Knowledge (XXG)

DNA replication

Source 📝

1424: 1092:(GFP)-tagged DNA polymerases α. They detected DNA replication of pairs of the tagged loci spaced apart symmetrically from a replication origin and found that the distance between the pairs decreased markedly by time. This finding suggests that the mechanism of DNA replication goes with DNA factories. That is, couples of replication factories are loaded on replication origins and the factories associated with each other. Also, template DNAs move into the factories, which bring extrusion of the template ssDNAs and new DNAs. Meister's finding is the first direct evidence of replication factory model. Subsequent research has shown that DNA helicases form dimers in many eukaryotic cells and bacterial replication machineries stay in single intranuclear location during DNA synthesis. 1416: 1592:
growing strand and not on the free nucleotides, proof-reading by removing a mismatched terminal nucleotide would be problematic: Once a nucleotide is added, the triphosphate is lost and a single phosphate remains on the backbone between the new nucleotide and the rest of the strand. If the added nucleotide were mismatched, removal would result in a DNA strand terminated by a monophosphate at the end of the "growing strand" rather than a high energy triphosphate. So strand would be stuck and wouldn't be able to grow anymore. In actuality, the high energy triphosphates hydrolyzed at each step originate from the free nucleotides, not the polymerized strand, so this issue does not exist.
491:. Sequences used by initiator proteins tend to be "AT-rich" (rich in adenine and thymine bases), because A-T base pairs have two hydrogen bonds (rather than the three formed in a C-G pair) and thus are easier to strand-separate. In eukaryotes, the origin recognition complex catalyzes the assembly of initiator proteins into the pre-replication complex. In addition, a recent report suggests that budding yeast ORC dimerizes in a cell cycle dependent manner to control licensing. In turn, the process of ORC dimerization is mediated by a cell cycle-dependent Noc3p dimerization cycle in vivo, and this role of Noc3p is separable from its role in ribosome biogenesis. 293:, and the different ends of a single strand are called the "3′ (three-prime) end" and the "5′ (five-prime) end". By convention, if the base sequence of a single strand of DNA is given, the left end of the sequence is the 5′ end, while the right end of the sequence is the 3′ end. The strands of the double helix are anti-parallel, with one being 5′ to 3′, and the opposite strand 3′ to 5′. These terms refer to the carbon atom in deoxyribose to which the next phosphate in the chain attaches. Directionality has consequences in DNA synthesis, because DNA polymerase can synthesize DNA in only one direction by adding nucleotides to the 3′ end of a DNA strand. 424: 400: 300:) means that the information contained within each strand is redundant. Phosphodiester (intra-strand) bonds are stronger than hydrogen (inter-strand) bonds. The actual job of the phosphodiester bonds is where in DNA polymers connect the 5' carbon atom of one nucleotide to the 3' carbon atom of another nucleotide, while the hydrogen bonds stabilize DNA double helices across the helix axis but not in the direction of the axis. This makes it possible to separate the strands from one another. The nucleotides on a single strand can therefore be used to reconstruct nucleotides on a newly synthesized partner strand. 1228:, which causes proteolytic destruction of Cdc6. Cdk-dependent phosphorylation of Mcm proteins promotes their export out of the nucleus along with Cdt1 during S phase, preventing the loading of new Mcm complexes at origins during a single cell cycle. Cdk phosphorylation of the origin replication complex also inhibits pre-replication complex assembly. The individual presence of any of these three mechanisms is sufficient to inhibit pre-replication complex assembly. However, mutations of all three proteins in the same cell does trigger reinitiation at many origins of replication within one cell cycle. 1286:
stuck forks are not copied, then the daughter strands get nick nick unreplicated sites. The un-replicated sites on one parent's strand hold the other strand together but not daughter strands. Therefore, the resulting sister chromatids cannot separate from each other and cannot divide into 2 daughter cells. When neighboring origins fire and a fork from one origin is stalled, fork from other origin access on an opposite direction of the stalled fork and duplicate the un-replicated sites. As other mechanism of the rescue there is application of
193: 771: 1080:
replication machineries these components coordinate. In most of the bacteria, all of the factors involved in DNA replication are located on replication forks and the complexes stay on the forks during DNA replication. Replication machineries are also referred to as replisomes, or DNA replication systems. These terms are generic terms for proteins located on replication forks. In eukaryotic and some bacterial cells the replisomes are not formed.
408: 1385: 31: 1495:. Repeating this process through multiple cycles amplifies the targeted DNA region. At the start of each cycle, the mixture of template and primers is heated, separating the newly synthesized molecule and template. Then, as the mixture cools, both of these become templates for annealing of new primers, and the polymerase extends from these. As a result, the number of copies of the target region doubles each round, 758: 5507: 1299: 315: 1174: 835: 738:, the low-processivity enzyme, Pol α, helps to initiate replication because it forms a complex with primase. In eukaryotes, leading strand synthesis is thought to be conducted by Pol ε; however, this view has recently been challenged, suggesting a role for Pol δ. Primer removal is completed Pol δ while repair of DNA during replication is completed by Pol ε. 5519: 1069: 84:. The double helix describes the appearance of a double-stranded DNA which is thus composed of two linear strands that run opposite to each other and twist together to form. During replication, these strands are separated. Each strand of the original DNA molecule then serves as a template for the production of its counterpart, a process referred to as 1344:, chromosome replication takes more time than dividing the cell. The bacteria solve this by initiating a new round of replication before the previous one has been terminated. The new round of replication will form the chromosome of the cell that is born two generations after the dividing cell. This mechanism creates overlapping replication cycles. 1255:. Replication sites can be detected by immunostaining daughter strands and replication enzymes and monitoring GFP-tagged replication factors. By these methods it is found that replication foci of varying size and positions appear in S phase of cell division and their number per nucleus is far smaller than the number of genomic replication forks. 432: 374:
post-replication mismatch repair mechanisms monitor the DNA for errors, being capable of distinguishing mismatches in the newly synthesized DNA Strand from the original strand sequence. Together, these three discrimination steps enable replication fidelity of less than one mistake for every 10 nucleotides added.
705:(RRM). This primase is structurally similar to many viral RNA-dependent RNA polymerases, reverse transcriptases, cyclic nucleotide generating cyclases and DNA polymerases of the A/B/Y families that are involved in DNA replication and repair. In eukaryotic replication, the primase forms a complex with Pol α. 1235:
is a key inhibitor of pre-replication complex assembly. Geminin binds Cdt1, preventing its binding to the origin recognition complex. In G1, levels of geminin are kept low by the APC, which ubiquitinates geminin to target it for degradation. When geminin is destroyed, Cdt1 is released, allowing it to
891:
Clamp proteins act as a sliding clamp on DNA, allowing the DNA polymerase to bind to its template and aid in processivity. The inner face of the clamp enables DNA to be threaded through it. Once the polymerase reaches the end of the template or detects double-stranded DNA, the sliding clamp undergoes
507:
onto the DNA. In eukaryotes, the Mcm complex is the helicase that will split the DNA helix at the replication forks and origins. The Mcm complex is recruited at late G1 phase and loaded by the ORC-Cdc6-Cdt1 complex onto the DNA via ATP-dependent protein remodeling. The loading of the Mcm complex onto
1285:
and favors normal progress of replication forks. Progress of replication forks is inhibited by many factors; collision with proteins or with complexes binding strongly on DNA, deficiency of dNTPs, nicks on template DNAs and so on. If replication forks get stuck and the rest of the sequences from the
1102:
rings, there is the only chance for the disentanglement in DNA replication. Fixing of replication machineries as replication factories can improve the success rate of DNA replication. If replication forks move freely in chromosomes, catenation of nuclei is aggravated and impedes mitotic segregation.
