983: 1966: 1948: 1936: 1928: 1922: 1911: 1897: 1879: 1867: 1862: 1856: 1847: 1841: 1809: 1801: 1786: 1778: 1763: 1758: 1744: 1727: 1715: 1707: 1692: 1675: 1663: 1655: 1640: 1626: 1614: 1609: 1602: 1593: 1587: 1516: 1506: 1488: 1480: 1467: 1457: 1442: 1437: 1424: 1414: 1396: 1388: 1376: 1366: 1348: 1340: 1327: 1317: 1302: 1297: 1284: 1274: 1256: 1248: 1241: 1236: 1215: 1206: 1200: 1125: 1115: 1100: 1090: 1080: 1054: 1040: 1034: 911: 901: 886: 876: 866: 840: 829: 815: 809: 623: 615: 597: 585: 577: 571: 560: 552: 534: 522: 514: 508: 497: 492: 474: 462: 457: 451: 442: 436: 2232: 202: 2390: 2117:). Normally, under resting conditions 1574:is the relative permeability of ion s * 1154:, of 10mM and an inside concentration, 1178:Goldman-Hodgkin-Katz voltage equation 7: 2494: 2492: 2490: 27:Static membrane potential in biology 2721:Ion channels of excitable membranes 2708:- online textbook by Purves, et al. 297:in the fluids on both sides of the 195:Generation of the resting potential 793:as the net transmembrane flux (or 25: 977:(= K = degrees Celsius + 273.15) 386:)and −80 mV for potassium ( 2505:Journal of Cellular Physiology 2152:. Medical conditions such as 1513: 1496: 1464: 1450: 1421: 1404: 1373: 1356: 1324: 1310: 1281: 1264: 1122: 1108: 1097: 1083: 908: 894: 883: 869: 400:, but rather depolarized from 103:, and some secretory cells in 1: 2779:- Online interactive tutorial 744:sodium-selective ion channels 183:membrane (as it is estimated 84:has a value of approximately 2472:. 2015-01-24. Archived from 2217:Measuring resting potentials 379:are +60 mV for sodium ( 2374:Hyperpolarization (biology) 2205:to be refilled with blood. 718:Membrane transport proteins 2819: 2771:Resting Membrane Potential 82:resting membrane potential 70:resting membrane potential 18:Resting membrane potential 2665:10.1007/s00422-005-0031-y 2163:potassium (which governs 312:potential for potassium. 189:electrochemical potential 2748:10.1152/advan.00029.2004 2223:cardiac pacemaker cells 2653:Biological Cybernetics 2067: 1824: 1534: 1141: 927: 766:For most animal cells 762:Equilibrium potentials 635: 217: 145:ion pumps/transporters 60:The relatively static 57: 2247:Skeletal muscle cells 2068: 1825: 1535: 1142: 928: 790:equilibrium potential 636: 206: 33: 2712:Basic Neurochemistry 2427:electrophysiological 2290:Smooth muscle tissue 1840: 1586: 1199: 1033: 971:absolute temperature 808: 435: 68:cells is called the 2570:1986Natur.322..368A 2300:Photoreceptor cells 2277:Smooth muscle cells 2271:-60 to -70 mV 2261:-80 to -90 mV 377:reversal potentials 276:electromotive force 2622:10.1007/bf01869476 2379:Membrane potential 2241:Resting potential 2181:. This may cause 2063: 1820: 1530: 1162:Resting potentials 1137: 997:, equal to 96,485 985:elementary charges 923: 631: 280:reversal potential 218: 141:reversal potential 78:membrane potential 62:membrane potential 58: 2564:(6077): 368–371. 