802:
The lagging strand is the strand of new DNA whose direction of synthesis is opposite to the direction of the growing replication fork. Because of its orientation, replication of the lagging strand is more complicated as compared to that of the leading strand. As a consequence, the DNA polymerase on
1336:
ATP builds up when the cell is in a rich medium, triggering DNA replication once the cell has reached a specific size. ATP competes with ADP to bind to DnaA, and the DnaA-ATP complex is able to initiate replication. A certain number of DnaA proteins are also required for DNA replication — each time
1139:
Termination requires that the progress of the DNA replication fork must stop or be blocked. Termination at a specific locus, when it occurs, involves the interaction between two components: (1) a termination site sequence in the DNA, and (2) a protein which binds to this sequence to physically stop
937:
The enzyme responsible for catalyzing the addition of nucleotide substrates to DNA in the 5′ to 3′ direction during DNA replication. Also performs proof-reading and error correction. There exist many different types of DNA Polymerase, each of which perform different functions in different types of
853:
As helicase unwinds DNA at the replication fork, the DNA ahead is forced to rotate. This process results in a build-up of twists in the DNA ahead. This build-up creates a torsional load that would eventually stop the replication fork. Topoisomerases are enzymes that temporarily break the strands of
778:
The replication fork is a structure that forms within the long helical DNA during DNA replication. It is produced by enzymes called helicases that break the hydrogen bonds that hold the DNA strands together in a helix. The resulting structure has two branching "prongs", each one made up of a single
519:
complexes are activated, which stimulate expression of genes that encode components of the DNA synthetic machinery. G1/S-Cdk activation also promotes the expression and activation of S-Cdk complexes, which may play a role in activating replication origins depending on species and cell type. Control
1209:
Once the DNA has gone through the "G1/S" test, it can only be copied once in every cell cycle. When the Mcm complex moves away from the origin, the pre-replication complex is dismantled. Because a new Mcm complex cannot be loaded at an origin until the pre-replication subunits are reactivated, one
1083:
In an alternative figure, DNA factories are similar to projectors and DNAs are like as cinematic films passing constantly into the projectors. In the replication factory model, after both DNA helicases for leading strands and lagging strands are loaded on the template DNAs, the helicases run along
1213:
Activation of S-Cdks in early S phase promotes the destruction or inhibition of individual pre-replication complex components, preventing immediate reassembly. S and M-Cdks continue to block pre-replication complex assembly even after S phase is complete, ensuring that assembly cannot occur again
1111:
Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in
1079:
consist of factors involved in DNA replication and appearing on template ssDNAs. Replication machineries include primosotors are replication enzymes; DNA polymerase, DNA helicases, DNA clamps and DNA topoisomerases, and replication proteins; e.g. single-stranded DNA binding proteins (SSB). In the
1591:
of this process may also help explain the directionality of synthesis—if DNA were synthesized in the 3′ to 5′ direction, the energy for the process would come from the 5′ end of the growing strand rather than from free nucleotides. The problem is that if the high energy triphosphates were on the
565:
After α-primase synthesizes the first primers, the primer-template junctions interact with the clamp loader, which loads the sliding clamp onto the DNA to begin DNA synthesis. The components of the preinitiation complex remain associated with replication forks as they move out from the origin.
557:
In early S phase, S-Cdk and Cdc7 activation lead to the assembly of the preinitiation complex, a massive protein complex formed at the origin. Formation of the preinitiation complex displaces Cdc6 and Cdt1 from the origin replication complex, inactivating and disassembling the pre-replication
373:
In general, DNA polymerases are highly accurate, with an intrinsic error rate of less than one mistake for every 10 nucleotides added. Some DNA polymerases can also delete nucleotides from the end of a developing strand in order to fix mismatched bases. This is known as proofreading. Finally,
849:
In all cases the helicase is composed of six polypeptides that wrap around only one strand of the DNA being replicated. The two polymerases are bound to the helicase hexamer. In eukaryotes the helicase wraps around the leading strand, and in prokaryotes it wraps around the lagging strand.
779:
strand of DNA. These two strands serve as the template for the leading and lagging strands, which will be created as DNA polymerase matches complementary nucleotides to the templates; the templates may be properly referred to as the leading strand template and the lagging strand template.
549:, which binds Cdc7 directly and promotes its protein kinase activity. Cdc7 has been found to be a rate-limiting regulator of origin activity. Together, the G1/S-Cdks and/or S-Cdks and Cdc7 collaborate to directly activate the replication origins, leading to initiation of DNA synthesis. 362:. When a nucleotide is being added to a growing DNA strand, the formation of a phosphodiester bond between the proximal phosphate of the nucleotide to the growing chain is accompanied by hydrolysis of a high-energy phosphate bond with release of the two distal phosphate groups as a 1276:
By firing of replication origins, controlled spatially and temporally, the formation of replication foci is regulated. D. A. Jackson et al.(1998) revealed that neighboring origins fire simultaneously in mammalian cells. Spatial juxtaposition of replication sites brings
785:
Since the leading and lagging strand templates are oriented in opposite directions at the replication fork, a major issue is how to achieve synthesis of new lagging strand DNA, whose direction of synthesis is opposite to the direction of the growing replication fork.
443:, it must first replicate its DNA. DNA replication is an all-or-none process; once replication begins, it proceeds to completion. Once replication is complete, it does not occur again in the same cell cycle. This is made possible by the division of initiation of the 70:. This is essential for cell division during growth and repair of damaged tissues, while it also ensures that each of the new cells receives its own copy of the DNA. The cell possesses the distinctive property of division, which makes replication of DNA essential. 1333:, which binds and sequesters the origin sequence; in addition, DnaA (required for initiation of replication) binds less well to hemimethylated DNA. As a result, newly replicated origins are prevented from immediately initiating another round of DNA replication. 544:
to activate replication origins. Cdc7 is not active throughout the cell cycle, and its activation is strictly timed to avoid premature initiation of DNA replication. In late G1, Cdc7 activity rises abruptly as a result of association with the regulatory subunit
666:
removes the primer RNA fragments, and a low processivity DNA polymerase distinct from the replicative polymerase enters to fill the gaps. When this is complete, a single nick on the leading strand and several nicks on the lagging strand can be found.
330:
that carry out all forms of DNA replication. DNA polymerases in general cannot initiate synthesis of new strands but can only extend an existing DNA or RNA strand paired with a template strand. To begin synthesis, a short fragment of RNA, called a
1205:
The G1/S checkpoint (restriction checkpoint) regulates whether eukaryotic cells enter the process of DNA replication and subsequent division. Cells that do not proceed through this checkpoint remain in the G0 stage and do not replicate their DNA.
578:
group before synthesis can be initiated (note: the DNA template is read in 3′ to 5′ direction whereas a new strand is synthesized in the 5′ to 3′ direction—this is often confused). Four distinct mechanisms for DNA synthesis are recognized:
718:
is the polymerase enzyme primarily responsible for DNA replication. It assembles into a replication complex at the replication fork that exhibits extremely high processivity, remaining intact for the entire replication cycle. In contrast,
640:
that use the rolling circle replication (RCR) mechanism, the RCR endonuclease creates a nick in the genome strand (single stranded viruses) or one of the DNA strands (plasmids). The 5′ end of the nicked strand is transferred to a
1095:
Replication Factories Disentangle Sister Chromatids. The disentanglement is essential for distributing the chromatids into daughter cells after DNA replication. Because sister chromatids after DNA replication hold each other by
318:
DNA polymerases adds nucleotides to the 3′ end of a strand of DNA. If a mismatch is accidentally incorporated, the polymerase is inhibited from further extension. Proofreading removes the mismatched nucleotide and extension
1190:. As the cell grows and divides, it progresses through stages in the cell cycle; DNA replication takes place during the S phase (synthesis phase). The progress of the eukaryotic cell through the cycle is controlled by 653:
adds RNA primers to the template strands. The leading strand receives one RNA primer while the lagging strand receives several. The leading strand is continuously extended from the primer by a DNA polymerase with high
1306:
Most bacteria do not go through a well-defined cell cycle but instead continuously copy their DNA; during rapid growth, this can result in the concurrent occurrence of multiple rounds of replication. In
532:
are primarily responsible for DNA replication. Clb5,6-Cdk1 complexes directly trigger the activation of replication origins and are therefore required throughout S phase to directly activate each origin.
381:. During the period of exponential DNA increase at 37 °C, the rate was 749 nucleotides per second. The mutation rate per base pair per replication during phage T4 DNA synthesis is 1.7 per 10. 4687: 1120:. This shortens the telomeres of the daughter DNA chromosome. As a result, cells can only divide a certain number of times before the DNA loss prevents further division. (This is known as the 621:, the 3′ OH group is provided by the side chain of an amino acid of the genome attached protein (the terminal protein) to which nucleotides are added by the DNA polymerase to form a new strand. 275:, creating the phosphate-deoxyribose backbone of the DNA double helix with the nucleobases pointing inward (i.e., toward the opposing strand). Nucleobases are matched between strands through 958:
Bind to ssDNA and prevent the DNA double helix from re-annealing after DNA helicase unwinds it, thus maintaining the strand separation, and facilitating the synthesis of the new strand.
727:
activity in addition to its polymerase activity, and uses its exonuclease activity to degrade the RNA primers ahead of it as it extends the DNA strand behind it, in a process called
1155:, enable only one direction of replication fork to pass through. As a result, the replication forks are constrained to always meet within the termination region of the chromosome. 892:
a conformational change that releases the DNA polymerase. Clamp-loading proteins are used to initially load the clamp, recognizing the junction between template and RNA primers.
3873:
Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al. (January 1988). "Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase".