2517:10.1002/jcp.22646 2511:(11): 2979–2986. 2403:TeachMePhysiology 2343: 2342: 2211:GHK flux equation 2209:predicted by the 2174:, thus affecting 2032: 1960: 1891: 1818: 1523: 1228: 1132: 983:is the number of 959:, equal to 8.314 955:is the universal 918: 858: 609: 546: 486: 180:electroneutrality 170:Electroneutrality 16:(Redirected from 2810: 2798:Membrane biology 2767: 2736:Adv Physiol Educ 2693: 2692: 2648: 2642: 2641: 2604: 2598: 2597: 2578:10.1038/322368a0 2553: 2547: 2546: 2536: 2496: 2485: 2484: 2482: 2481: 2462: 2456: 2449: 2443: 2440: 2434: 2419: 2413: 2412: 2410: 2409: 2395: 2364:Action potential 2352:Julius Bernstein 2233: 2195:lethal injection 2189:. The use of a 2138:, which renders 2086:weighted average 2072: 2070: 2069: 2064: 2062: 2061: 2060: 2059: 2033: 2031: 2030: 2015: 2014: 2013: 2012: 1995: 1990: 1989: 1988: 1987: 1961: 1959: 1958: 1943: 1942: 1941: 1940: 1923: 1918: 1917: 1916: 1915: 1892: 1890: 1889: 1874: 1873: 1872: 1871: 1857: 1852: 1851: 1833:or reformulated 1829: 1827: 1826: 1821: 1819: 1817: 1816: 1815: 1814: 1813: 1793: 1792: 1791: 1790: 1770: 1769: 1768: 1767: 1752: 1751: 1750: 1749: 1748: 1722: 1721: 1720: 1719: 1699: 1698: 1697: 1696: 1670: 1669: 1668: 1667: 1647: 1646: 1645: 1644: 1621: 1620: 1619: 1618: 1603: 1598: 1597: 1539: 1537: 1536: 1531: 1529: 1528: 1524: 1522: 1521: 1520: 1511: 1510: 1495: 1494: 1493: 1492: 1472: 1471: 1462: 1461: 1449: 1448: 1447: 1446: 1429: 1428: 1419: 1418: 1403: 1402: 1401: 1400: 1382: 1381: 1380: 1371: 1370: 1355: 1354: 1353: 1352: 1332: 1331: 1322: 1321: 1309: 1308: 1307: 1306: 1289: 1288: 1279: 1278: 1263: 1262: 1261: 1260: 1242: 1229: 1224: 1216: 1211: 1210: 1146: 1144: 1143: 1138: 1133: 1131: 1130: 1129: 1120: 1119: 1106: 1105: 1104: 1095: 1094: 1081: 1061: 1060: 1059: 1058: 995:Faraday constant 932: 930: 929: 924: 919: 917: 916: 915: 906: 905: 892: 891: 890: 881: 880: 867: 859: 857: 849: 841: 836: 835: 834: 833: 772:active transport 756:nodes of Ranvier 728:ion transporters 640: 638: 637: 632: 630: 629: 628: 627: 610: 608: 607: 592: 591: 590: 589: 572: 567: 566: 565: 564: 547: 545: 544: 529: 528: 527: 526: 509: 504: 503: 502: 501: 487: 485: 484: 469: 468: 467: 466: 452: 447: 446: 426:weighted average 365:ion transporters 214: 210: 176:Goldman equation 164:synaptic vesicle 132:ion transporters 74:action potential 53: 52: 51: 44: 43: 21: 2818: 2817: 2813: 2812: 2811: 2809: 2808: 2807: 2793:Neurophysiology 2783: 2782: 2742:(1–4): 139–42. 