1311:, the best-characterized bacteria, DNA replication is regulated through several mechanisms, including: the hemimethylation and sequestering of the origin sequence, the ratio of 152:(artificially, outside a cell). DNA polymerases isolated from cells and artificial DNA primers can be used to start DNA synthesis at known sequences in a template DNA molecule. 880:
that play an important role in regulating gene expression so the replicated DNA must be coiled around histones at the same places as the original DNA. To ensure this, histone
1217:
In budding yeast, inhibition of assembly is caused by Cdk-dependent phosphorylation of pre-replication complex components. At the onset of S phase, phosphorylation of Cdc6 by
1147:
Because bacteria have circular chromosomes, termination of replication occurs when the two replication forks meet each other on the opposite end of the parental chromosome.
1423: 2472:
McCarthy D, Minner C, Bernstein H, Bernstein C (October 1976). "DNA elongation rates and growing point distributions of wild-type phage T4 and a DNA-delay amber mutant".
1780: 4680: 415:
DNA replication, like all biological polymerization processes, proceeds in three enzymatically catalyzed and coordinated steps: initiation, elongation and termination.
1415: 1273:. The Heun's results denied the traditional concepts, budding yeasts do not have lamins, and support that replication origins self-assemble and form replication foci. 731:. Pol I is much less processive than Pol III because its primary function in DNA replication is to create many short DNA regions rather than a few very long regions. 794:
The leading strand is the strand of new DNA which is synthesized in the same direction as the growing replication fork. This sort of DNA replication is continuous.
1084:
the DNAs into each other. The helicases remain associated for the remainder of replication process. Peter Meister et al. observed directly replication sites in
558:
complex. Loading the preinitiation complex onto the origin activates the Mcm helicase, causing unwinding of the DNA helix. The preinitiation complex also loads
1132:
extends the repetitive sequences of the telomere region to prevent degradation. Telomerase can become mistakenly active in somatic cells, sometimes leading to
2219: 4673: 3742:"E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration" 537: 749:" (resembling the Greek letter theta: θ). In contrast, eukaryotes have longer linear chromosomes and initiate replication at multiple origins within these. 1116:
are regions of repetitive DNA close to the ends and help prevent loss of genes due to this shortening. Shortening of the telomeres is a normal process in
88:. As a result of semi-conservative replication, the new helix will be composed of an original DNA strand as well as a newly synthesized strand. Cellular 3933: 1337:
the origin is copied, the number of binding sites for DnaA doubles, requiring the synthesis of more DnaA to enable another initiation of replication.
690:
protein superfamily which contains a catalytic domain of the TOPRIM fold type. The TOPRIM fold contains an α/β core with four conserved strands in a
1261:,(2001) tracked GFP-tagged replication foci in budding yeast cells and revealed that replication origins move constantly in G1 and S phase and the 4497: 4460: 3484: 3373: 2801: 2522: 2374: 1060:
and DNA-replication. These results lead to the development of kinetic models accounting for the synergetic interactions and their stability.
1014: 649:
Cellular organisms use the first of these pathways since it is the most well-known. In this mechanism, once the two strands are separated,
161: 423: 4580: 1830: 1236:
function in pre-replication complex assembly. At the end of G1, the APC is inactivated, allowing geminin to accumulate and bind Cdt1.
399: 290: 4589: 4155: 3546: 3517: 3240: 3176: 2623: 2547: 2515: 2401: 2349: 2001: 1915: 1872: 1053: 953: 111:
which contains the genetic material of an organism. Unwinding of DNA at the origin and synthesis of new strands, accommodated by an
2868:"Toprim--a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins" 38:
is un'zipped' and unwound, then each separated strand (turquoise) acts as a template for replicating a new partner strand (green).
4642: 1439: 1987: 1858: 888:
before it is replicated and replace the histones in the correct place. Some steps in this reassembly are somewhat speculative.
503:
then associate with the bound origin recognition complex at the origin in order to form a larger complex necessary to load the
745:
with two prongs. In bacteria, which have a single origin of replication on their circular chromosome, this process creates a "
469:, a large complex of initiator proteins assembles into the pre-replication complex at particular points in the DNA, known as " 5341: 4936: 4502: 1329:
GATC DNA sequences, DNA synthesis results in hemimethylated sequences. This hemimethylated DNA is recognized by the protein
1072:
E. coli Replisome. Notably, the DNA on lagging strand forms a loop. The exact structure of replisome is not well understood.
3535:"Intracellular Control of Cell-Cycle Events: S-Phase Cyclin-Cdk Complexes (S-Cdks) Initiate DNA Replication Once Per Cycle" 2316: 1491:
to span a target region in template DNA, and then polymerizes partner strands in each direction from these primers using a
5477: 4312: 4162: 3926: 870: 5497: 783:
DNA is read by DNA polymerase in the 3′ to 5′ direction, meaning the new strand is synthesized in the 5' to 3' direction.
377:
The rate of DNA replication in a living cell was first measured as the rate of phage T4 DNA elongation in phage-infected
370:
into inorganic phosphate consumes a second high-energy phosphate bond and renders the reaction effectively irreversible.
5125: 85: 3581:
Nguyen VQ, Co C, Li JJ (June 2001). "Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms".
1265:
decreased significantly in S phase. Traditionally, replication sites were fixed on spatial structure of chromosomes by
5549: 5045: 4801: 4303: 3971: 3946: 1492: 500: 390: 3229:"DNA Replication Mechanisms: Special Proteins Help to Open Up the DNA Double Helix in Front of the Replication Fork" 1239:
Replication of chloroplast and mitochondrial genomes occurs independently of the cell cycle, through the process of
5554: 4432: 4408: 4277: 4109: 4056: 4038: 3950: 3789:
Cooper S, Helmstetter CE (February 1968). "Chromosome replication and the division cycle of Escherichia coli B/r".
3509: 1488: 1140:
DNA replication. In various bacterial species, this is named the DNA replication terminus site-binding protein, or
1033: 504: 488: 394: 332: 900:
At the replication fork, many replication enzymes assemble on the DNA into a complex molecular machine called the
5346: 4486: 1484: 1474: 1225: 1218: 1194:. Progression through checkpoints is controlled through complex interactions between various proteins, including 1089: 645:
residue on the nuclease and the free 3′ OH group is then used by the DNA polymerase to synthesize the new strand.
606:) employ a transfer RNA that primes DNA replication by providing a free 3′ OH that is used for elongation by the 153: 74: 5539: 5193: 5094: 5011: 4647: 3919: 2695:"An Essential and Cell-Cycle-Dependent ORC Dimerization Cycle Regulates Eukaryotic Chromosomal DNA Replication" 1450: 1364: 1319:, and the levels of protein DnaA. All these control the binding of initiator proteins to the origin sequences. 741:
As DNA synthesis continues, the original DNA strands continue to unwind on each side of the bubble, forming a
599:
to synthesize a short RNA primer with a free 3′ OH group which is subsequently elongated by a DNA polymerase.
5220: 4996: 4049: 3980: 1563: 1199: 516: 456: 444: 359: 338:
DNA polymerase adds a new strand of DNA by extending the 3′ end of an existing nucleotide chain, adding new
192: 3501: 2007: 854:
DNA, relieving the tension caused by unwinding the two strands of the DNA helix; topoisomerases (including
5448: 4764: 4546: 4477: 1523: 1375: 1312: 866: 520:
of these Cdks vary depending on cell type and stage of development. This regulation is best understood in
89: 3534: 5208: 5181: 4472: 4241: 3911: 2296: 1316: 1191: 1057: 839: 702: 607: 470: 347: 220:
DNA exists as a double-stranded structure, with both strands coiled together to form the characteristic
169: 157: 104: 3228: 3164: 2630: 2220:"Solving the Chicken-and-the-Egg Problem – "A Step Closer to the Reconstruction of the Origin of Life"" 1878: 1002:
Provides a starting point of RNA (or DNA) for DNA polymerase to begin synthesis of the new DNA strand.
164:(TMA) are examples. In March 2021, researchers reported evidence suggesting that a preliminary form of 5152: 5147: 5023: 4519: 4492: 4443: 3882: 3590: 2736:"Noc3p, a bHLH protein, plays an integral role in the initiation of DNA replication in budding yeast" 2408: 2259: 559: 272: 3079:
Huberman JA, Riggs AD (March 1968). "On the mechanism of DNA replication in mammalian chromosomes".
698:
Ia, topoisomerase II, the OLD-family nucleases and DNA repair proteins related to the RecR protein.
493:
An essential Noc3p dimerization cycle mediates ORC double-hexamer formation in replication licensing
492: 5544: 5388: 5230: 5186: 5142: 4880: 4249: 3390: 2535: 1988:"Chapter 27, Section 4: DNA Replication of Both Strands Proceeds Rapidly from Specific Start Sites" 1528: 1360: 1330: 881: 343: 948:
A protein which prevents elongating DNA polymerases from dissociating from the DNA parent strand.