2733: 2702: 2697: 2696: 2650: 2649: 2645: 2606: 2605: 2601: 2555: 2554: 2550: 2498: 2497: 2488: 2479: 2477: 2464: 2463: 2459: 2450: 2446: 2441: 2437: 2420: 2416: 2407: 2405: 2397: 2396: 2392: 2387: 2360: 2348: 2231: 2219: 2201:and thus enter 2180: 2173: 2166: 2151: 2144: 2137: 2130: 2123: 2116: 2109: 2102: 2095: 2082: 2051: 2034: 2016: 2004: 1996: 1979: 1962: 1944: 1932: 1924: 1907: 1893: 1875: 1863: 1858: 1843: 1838: 1837: 1805: 1797: 1782: 1774: 1759: 1754: 1753: 1740: 1723: 1711: 1703: 1688: 1671: 1659: 1651: 1636: 1622: 1610: 1605: 1604: 1589: 1584: 1583: 1577: 1573: 1554: 1512: 1502: 1484: 1476: 1463: 1453: 1438: 1433: 1420: 1410: 1392: 1384: 1383: 1372: 1362: 1344: 1336: 1323: 1313: 1298: 1293: 1280: 1270: 1252: 1244: 1243: 1237: 1217: 1202: 1197: 1196: 1164: 1157: 1153: 1121: 1111: 1107: 1096: 1086: 1082: 1050: 1036: 1031: 1030: 1016: 1006: 1001:·mol or J·V·mol 945: 907: 897: 893: 882: 872: 868: 850: 842: 825: 811: 806: 805: 799:Nernst equation 764: 720: 713: 706: 699: 688: 679: 672: 663: 654: 619: 611: 593: 581: 573: 556: 548: 530: 518: 510: 493: 488: 470: 458: 453: 438: 433: 432: 420: 413: 406: 399: 392: 385: 359: 357: 350: 343: 336: 329: 322: 257: 212: 208: 197: 172: 156:plasma membrane 135: 93:excitable cells 86:-70mV or -0.07V 50: 48: 47: 46: 42: 40: 39: 38: 36: 28: 23: 22: 15: 12: 11: 5: 2816: 2814: 2806: 2805: 2800: 2795: 2785: 2784: 2781: 2780: 2774: 2768: 2731: 2715: 2709: 2701: 2700:External links 2698: 2695: 2694: 2643: 2616:(3): 191–201. 2610:J. Membr. Biol 2599: 2548: 2486: 2457: 2444: 2435: 2414: 2389: 2388: 2386: 2383: 2382: 2381: 2376: 2371: 2369:Depolarization 2366: 2359: 2356: 2347: 2344: 2341: 2340: 2337: 2331: 2330: 2327: 2321: 2320: 2317: 2306: 2305: 2302: 2296: 2295: 2292: 2283: 2282: 2279: 2273: 2272: 2269: 2263: 2262: 2259: 2253: 2252: 2249: 2243: 2242: 2239: 2230: 2227: 2218: 2215: 2187:cardiac arrest 2178: 2171: 2164: 2149: 2142: 2135: 2128: 2121: 2114: 2107: 2100: 2093: 2080: 2074: 2073: 2058: 2054: 2050: 2047: 2044: 2041: 2037: 2029: 2026: 2023: 2019: 2011: 2007: 2003: 1999: 1993: 1986: 1982: 1978: 1975: 1972: 1969: 1965: 1957: 1954: 1951: 1947: 1939: 1935: 1931: 1927: 1921: 1914: 1910: 1906: 1903: 1900: 1896: 1888: 1885: 1882: 1878: 1870: 1866: 1861: 1855: 1850: 1846: 1831: 1830: 1812: 1808: 1804: 1800: 1796: 1789: 1785: 1781: 1777: 1773: 1766: 1762: 1757: 1747: 1743: 1739: 1736: 1733: 1730: 1726: 1718: 1714: 1710: 1706: 1702: 1695: 1691: 1687: 1684: 1681: 1678: 1674: 1666: 1662: 1658: 1654: 1650: 1643: 1639: 1635: 1632: 1629: 1625: 1617: 1613: 1608: 1601: 1596: 1592: 1575: 1571: 