701:
The primase used by archaea and eukaryotes, in contrast, contains a highly derived version of the
5438: 3771: 3614: 3457: 2940: 2224: 1496: 1262: 1240: 822:. The RNA primers are then removed and replaced with DNA, and the fragments of DNA are joined by 55: 2631:
12.1. General Features of Chromosomal Replication: Three Common Features of Replication Origins
2565:"DnaA protein binding to individual DnaA boxes in the Escherichia coli replication origin, oriC" 873:
bind to the DNA until a second strand is synthesized, preventing secondary structure formation.
2425:"The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases" 1804: 5433: 5137: 4455: 4272: 3898: 3855: 3806: 3763: 3722: 3704: 3665: 3606: 3542: 3513: 3480: 3449: 3369: 3346: 3297: 3279: 3236: 3209: 3172: 3145: 3096: 3038: 2989: 2932: 2897: 2848: 2807: 2797: 2757: 2716: 2675: 2619: 2594: 2543: 2518: 2511: 2489: 2454: 2397: 2370: 2345: 2277: 2200: 2149: 2091: 2073: 1997: 1965: 1911: 1868: 1741: 1692: 1643: 1041: 989: 904:. The following is a list of major DNA replication enzymes that participate in the replisome: 764: 659: 78: 47: 5559: 5523: 5169: 5063: 4696: 4412: 4261: 4256: 4148: 3890: 3845: 3837: 3798: 3753: 3712: 3696: 3655: 3645: 3598: 3439: 3336: 3328: 3287: 3269: 3201: 3135: 3127: 3088: 3061: 3028: 3020: 2979: 2971: 2924: 2887: 2879: 2838: 2747: 2706: 2665: 2655: 2584: 2576: 2481: 2444: 2436: 2267: 2190: 2180: 2139: 2131: 2081: 2065: 1955: 1947: 1731: 1723: 1682: 1674: 1633: 1625: 1568: 1037: 924: 819: 770: 742: 728: 710: 475: 297: 276: 209: 120: 3058:
Distinguishing the pathways of primer removal during Eukaryotic Okazaki fragment maturation
923:
Also known as helix destabilizing enzyme. Helicase separates the two strands of DNA at the
5426: 5099: 5028: 4831: 4417: 4009: 1538: 1326: 746: 283:. Adenine pairs with thymine (two hydrogen bonds), and guanine pairs with cytosine (three 2825:
Donaldson AD, Raghuraman MK, Friedman KL, Cross FR, Brewer BJ, Fangman WL (August 1998).
180:, could have been a replicator molecule itself in the very early development of life, or 3886: 3594: 3165:"DNA Replication Mechanisms: DNA Topoisomerases Prevent DNA Tangling During Replication" 2263: 1151:
regulates this process through the use of termination sequences that, when bound by the
5511: 5416: 5303: 5174: 5033: 5016: 4821: 4751: 4265: 4245: 3850: 3825: 3717: 3684: 3660: 3633: 3341: 3316: 3292: 3258:"The replication machinery of LUCA: common origin of DNA replication and transcription" 3257: 3140: 3115: 3033: 3008: 2984: 2959: 2670: 2643: 2589: 2564: 2449: 2424: 2195: 2168: 2144: 2115: 2086: 2053: 1960: 1935: 1736: 1711: 1687: 1662: 1638: 1613: 1513: 1266: 1121: 1019: 978:
Relieves strain of unwinding by DNA helicase; this is a specific type of topoisomerase
932: 869:; these structures can interfere with the movement of DNA polymerase. To prevent this, 723:
is the enzyme responsible for replacing RNA primers with DNA. DNA Pol I has a 5′ to 3′
574:
DNA polymerase has 5′–3′ activity. All known DNA replication systems require a free 3′
529: 525: 407: 323: 309: 284: 132: 127:
are associated with the replication fork to help in the initiation and continuation of
100: 4665: 2892: 2867: 2843: 2826: 2752: 2735: 1760: 1384: 806:
The lagging strand is synthesized in short, separated segments. On the lagging strand
763:
a: template, b: leading strand, c: lagging strand, d: replication fork, e: primer, f:
350:(phosphoanhydride) bonds between the three phosphates attached to each unincorporated 139:
that complement each (template) strand. DNA replication occurs during the S-stage of
42:(bases) are matched to synthesize the new partner strands into two new double helices. 30: 5533: 5456: 5421: 5264: 5254: 5225: 4858: 4851: 4467: 4394: 4004: 3802: 3758: 3741: 3092: 2613: 2485: 2391: 1991: 1862: 1588: 1553: 1518: 1427:
Epigenetic consequences of nucleosome reassembly defects at stalled replication forks
1164: 1085: 963: 859: 695: 691: 618: 521: 440: 367: 363: 128: 3775: 3461: 2944: 2928: 2028: 708:
Multiple DNA polymerases take on different roles in the DNA replication process. In
5443: 5286: 5246: 5213: 4985: 4971: 4869: 4606: 3618: 3256:
Koonin, Eugene V.; Krupovic, Mart; Ishino, Sonoko; Ishino, Yoshizumi (2020-06-09).
1117: 918: 655: 221: 197: 177: 165: 35: 1419:
Replication fork restarts by homologous recombination following replication stress
495:
ORC and Noc3p are continuously bound to the chromatin throughout the cell cycle.
3894: 3650: 3024: 2711: 2694: 2660: 1951: 1012:
Lengthens telomeric DNA by adding repetitive nucleotide sequences to the ends of
671:
works to fill these nicks in, thus completing the newly replicated DNA molecule.
346:. The energy for this process of DNA polymerization comes from hydrolysis of the 5467: 5333: 5281: 5276: 4789: 4551: 3700: 2069: 1629: 1543: 1508: 1222: 1152: 1141: 1068: 724: 658:, while the lagging strand is extended discontinuously from each primer forming 629: 229: 181: 5506: 3563: 3444: 3427: 3332: 3274: 3192:
Reece RJ, Maxwell A (26 September 2008). "DNA gyrase: structure and function".
2580: 2135: 1903: 757: 17: 5375: 5370: 5323: 5316: 5311: 5296: 5291: 5132: 5067: 4816: 4758: 4637: 4611: 4399: 4384: 3685:"Principles and concepts of DNA replication in bacteria, archaea, and eukarya" 3205: 1614:"Principles and concepts of DNA replication in bacteria, archaea, and eukarya" 1352: 1298: 1187: 1168: 1129: 1049: 1007: 983: 973: 855: 823: 633: 625: 614: 603: 355: 351: 339: 268: 245: 241: 237: 225: 140: 136: 81: 39: 3708: 3283: 2883: 2693:
Amin A, Wu R, Cheung MH, Scott JF, Wang Z, Zhou Z, et al. (March 2020).
2077: 1202:. Unlike bacteria, eukaryotic DNA replicates in the confines of the nucleus. 5380: 5365: 5352: 5104: 4892: 4811: 4806: 4796: 4784: 4723: 4575: 4389: 4379: 3475:
Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R, Inglis CH (2008).
3131: 2811: 2612:
Lodish H, Berk A, Zipursky LS, Matsudaira P, Baltimore D, Darnell J (2000).
1461: 1136:
formation. Increased telomerase activity is one of the hallmarks of cancer.
1125: 1113: 943: 901: 885: 735: 683: 314: 280: 233: 213: 3859: 3726: 3669: 3610: 3453: 3350: 3301: 3149: 3114:
Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, et al. (February 2019).
3060:(Ph.D. thesis). School of Medicine and Dentistry, University of Rochester. 3042: 2993: 2936: 2761: 2720: 2679: 2458: 2281: 2204: 2153: 2095: 1969: 1745: 1696: 1678: 1647: 1186:
Within eukaryotes, DNA replication is controlled within the context of the
834: 3902: 3810: 3767: 3213: 3100: 2975: 2901: 2852: 2598: 1173: 814:"reads" the template DNA and initiates synthesis of a short complementary 508:
the origin DNA marks the completion of pre-replication complex formation.
5411: 5357: 5259: 5203: 5198: 5089: 5050: 5006: 4908: 4713: 4652: 4633: 4205: 4196: 3994: 3740:
Slater S, Wold S, Lu M, Boye E, Skarstad K, Kleckner N (September 1995).
2493: 1852: 1456: 1251:
In vertebrate cells, replication sites concentrate into positions called
1045: 1029: 675: 642: 575: 466: 252: 148: 116: 93: 67: 2827:"CLB5-dependent activation of late replication origins in S. cerevisiae" 2272: 2247: 2185: 2052:
Chagin, Vadim O.; Stear, Jeffrey H.; Cardoso, M. Cristina (April 2010).
1727: 1431:
There are many events that contribute to replication stress, including:
511:
If environmental conditions are right in late G1 phase, the G1 and G1/S
5393: 5271: 5055: 5040: 4743: 4718: 4216: 4191: 4186: 4018: 3479:(6th ed.). San Francisco: Pearson/Benjamin Cummings. p. 237. 1356: 1232: 1098: 997: 877: 811: 715: 679: 650: 637: 596: 592: 541: 462: 358:; in particular, bases with three attached phosphate groups are called 260: 256: 248: 173: 124: 2440: 2409:
Chapter 27, Section 2: DNA Polymerases Require a Template and a Primer
5484: 5462: 5159: 5082: 5077: 4842: 4733: 4728: 3602: 3065: 3009:"Reconsidering DNA Polymerases at the Replication Fork in Eukaryotes" 1548: 1195: 1133: 668: 512: 327: 264: 112: 108: 3841: 1210:
origin of replication can not be used twice in the same cell cycle.
1044:) have found synergetic interactions between the replisome enzymes ( 431: 3683:
O'Donnell, Michael; Langston, Lance; Stillman, Bruce (2013-07-01).
3533:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002).
3227:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002).
3163:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002).
2534:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002).
2340:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002).
694:
topology. This structure is also found in the catalytic domains of
342:
matched to the template strand, one at a time, via the creation of
4966: 4958: 4776: 4738: 4566: 4561: 4556: 4539: 4534: 4529: 4524: 4512: 4507: 4225: 4220: 4177: 4172: 4167: 3634:"The obligate human pathogen, Neisseria gonorrhoeae, is polyploid" 2563:
Weigel C, Schmidt A, Rückert B, Lurz R, Messer W (November 1997).
1422: 1414: 1270: 1067: 756: 720: 663: 588: 584: 484: 422: 406: 398: 313: 263:, commonly abbreviated as A, C, G, and T. Adenine and guanine are 201: 191: 5472: 5164: 4705: 4448: 4372: 4367: 4362: 4357: 4352: 4347: 4342: 4337: 4332: 4327: 4322: 4317: 4209: 4139: 4134: 4129: 4124: 4119: 4114: 4102: 4095: 4086: 4081: 4076: 4071: 4066: 4061: 4023: 3999: 3987: 1558: 1533: 1348: 843: 687: 546: 496: 480: 205: 63: 4669: 3915: 674:
The primase used in this process differs significantly between
1379: 865:
Bare single-stranded DNA tends to fold back on itself forming
818:
primer. A DNA polymerase extends the primed segments, forming
815: 354:. Free bases with their attached phosphate groups are called 59: 624:
In the single stranded DNA viruses—a group that includes the
58:
of producing two identical replicas of DNA from one original
1290:
that excess origins do not fire in normal DNA replication.
335:, must be created and paired with the template DNA strand. 3364:
Griffiths AJ, Wessler SR, Lewontin RC, Carroll SB (2008).
2644:"Replication initiation: Implications in genome integrity" 146:
DNA replication (DNA amplification) can also be performed
3317:"Chaperoning histones during DNA replication and repair" 1859:"Chapter 27: DNA Replication, Recombination, and Repair" 1112:
each replication cycle from the end of the chromosome.
224:. Each single strand of DNA is a chain of four types of 2317:"DNA function & structure (with diagram) (article)" 1831:"Semi-Conservative DNA Replication; Meselson and Stahl" 1396: 803:
this strand is seen to "lag behind" the other strand.
3391:"Will the Hayflick limit keep us from living forever?" 3194:
Critical Reviews in Biochemistry and Molecular Biology
3116:"Structures and operating principles of the replisome" 2120:
single-molecule manipulation data analysis and models"
1302:
Dam methylates adenine of GATC sites after replication
1018:. This allows germ cells and stem cells to avoid the 774:
Many enzymes are involved in the DNA replication fork.
123:
growing bi-directionally from the origin. A number of
5495: 2915:
Frick DN, Richardson CC (July 2001). "DNA primases".
427:
Role of initiators for initiation of DNA replication
5404: 5332: 5245: 5113: 4995: 4984: 4957: 4929: 4879: 4868: 4841: 4830: 4775: 4704: 4624: 4598: 4428: 4299: 4290: 4234: 4034: 3967: 3958: 2344:(4th ed.). Garland Science. pp. 238–240. 1902:Lodish H, Berk A, Zipursky SL, et al. (2000). 1214:until all Cdk activity is reduced in late mitosis. 988:Re-anneals the semi-conservative strands and joins 296:The pairing of complementary bases in DNA (through 103:, DNA replication begins at specific locations, or 2390:Berg JM, Tymoczko JL, Stryer L, Clarke ND (2002). 2124:Computational and Structural Biotechnology Journal 1986:Berg JM, Tymoczko JL, Stryer L, Clarke ND (2002). 1857:Berg JM, Tymoczko JL, Stryer L, Clarke ND (2002). 92:and error-checking mechanisms ensure near perfect 2866:Aravind L, Leipe DD, Koonin EV (September 1998). 1612:O'Donnell M, Langston L, Stillman B (July 2013). 3315:Ransom M, Dennehey BK, Tyler JK (January 2010). 4625: 3826:"Causes and consequences of replication stress" 2418: 2416: 2169:"tRNA sequences can assemble into a replicator" 2167:Kühnlein A, Lanzmich SA, Braun D (March 2021). 2109: 2107: 2105: 1781:"GENETICS / DNA REPLICATION (BASIC) – Pathwayz" 1444:Conflicts between replication and transcription 1128:line, which passes DNA to the next generation, 3959: 2787: 2785: 2783: 2781: 2779: 2777: 2775: 2773: 2771: 1447:Insufficiency of essential replication factors 1056:) and with the DNA replication fork enhancing 968:Relaxes the DNA from its super-coiled nature. 4681: 3927: 3421: 3419: 3417: 3415: 3413: 3411: 2796:. London: New Science Press. pp. 64–75. 2297:"Base Pair: Definition, Rules In DNA And RNA" 1929: 1927: 1455:Overexpression or constitutive activation of 8: 3502:"Chapter 13.2.3. Termination of replication" 3426:Meister P, Taddei A, Gasser SM (June 2006). 1904:"DNA Replication, Repair, and Recombination" 1663:"DNA replication origins-where do we begin?" 4291: 2114:Jarillo J, Ibarra B, Cao-García FJ (2021). 1712:"Mechanisms of DNA replication termination" 4992: 4876: 4838: 4688: 4674: 4666: 4296: 3964: 3934: 3920: 3912: 3689:Cold Spring Harbor Perspectives in Biology 2964:Microbiology and Molecular Biology Reviews 2734:Zhang Y, Yu Z, Fu X, Liang C (June 2002). 2058:Cold Spring Harbor Perspectives in Biology 1981: 1979: 1936:"Origins of DNA replication in eukaryotes" 1618:Cold Spring Harbor Perspectives in Biology 686:. Bacteria use a primase belonging to the 3849: 3757: 3716: 3659: 3649: 3443: 3340: 3291: 3273: 3139: 3032: 2983: 2891: 2842: 2751: 2710: 2669: 2659: 2588: 2448: 2271: 2194: 2184: 2143: 2085: 1959: 1897: 1895: 1735: 1686: 1661:Prioleau MN, MacAlpine DM (August 2016). 1637: 2423:McCulloch SD, Kunkel TA (January 2008). 1761:"What Is DNA Replication And Its Steps?" 