1567:are as above * 1552: 1541: 1540: 1527: 1519: 1515: 1509: 1505: 1501: 1498: 1491: 1487: 1483: 1479: 1475: 1470: 1466: 1460: 1456: 1452: 1445: 1441: 1436: 1432: 1427: 1423: 1417: 1413: 1409: 1406: 1399: 1395: 1391: 1387: 1379: 1375: 1369: 1365: 1361: 1358: 1351: 1347: 1343: 1339: 1335: 1330: 1326: 1320: 1316: 1312: 1305: 1301: 1296: 1292: 1287: 1283: 1277: 1273: 1269: 1266: 1259: 1255: 1251: 1247: 1240: 1235: 1232: 1227: 1223: 1220: 1214: 1209: 1205: 1182:permeabilities 1163: 1160: 1155: 1151: 1148: 1147: 1136: 1128: 1124: 1118: 1114: 1110: 1103: 1099: 1093: 1089: 1085: 1079: 1076: 1073: 1070: 1067: 1064: 1057: 1053: 1049: 1046: 1043: 1039: 1019: 1018: 1014: 1012: 1004: 1002: 988: 978: 973:, measured in 964: 950: 943: 934: 933: 922: 914: 910: 904: 900: 896: 889: 885: 879: 875: 871: 865: 862: 856: 853: 848: 845: 839: 832: 828: 824: 821: 818: 814: 763: 760: 719: 716: 715: 714: 711: 704: 697: 686: 681: 677: 670: 665: 661: 656: 652: 643: 642: 626: 622: 618: 614: 606: 603: 600: 596: 588: 584: 580: 576: 570: 563: 559: 555: 551: 543: 540: 537: 533: 525: 521: 517: 513: 507: 500: 496: 491: 483: 480: 477: 473: 465: 461: 456: 450: 445: 441: 418: 411: 404: 397: 390: 383: 363:Na efflux via 355: 348: 341: 334: 327: 320: 268:cotransporters 260: 259: 255: 243: 223: 196: 193: 171: 168: 49: 41: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2815: 2804: 2801: 2799: 2796: 2794: 2791: 2790: 2788: 2778: 2775: 2772: 2769: 2765: 2761: 2757: 2753: 2749: 2745: 2741: 2737: 2732: 2730: 2729:0-87893-321-2 2726: 2722: 2719: 2716: 2713: 2710: 2707: 2704: 2703: 2699: 2690: 2686: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2647: 2644: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2611: 2603: 2600: 2595: 2591: 2587: 2583: 2579: 2575: 2571: 2567: 2563: 2559: 2552: 2549: 2544: 2540: 2535: 2530: 2526: 2522: 2518: 2514: 2510: 2506: 2502: 2495: 2493: 2491: 2487: 2476:on 2015-11-07 2475: 2471: 2470:users.rcn.com 2467: 2461: 2458: 2454: 2448: 2445: 2439: 2436: 2432: 2428: 2424: 2418: 2415: 2404: 2400: 2394: 2391: 2384: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2361: 2357: 2355: 2353: 2345: 2338: 2336: 2333: 2332: 2329:-8.4 mV 2328: 2326: 2323: 2322: 2319:-15 to -40mV 2318: 2315: 2311: 2308: 2307: 2303: 2301: 2298: 2297: 2293: 2291: 2288: 2285: 2284: 2280: 2278: 2275: 2274: 2270: 2268: 2265: 2264: 2260: 2258: 2255: 2254: 2250: 2248: 2245: 2244: 2240: 2238: 2235: 2234: 2228: 2226: 2224: 2216: 2214: 2212: 2206: 2204: 2200: 2196: 2192: 2188: 2184: 2177: 2170: 2162: 2159: 2155: 2148: 2141: 2134: 2127: 2120: 2113: 2106: 2099: 2092: 2088: 2087: 2079: 2056: 2052: 2048: 2045: 2042: 2039: 2035: 2027: 2024: 2021: 