1297: 1281:of replication forks. The clustering do 1172: 906: 833: 769: 636:and others—and also the many phages and 562:and other DNA polymerases onto the DNA. 430: 403:Overview of the steps in DNA replication 366:. Enzymatic hydrolysis of the resulting 62:molecule. DNA replication occurs in all 29: 5502: 3428:"In and out of the replication factory" 2536:"Chapter 5: DNA Replication Mechanisms" 1604: 1580: 3824:Zeman MK, Cimprich KA (January 2014). 1716:Nature Reviews. Molecular Cell Biology 267:bases, while cytosine and thymine are 135:synthesizes the new strands by adding 3632:Tobiason DM, Seifert HS (June 2006). 2794:The cell cycle: principles of control 2369:. Blackwell Publishing. p. 112. 1851:Imperfect DNA replication results in 876:Double-stranded DNA is coiled around 583:All cellular life forms and many DNA 208:in the structure are colour-coded by 66:acting as the most essential part of 7: 435:Formation of pre-replication complex 162:transcription-mediated amplification 3570:(2nd ed.). Oxford: Wiley-Liss. 2958:Barry ER, Bell SD (December 2006). 1710:Dewar JM, Walter JC (August 2017). 1479:Researchers commonly replicate DNA 1435:Misincorporation of ribonucleotides 1283:rescue of stalled replication forks 212:and the detailed structures of two 1934:Hu Y, Stillman B (February 2023). 1340:In fast-growing bacteria, such as 1221:causes the binding of Cdc6 to the 1177:The cell cycle of eukaryotic cells 858:) achieve this by adding negative 172:, the biological synthesis of new 25: 4590:Control of chromosome duplication 4156:Autonomously replicating sequence 2642:Lin YC, Prasanth SG (July 2021). 2054:"Organization of DNA replication" 1054:Single-strand DNA-binding protein 954:Single-strand DNA-binding protein 838:The assembled human DNA clamp, a 479:the primary initiator protein is 291:DNA strands have a directionality 5517: 5505: 3564:"Chapter 13: Genome Replication" 3366:Introduction to Genetic Analysis 2960:"DNA replication in the archaea" 2508:The Molecular Basis of Mutation. 1383: 830:Dynamics at the replication fork 2929:10.1146/annurev.biochem.70.1.39 761:Scheme of the replication fork. 228:. Nucleotides in DNA contain a 5342:Last universal common ancestor 4937:Defective interfering particle 871:single-strand binding proteins 216:are shown in the bottom right. 1: 5478:Clonally transmissible cancer 4914:Satellite-like nucleic acids 4313:DNA polymerase III holoenzyme 4163:Single-strand binding protein 3539:Molecular Biology of the Cell 3477:Molecular Biology of the Gene 3368:. W. H. Freeman and Company. 3233:Molecular Biology of the Cell 3169:Molecular Biology of the Cell 2917:Annual Review of Biochemistry 2844:10.1016/s1097-2765(00)80127-6 2753:10.1016/s0092-8674(02)00805-x 2618:. W. H. Freeman and Company. 2540:Molecular Biology of the Cell 2367:Fundamental Molecular Biology 2342:Molecular Biology of the Cell 2246:Friedberg EC (January 2003). 2218:Maximilian L (3 April 2021). 1370:Problems with DNA replication 1231:In animal cells, the protein 602:The retroelements (including 3895:10.1126/science.239.4839.487 3803:10.1016/0022-2836(68)90425-7 3791:Journal of Molecular Biology 3759:10.1016/0092-8674(95)90272-4 3651:10.1371/journal.pbio.0040185 3093:10.1016/0022-2836(68)90013-2 3081:Journal of Molecular Biology 3025:10.1016/j.molcel.2015.07.004 2712:10.1016/j.celrep.2020.02.046 2661:10.1016/j.dnarep.2021.103131 2486:10.1016/0022-2836(76)90346-6 2474:Journal of Molecular Biology 2396:. W.H. Freeman and Company. 1996:. W.H. Freeman and Company. 1952:10.1016/j.molcel.2022.12.024 1910:(4th ed.). WH Freeman. 1867:. W.H. Freeman and Company. 1313:adenosine triphosphate (ATP) 913:Function in DNA replication 86:semiconservative replication 3701:10.1101/cshperspect.a010108 2070:10.1101/cshperspect.a000737 1630:10.1101/cshperspect.a010108 1493:thermostable DNA polymerase 1317:adenosine diphosphate (ADP) 1288:dormant replication origins 1034:single-molecule experiments 391:Prokaryotic DNA replication 168:, a necessary component of 5576: 5034:Class II or DNA transposon 5029:Class I or retrotransposon 4409:Prokaryotic DNA polymerase 4110:Minichromosome maintenance 4057:Origin recognition complex 3510:BIOS Scientific Publishers 3445:10.1016/j.cell.2006.06.014 3333:10.1016/j.cell.2010.01.004 3275:10.1186/s12915-020-00800-9 3056:Rossi ML (February 2009). 2510:Holden-Day, San Francisco 2295:Sabhadiya A (2023-03-13). 2136:10.1016/j.csbj.2021.06.032 1759:Sabhadiya A (2022-03-01). 1487:(PCR). PCR uses a pair of 1472: 1373: 1346: 1162: 927:behind the topoisomerase. 489:origin recognition complex 454: 395:Eukaryotic DNA replication 388: 307: 5347:Earliest known life forms 5221:Repeated sequences in DNA 4487:Eukaryotic DNA polymerase 3206:10.3109/10409239109114072 1809:Learn Science at Scitable 1485:polymerase chain reaction 1475:Polymerase chain reaction 1469:Polymerase chain reaction 1090:green fluorescent protein 540:is also required through 271:. These nucleotides form 196:The structure of the DNA 154:Polymerase chain reaction 5194:Endogenous viral element 5012:Horizontal gene transfer 3007:Stillman B (July 2015). 2581:10.1093/emboj/16.21.6574 1497:increasing exponentially 1365:Plasmid partition system 1226:ubiquitin protein ligase 1200:cyclin-dependent kinases 896:DNA replication proteins 360:nucleoside triphosphates 4891:dsDNA satellite virus ( 4050:Pre-replication complex 3981:Pre-replication complex 3132:10.1126/science.aav7003 2248:"DNA damage and repair" 1667:Genes & Development 1564:Replication (computing) 1077:Replication machineries 992:of the lagging strand. 457:Pre-replication complex 451:Pre-replication complex 445:pre-replication complex 244:correspond to the four 176:in accordance with the 5449:Helper dependent virus 4765:Biological dark matter 3389:Clark J (2009-05-11). 2884:10.1093/nar/26.18.4205 2872:Nucleic Acids Research 2615:Molecular Cell Biology 1908:Molecular Cell Biology 1679:10.1101/gad.285114.116 1524:Chromosome segregation 1428: 1420: 1376:DNA replication stress 1303: 1192:cell cycle checkpoints 1178: 1073: 1015:eukaryotic chromosomes 846: 775: 767: 617:and the φ29 family of 524:, where the S cyclins 436: 428: 412: 411:Steps in DNA synthesis 404: 320: 217: 105:origins of replication 68:biological inheritance 43: 5209:Endogenous retrovirus 5182:Origin of replication 4898:ssDNA satellite virus 4888:ssRNA satellite virus 4473:Replication protein A 4242:Origin of replication 2976:10.1128/MMBR.00029-06 1426: 1418: 1301: 1176: 1071: 1064:Replication machinery 837: 773: 760: 703:RNA recognition motif 608:reverse transcriptase 553:Preinitiation complex 536:In a similar manner, 434: 426: 410: 402: 348:high-energy phosphate 317: 195: 158:ligase chain reaction 96:for DNA replication. 