2017: 2009: 2005: 2001: 1997: 1991: 1984: 1980: 1976: 1973: 1970: 1967: 1963: 1955: 1952: 1949: 1945: 1937: 1933: 1929: 1925: 1919: 1912: 1908: 1904: 1901: 1898: 1894: 1886: 1883: 1880: 1876: 1868: 1864: 1859: 1853: 1848: 1844: 1836: 1835: 1834: 1810: 1806: 1802: 1798: 1794: 1787: 1783: 1779: 1775: 1771: 1764: 1760: 1755: 1745: 1741: 1737: 1734: 1731: 1728: 1724: 1716: 1712: 1708: 1704: 1700: 1693: 1689: 1685: 1682: 1679: 1676: 1672: 1664: 1660: 1656: 1652: 1648: 1641: 1637: 1633: 1630: 1627: 1623: 1615: 1611: 1606: 1599: 1594: 1590: 1582: 1581: 1580: 1570: 1566: 1562: 1558: 1551: 1546: 1525: 1517: 1507: 1503: 1499: 1489: 1485: 1481: 1477: 1473: 1468: 1458: 1454: 1443: 1439: 1434: 1430: 1425: 1415: 1411: 1407: 1397: 1393: 1389: 1385: 1377: 1367: 1363: 1359: 1349: 1345: 1341: 1337: 1333: 1328: 1318: 1314: 1303: 1299: 1294: 1290: 1285: 1275: 1271: 1267: 1257: 1253: 1249: 1245: 1238: 1233: 1230: 1225: 1221: 1218: 1212: 1207: 1203: 1195: 1194: 1193: 1191: 1187: 1183: 1179: 1174: 1169: 1161: 1159: 1134: 1126: 1116: 1112: 1101: 1091: 1087: 1077: 1074: 1071: 1068: 1065: 1062: 1055: 1051: 1047: 1044: 1041: 1037: 1029: 1028: 1027: 1023: 1013: 1010: 1003: 1000: 996: 992: 989: 986: 982: 979: 976: 972: 968: 965: 962: 958: 954: 951: 949: 942: 939: 938: 937: 920: 912: 902: 898: 887: 877: 873: 863: 860: 854: 851: 846: 843: 837: 830: 826: 822: 819: 816: 812: 804: 803: 802: 800: 796: 792: 791: 786: 782: 778: 773: 769: 761: 759: 757: 753: 749: 745: 741: 737: 733: 729: 725: 717: 710: 703: 696: 692: 685: 682: 676: 669: 666: 660: 657: 651: 648: 647: 646: 624: 620: 616: 612: 604: 601: 598: 594: 586: 582: 578: 574: 568: 561: 557: 553: 549: 541: 538: 535: 531: 523: 519: 515: 511: 505: 498: 494: 489: 481: 478: 475: 471: 463: 459: 454: 448: 443: 439: 431: 430: 429: 427: 422: 417: 410: 403: 396: 389: 382: 378: 373: 370: 366: 360: 354: 347: 340: 333: 326: 319: 313: 309: 307: 304: 303:ion transport 300: 299:cell membrane 296: 291: 289: 285: 281: 277: 273: 269: 265: 253: 249: 244: 240: 239: 233: 229: 224: 220: 219: 205: 201: 194: 192: 190: 186: 181: 177: 169: 167: 165: 161: 157: 152: 150: 146: 142: 136: 133: 129: 125: 122: 118: 114: 110: 106: 102: 98: 94: 89: 87: 83: 79: 75: 71: 67: 63: 55: 32: 19: 2739: 2735: 2720: 2718:Bertil Hille 2706:Neuroscience 2656: 2652: 2646: 2613: 2609: 2602: 2561: 2557: 2551: 2508: 2504: 2478:. Retrieved 2474:the original 2469: 2460: 2453:Neuroscience 2452: 2447: 2438: 2431:Neuroscience 2430: 2417: 2406:. Retrieved 2402: 2393: 2349: 2335:Chondrocytes 2325:Erythrocytes 2304:-40 mV 2281:-60 mV 2251:-95 mV 2220: 2207: 2175: 2168: 2154:hyperkalemia 2146: 2139: 2132: 2125: 2118: 2111: 2104: 2097: 2090: 2084: 2077: 2075: 1832: 1568: 1564: 1560: 1556: 1549: 1544: 1542: 1165: 1149: 1024: 1020: 1011:·m or mmol·l 990: 980: 966: 957:gas constant 952: 940: 935: 788: 765: 724:ion channels 721: 708: 701: 694: 683: 674: 667: 658: 649: 644: 423: 415: 408: 401: 394: 387: 380: 374: 361: 352: 345: 338: 331: 324: 317: 314: 310: 292: 261: 251: 237: 236: 198: 179: 173: 166:membranes). 