34:DNA replication: The 33: 5153:Secondary chromosome 5148:Extrachromosomal DNA 5024:Transposable element 4444:Replication factor C 2705:(10): 3323–3338.e6. 1451:Common fragile sites 867:secondary structures 344:phosphodiester bonds 273:phosphodiester bonds 240:. The four types of 131:. Most prominently, 73:DNA is made up of a 5389:Model lipid bilayer 5231:Interspersed repeat 3887:1988Sci...239..487S 3830:Nature Cell Biology 3595:2001Natur.411.1068N 3589:(6841): 1068–1073. 3541:. Garland Science. 3235:. Garland Science. 3171:. Garland Science. 2542:. Garland Science. 2273:10.1038/nature01408 2264:2003Natur.421..436F 2186:10.7554/eLife.63431 2029:"What is a genome?" 1728:10.1038/nrm.2017.42 1529:Data storage device 1361:Plasmid copy number 385:Replication process 5550:Cellular processes 4699:organic structures 2792:Morgan DO (2007). 2365:Allison L (2007). 2116:"DNA replication: 1811:. Nature Education 1429: 1421: 1395:. You can help by 1304: 1241:D-loop replication 1179: 1074: 1022:on cell division. 862:to the DNA helix. 847: 776: 768: 437: 429: 413: 405: 321: 218: 56:biological process 44: 27:Biological process 5555:Molecular biology 5493: 5492: 5434:Non-cellular life 5241: 5240: 4980: 4979: 4953: 4952: 4907:ssRNA satellite ( 4663: 4662: 4620: 4619: 4456:Flap endonuclease 4286: 4285: 4273:Okazaki fragments 3881:(4839): 487–491. 3562:Brown TA (2002). 3500:Brown TA (2002). 3486:978-0-8053-9592-1 3375:978-0-7167-6887-6 2878:(18): 4205–4213. 2803:978-0-19-920610-0 2575:(21): 6574–6583. 2523:978-0-8162-2450-0 2441:10.1038/cr.2008.4 2376:978-1-4051-0379-4 2258:(6921): 436–440. 1673:(15): 1683–1697. 1413: 1412: 1247:Replication focus 1042:magnetic tweezers 1026: 1025: 990:Okazaki Fragments 820:Okazaki fragments 765:Okazaki fragments 660:Okazaki fragments 121:replication forks 48:molecular biology 16:(Redirected from 5567: 5522: 5521: 5520: 5510: 5509: 5501: 5170:Gene duplication 4993: 4989:self-replication 4877: 4839: 4697:Self-replicating 4690: 4683: 4676: 4667: 4413:DNA polymerase I 4297: 4257:Replication fork 4149:Licensing factor 3965: 3936: 3929: 3922: 3913: 3907: 3906: 3870: 3864: 3863: 3853: 3821: 3815: 3814: 3786: 3780: 3779: 3761: 3737: 3731: 3730: 3720: 3680: 3674: 3673: 3663: 3653: 3629: 3623: 3622: 3603:10.1038/35082600 3578: 3572: 3571: 3559: 3553: 3552: 3530: 3524: 3523: 3497: 3491: 3490: 3472: 3466: 3465: 3447: 3423: 3406: 3405: 3403: 3401: 3386: 3380: 3379: 3361: 3355: 3354: 3344: 3312: 3306: 3305: 3295: 3277: 3253: 3247: 3246: 3224: 3218: 3217: 3200:(3–4): 335–375. 3189: 3183: 3182: 3160: 3154: 3153: 3143: 3111: 3105: 3104: 3076: 3070: 3069: 3053: 3047: 3046: 3036: 3004: 2998: 2997: 2987: 2955: 2949: 2948: 2912: 2906: 2905: 2895: 2863: 2857: 2856: 2846: 2822: 2816: 2815: 2789: 2766: 2765: 2755: 2731: 2725: 2724: 2714: 2690: 2684: 2683: 2673: 2663: 2639: 2633: 2629: 2609: 2603: 2602: 2592: 2569:The EMBO Journal 2560: 2554: 2553: 2531: 2525: 2506:Drake JW (1970) 2504: 2498: 2497: 2469: 2463: 2462: 2452: 2420: 2411: 2407: 2387: 2381: 2380: 2362: 2356: 2355: 2337: 2331: 2330: 2328: 2327: 2313: 2307: 2306: 2304: 2303: 2292: 2286: 2285: 2275: 2243: 2237: 2236: 2234: 2232: 2215: 2209: 2208: 2198: 2188: 2164: 2158: 2157: 2147: 2111: 2100: 2099: 2089: 2049: 2043: 2042: 2040: 2039: 2025: 2019: 2018: 2016: 2015: 2006:. Archived from 1983: 1974: 1973: 1963: 1931: 1922: 1921: 1899: 1890: 1889: 1887: 1886: 1877:. Archived from 1849: 1843: 1842: 1835:Nature Education 1829:Pray LA (2008). 1826: 1820: 1819: 1817: 1816: 1801: 1795: 1794: 1792: 1791: 1777: 1771: 1770: 1768: 1767: 1756: 1750: 1749: 1739: 1707: 1701: 1700: 1690: 1658: 1652: 1651: 1641: 1609: 1593: 1585: 1569:Self-replication 1408: 1405: 1387: 1380: 1253:replication foci 1038:optical tweezers 925:Replication Fork 907: 884:disassemble the 753:Replication fork 743:replication fork 729:nick translation 326:are a family of 298:hydrogen bonding 64:living organisms 21: 5575: 5574: 5570: 5569: 5568: 5566: 5565: 5564: 5540:DNA replication 5530: 5529: 5528: 5518: 5516: 5504: 5496: 5494: 5489: 5439:Synthetic virus 5427:Artificial cell 5400: 5328: 5237: 5126:RNA replication 5121:DNA replication 5109: 5100:Group II intron 4998: 4988: 4976: 4967:Mammalian prion 4949: 4925: 4904:dsRNA satellite 4901:ssDNA satellite 4871: 4864: 4833: 4826: 4771: 4700: 4694: 4664: 4659: 4616: 4594: 4434: 4430: 4424: 4418:Klenow fragment 4301: 4282: 4266:leading strands 4230: 4040: 4036: 4030: 3969: 3954: 3943:DNA replication 3940: 3910: 3872: 3871: 3867: 3842:10.1038/ncb2897 3823: 3822: 3818: 3788: 3787: 3783: 3739: 3738: 3734: 3682: 3681: 3677: 3631: 3630: 3626: 3580: 3579: 3575: 3561: 3560: 3556: 3549: 3532: 3531: 3527: 3520: 3499: 3498: 3494: 3487: 3474: 3473: 3469: 3425: 3424: 3409: 3399: 3397: 3388: 3387: 3383: 3376: 3363: 3362: 3358: 3314: 3313: 3309: 3255: 3254: 3250: 3243: 3226: 3225: 3221: 3191: 3190: 3186: 3179: 3162: 3161: 3157: 3113: 3112: 3108: 3078: 3077: 3073: 3055: 3054: 3050: 3006: 3005: 3001: 2957: 2956: 2952: 2914: 2913: 2909: 2865: 2864: 2860: 2824: 2823: 2819: 2804: 2791: 2790: 2769: 2733: 2732: 2728: 2692: 2691: 2687: 2641: 2640: 2636: 2626: 2611: 2610: 2606: 2562: 2561: 2557: 2550: 2533: 2532: 2528: 2505: 2501: 2471: 2470: 2466: 2422: 2421: 2414: 2404: 2389: 2388: 2384: 2377: 2364: 2363: 2359: 2352: 2339: 2338: 2334: 2325: 2323: 2315: 2314: 2310: 2301: 2299: 2294: 2293: 2289: 2245: 2244: 2240: 2230: 2228: 2217: 2216: 2212: 2166: 2165: 2161: 2113: 2112: 2103: 2051: 2050: 2046: 2037: 2035: 2027: 2026: 2022: 2013: 2011: 2004: 1985: 1984: 1977: 1933: 1932: 1925: 1918: 1901: 1900: 1893: 1884: 1882: 1875: 1856: 1850: 1846: 1828: 1827: 1823: 1814: 1812: 1803: 1802: 1798: 1789: 1787: 1779: 1778: 1774: 1765: 1763: 1758: 1757: 1753: 1709: 1708: 1704: 1660: 1659: 1655: 1611: 1610: 1606: 1602: 1597: 1596: 1586: 1582: 1577: 1539:Gene expression 1505: 1477: 1471: 1464:inaccessibility 1409: 1403: 1400: 1393:needs expansion 1378: 1372: 1367: 1296: 1249: 1184: 1171: 1163:Main articles: 1161: 1124:.) Within the 1109: 1093: 1066: 898: 842:of the protein 832: 800: 792: 762: 755: 747:theta structure 572: 555: 459: 453: 421: 397: 389:Main articles: 387: 324:DNA polymerases 312: 306: 190: 52:DNA replication 28: 23: 22: 18:Replication eye 15: 12: 11: 5: 5573: 5571: 5563: 5562: 5557: 5552: 5547: 5542: 5532: 5531: 5527: 5526: 5514: 5491: 5490: 5488: 5487: 5482: 5481: 5480: 5475: 5465: 5459: 5453: 5452: 5451: 5446: 5436: 5431: 5430: 5429: 5424: 5414: 5408: 5406: 5402: 5401: 5399: 5398: 5397: 5396: 5391: 