153: 137: 128:ion channels 90: 85: 81: 69: 59: 2183:arrhythmias 1173:conductance 1168:ionic pumps 752:cell bodies 372:gradients. 248:equilibrium 228:ion channel 160:Na/K-ATPase 76:and graded 2803:Potentials 2787:Categories 2659:(1): 2–8. 2480:2016-06-01 2408:2024-09-18 2385:References 2237:Cell types 2199:repolarize 736:potassium- 264:uniporters 2673:0340-1200 2525:1097-4652 2466:"Muscles" 2310:Hair cell 2257:Astroglia 2156:in which 2145:close to 2057:− 2010:− 1811:− 1746:− 1717:− 1508:− 1490:− 1368:− 1350:− 1234:⁡ 1188:(Na) and 1078:⁡ 864:⁡ 781:potential 777:diffusion 768:potassium 748:dendrites 740:chloride- 625:− 587:− 232:diffusion 109:potassium 66:quiescent 2756:15545342 2681:16341542 2638:19693916 2543:21328349 2358:See also 2203:diastole 1190:chloride 999:coulombs 306:proteins 301:and the 121:chloride 2764:5009629 2689:2842501 2630:6779011 2594:4371640 2586:2426595 2566:Bibcode 2534:3229839 2423:example 2346:History 2314:Cochlea 2267:Neurons 993:is the 975:kelvins 969:is the 936:where 795:current 732:diffuse 691:siemens 645:where 117:calcium 101:muscles 97:neurons 54:-ATPase 2762:  2754:  2727:  2687:  2679:  2671:  2636:  2628:  2592:  2584:  2558:Nature 2541:  2531:  2523:  2425:of an 2294:-45mV 2076:where 1563:, and 1186:sodium 963:·K·mol 961:joules 785:charge 742:, and 344:. As 288:ATPase 270:, and 119:, and 113:sodium 105:glands 80:. The 2760:S2CID 2685:S2CID 2634:S2CID 2590:S2CID 2339:-8mV 2287:Aorta 2191:bolus 2172:eq,K+ 2161:serum 2158:blood 2150:eq,K+ 1066:61.54 948:volts 272:pumps 209:Green 185:below 2752:PMID 2725:ISBN 2677:PMID 2669:ISSN 2626:PMID 2582:PMID 2539:PMID 2521:ISSN 2185:and 2124:and 944:eq,K 726:and 414:and 351:and 337:and 295:ions 124:ions 34:The 2744:doi 2661:doi 2618:doi 2574:doi 2562:322 2529:PMC 2513:doi 2509:226 2421:An 2129:Cl− 2122:Na+ 2115:tot 2101:tot 2081:tot 1075:log 1009:mol 687:tot 678:tot 369:ATP 284:ATP 278:(= 252:net 213:Red 149:ATP 88:. 64:of 2789:: 2758:. 2750:. 2740:28 2738:. 2683:. 2675:. 2667:. 2657:94 2655:. 2632:. 2624:. 2614:56 2612:. 2588:. 2580:. 2572:. 2560:. 2537:. 2527:. 2519:. 2507:. 2503:. 2489:^ 2468:. 2401:. 2316:) 2136:K+ 2110:= 1559:, 1231:ln 861:ln 801:: 754:, 750:, 738:, 712:Cl 707:+ 705:Na 700:+ 419:Na 384:Na 349:Na 335:Na 328:Na 266:, 258:). 238:is 178:, 151:. 130:, 115:, 111:, 99:, 45:/K 37:Na 2766:. 2746:: 2691:. 2663:: 2640:. 2620:: 2596:. 2576:: 2568:: 2545:. 2515:: 2483:. 2411:. 2312:( 2179:m 2176:E 2169:E 2165:o 2147:E 2143:m 2140:E 2133:g 2126:g 2119:g 2112:g 2108:K 2105:g 2098:g 2096:/ 2094:X 2091:g 2078:g 2053:l 2049:C 2046:, 2043:q 2040:e 2036:E 2028:t 2025:o 2022:t 2018:g 2006:l 2002:C 1998:g 1992:+ 1985:+ 1981:a 1977:N 1974:, 1971:q 1968:e 1964:E 1956:t 1953:o 1950:t 1946:g 1938:+ 1934:a 1930:N 1926:g 1920:+ 1913:+ 1909:K 1905:, 1902:q 1899:e 1895:E 1887:t 1884:o 1881:t 1877:g 1869:+ 1865:K 1860:g 1854:= 1849:m 1845:E 1807:l 1803:C 1799:g 1795:+ 1788:+ 1784:a 1780:N 1776:g 1772:+ 1765:+ 1761:K 1756:g 1742:l 1738:C 1735:, 1732:q 1729:e 1725:E 1713:l 1709:C 1705:g 1701:+ 1694:+ 1690:a 1686:N 1683:, 1680:q 1677:e 1673:E 1665:+ 1661:a 1657:N 1653:g 1649:+ 1642:+ 1638:K 1634:, 1631:q 1628:e 1624:E 1616:+ 1612:K 1607:g 1600:= 1595:m 1591:E 1576:Y 1572:s 1569:P 1565:F 1561:T 1557:R 1553:m 1550:E 1548:* 1545:z 1526:) 1518:o 1514:] 1504:l 1500:C 1497:[ 1486:l 1482:C 1478:P 1474:+ 1469:i 1465:] 1459:+ 1455:K 1451:[ 1444:+ 1440:K 1435:P 1431:+ 1426:i 1422:] 1416:+ 1412:a 1408:N 1405:[ 1398:+ 1394:a 1390:N 1386:P 1378:i 1374:] 1364:l 1360:C 1357:[ 1346:l 1342:C 1338:P 1334:+ 1329:o 1325:] 1319:+ 1315:K 1311:[ 1304:+ 1300:K 1295:P 1291:+ 1286:o 1282:] 1276:+ 1272:a 1268:N 1265:[ 1258:+ 1254:a 1250:N 1246:P 1239:( 1226:F 1222:T 1219:R 1213:= 1208:m 1204:E 1156:i 1152:o 1135:, 1127:i 1123:] 1117:+ 1113:K 1109:[ 1102:o 1098:] 1092:+ 1088:K 1084:[ 1072:V 1069:m 1063:= 1056:+ 1052:K 1048:, 1045:q 1042:e 1038:E 1015:i 1005:o 991:F 981:z 967:T 953:R 941:E 921:, 913:i 909:] 903:+ 899:K 895:[ 888:o 884:] 878:+ 874:K 870:[ 855:F 852:z 847:T 844:R 838:= 831:+ 827:K 823:, 820:q 817:e 813:E 709:g 702:g 698:K 695:g 684:g 675:g 673:/ 671:X 668:g 662:X 659:E 653:m 650:E 641:, 621:l 617:C 613:E 605:t 602:o 599:t 595:g 583:l 579:C 575:g 569:+ 562:+ 558:a 554:N 550:E 542:t 539:o 536:t 532:g 524:+ 520:a 516:N 512:g 506:+ 499:+ 495:K 490:E 482:t 479:o 476:t 472:g 464:+ 460:K 455:g 449:= 444:m 440:E 416:E 412:K 409:E 405:K 402:E 398:K 395:E 391:K 388:E 381:E 356:K 353:E 346:E 342:K 339:E 332:E 325:E 321:K 318:E 256:K 95:( 20:)

Index

Resting membrane potential

Na
/K
-ATPase

membrane potential
quiescent
action potential
membrane potential
excitable cells
neurons
muscles
glands
potassium
sodium
calcium
chloride
ions
ion channels
ion transporters
reversal potential
ion pumps/transporters
ATP
plasma membrane
Na/K-ATPase
synaptic vesicle
Goldman equation
below
electrochemical potential

ion channel
diffusion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.