5383: 5378: 5373: 5368: 5362: 5361: 5360: 5349: 5344: 5338: 5336: 5330: 5329: 5327: 5326: 5321: 5320: 5319: 5314: 5306: 5304:Kappa organism 5301: 5300: 5299: 5294: 5289: 5284: 5279: 5269: 5268: 5267: 5262: 5251: 5249: 5243: 5242: 5239: 5238: 5236: 5235: 5234: 5233: 5228: 5218: 5217: 5216: 5211: 5206: 5201: 5191: 5190: 5189: 5179: 5178: 5177: 5175:Non-coding DNA 5172: 5167: 5157: 5156: 5155: 5150: 5145: 5140: 5130: 5129: 5128: 5117: 5115: 5111: 5110: 5108: 5107: 5102: 5097: 5095:Group I intron 5092: 5087: 5086: 5085: 5075: 5074: 5073: 5070: 5061: 5058: 5053: 5048: 5038: 5037: 5036: 5031: 5021: 5020: 5019: 5017:Genomic island 5014: 5003: 5001: 4997:Mobile genetic 4990: 4982: 4981: 4978: 4977: 4975: 4974: 4969: 4963: 4961: 4955: 4954: 4951: 4950: 4948: 4947: 4946: 4945: 4942: 4933: 4931: 4927: 4926: 4924: 4923: 4922: 4921: 4918: 4912: 4905: 4902: 4899: 4896: 4889: 4885: 4883: 4874: 4866: 4865: 4863: 4862: 4855: 4847: 4845: 4836: 4828: 4827: 4825: 4824: 4822:dsDNA-RT virus 4819: 4817:ssRNA-RT virus 4814: 4812:(−)ssRNA virus 4809: 4807:(+)ssRNA virus 4804: 4799: 4794: 4793: 4792: 4781: 4779: 4773: 4772: 4770: 4769: 4768: 4767: 4762: 4752:Incertae sedis 4748: 4747: 4746: 4741: 4736: 4731: 4721: 4716: 4710: 4708: 4702: 4701: 4695: 4693: 4692: 4685: 4678: 4670: 4661: 4660: 4658: 4657: 4656: 4655: 4650: 4645: 4630: 4628: 4622: 4621: 4618: 4617: 4615: 4614: 4609: 4602: 4600: 4596: 4595: 4593: 4592: 4586: 4585: 4584: 4583: 4572: 4571: 4570: 4569: 4564: 4559: 4554: 4544: 4543: 4542: 4537: 4532: 4527: 4517: 4516: 4515: 4510: 4505: 4500: 4490: 4483: 4482: 4481: 4480: 4470: 4465: 4464: 4463: 4453: 4452: 4451: 4440: 4438: 4426: 4425: 4423: 4422: 4421: 4420: 4405: 4404: 4403: 4402: 4392: 4387: 4382: 4377: 4376: 4375: 4370: 4365: 4360: 4355: 4350: 4345: 4340: 4335: 4330: 4325: 4320: 4309: 4307: 4294: 4288: 4287: 4284: 4283: 4281: 4280: 4275: 4270: 4269: 4268: 4253: 4252: 4238: 4236: 4232: 4231: 4229: 4228: 4223: 4213: 4212: 4202: 4201: 4200: 4199: 4194: 4183: 4182: 4181: 4180: 4175: 4170: 4159: 4158: 4152: 4151: 4145: 4144: 4143: 4142: 4137: 4132: 4127: 4122: 4117: 4106: 4105: 4099: 4098: 4092: 4091: 4090: 4089: 4084: 4079: 4074: 4069: 4064: 4053: 4052: 4046: 4044: 4039:preparation in 4032: 4031: 4029: 4028: 4027: 4026: 4015: 4014: 4013: 4012: 4007: 4002: 3991: 3990: 3984: 3983: 3977: 3975: 3962: 3956: 3955: 3941: 3939: 3938: 3931: 3924: 3916: 3909: 3908: 3865: 3816: 3797:(3): 519–540. 3781: 3752:(6): 927–936. 3732: 3695:(7): a010108. 3675: 3624: 3573: 3554: 3547: 3525: 3518: 3492: 3485: 3467: 3407: 3381: 3374: 3356: 3327:(2): 183–195. 3307: 3248: 3241: 3219: 3184: 3177: 3155: 3106: 3087:(2): 327–341. 3071: 3048: 3019:(2): 139–141. 3013:Molecular Cell 2999: 2970:(4): 876–887. 2950: 2907: 2858: 2837:(2): 173–182. 2831:Molecular Cell 2817: 2802: 2767: 2746:(7): 849–860. 2726: 2685: 2634: 2624: 2604: 2555: 2548: 2526: 2499: 2480:(4): 963–981. 2464: 2435:(1): 148–161. 2412: 2402: 2382: 2375: 2357: 2350: 2332: 2308: 2287: 2238: 2210: 2159: 2101: 2064:(4): a000737. 2044: 2020: 2002: 1975: 1946:(3): 352–372. 1940:Molecular Cell 1923: 1916: 1891: 1873: 1844: 1821: 1805:"double helix" 1796: 1772: 1751: 1722:(8): 507–516. 1702: 1653: 1624:(7): a010108. 1603: 1601: 1598: 1595: 1594: 1579: 1578: 1576: 1573: 1572: 1571: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1521: 1516: 1514:Cell (biology) 1511: 1504: 1501: 1473:Main article: 1470: 1467: 1466: 1465: 1459: 1453: 1448: 1445: 1442: 1440:DNA structures 1436: 1411: 1410: 1390: 1388: 1374:Main article: 1371: 1368: 1295: 1292: 1267:nuclear matrix 1259:P. Heun et al. 1248: 1245: 1183: 1180: 1160: 1157: 1122:Hayflick limit 1108: 1105: 1088:by monitoring 1082: 1065: 1062: 1024: 1023: 1020:Hayflick limit 1010: 1004: 1003: 1000: 994: 993: 986: 980: 979: 976: 970: 969: 966: 960: 959: 956: 950: 949: 946: 940: 939: 935: 933:DNA polymerase 929: 928: 921: 915: 914: 911: 897: 894: 831: 828: 799: 798:Lagging strand 796: 791: 790:Leading strand 788: 754: 751: 647: 646: 622: 619:bacteriophages 611: 600: 571: 568: 554: 551: 487:, this is the 455:Main article: 452: 449: 441:cell to divide 420: 417: 386: 383: 310:DNA polymerase 308:Main article: 305: 304:DNA polymerase 302: 285:hydrogen bonds 277:hydrogen bonds 189: 186: 133:DNA polymerase 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5572: 5561: 5558: 5556: 5553: 5551: 5548: 5546: 5543: 5541: 5538: 5537: 5535: 5525: 5515: 5513: 5508: 5503: 5499: 5486: 5483: 5479: 5476: 5474: 5471: 5470: 5469: 5466: 5464: 5460: 5458: 5457:Nanobacterium 5454: 5450: 5447: 5445: 5442: 5441: 5440: 5437: 5435: 5432: 5428: 5425: 5423: 5422:Cell division 5420: 5419: 5418: 5415: 5413: 5410: 5409: 5407: 5403: 5395: 5392: 5390: 5387: 5386: 5384: 5382: 5379: 5377: 5374: 5372: 5369: 5367: 5363: 5359: 5356: 5355: 5354: 5350: 5348: 5345: 5343: 5340: 5339: 5337: 5335: 5331: 5325: 5322: 5318: 5315: 5313: 5310: 5309: 5307: 5305: 5302: 5298: 5295: 5293: 5290: 5288: 5285: 5283: 5280: 5278: 5275: 5274: 5273: 5270: 5266: 5265:Hydrogenosome 5263: 5261: 5258: 5257: 5256: 5255:Mitochondrion 5253: 5252: 5250: 5248: 5247:Endosymbiosis 5244: 5232: 5229: 5227: 5226:Tandem repeat 5224: 5223: 5222: 5219: 5215: 5212: 5210: 5207: 5205: 5202: 5200: 5197: 5196: 5195: 5192: 5188: 5185: 5184: 5183: 5180: 5176: 5173: 5171: 5168: 5166: 5163: 5162: 5161: 5158: 5154: 5151: 5149: 5146: 5144: 5141: 5139: 5136: 5135: 5134: 5131: 5127: 5124: 5123: 5122: 5119: 5118: 5116: 5114:Other aspects 5112: 5106: 5103: 5101: 5098: 5096: 5093: 5091: 5088: 5084: 5081: 5080: 5079: 5076: 5071: 5069: 5065: 5062: 5059: 5057: 5054: 5052: 5049: 5047: 5044: 5043: 5042: 5039: 5035: 5032: 5030: 5027: 5026: 5025: 5022: 5018: 5015: 5013: 5010: 5009: 5008: 5005: 5004: 5002: 5000: 4994: 4991: 4987: 4983: 4973: 4970: 4968: 4965: 4964: 4962: 4960: 4956: 4943: 4940: 4939: 4938: 4935: 4934: 4932: 4928: 4919: 4916: 4915: 4913: 4910: 4906: 4903: 4900: 4897: 4894: 4890: 4887: 4886: 4884: 4882: 4878: 4875: 4873: 4867: 4861: 4860: 4859:Avsunviroidae 4856: 4854: 4853: 4852:Pospiviroidae 4849: 4848: 4846: 4844: 4840: 4837: 4835: 4829: 4823: 4820: 4818: 4815: 4813: 4810: 4808: 4805: 4803: 4800: 4798: 4795: 4791: 4788: 4787: 4786: 4783: 4782: 4780: 4778: 4774: 4766: 4763: 4761: 4760: 4756: 4755: 4754: 4753: 4749: 4745: 4742: 4740: 4737: 4735: 4732: 4730: 4727: 4726: 4725: 4722: 4720: 4717: 4715: 4712: 4711: 4709: 4707: 4706:Cellular life 4703: 4698: 4691: 4686: 4684: 4679: 4677: 4672: 4671: 4668: 4654: 4651: 4649: 4646: 4644: 4641: 4640: 4639: 4635: 4632: 4631: 4629: 4627: 4623: 4613: 4610: 4608: 4604: 4603: 4601: 4597: 4591: 4588: 4587: 4582: 4579: 4578: 4577: 4574: 4573: 4568: 4565: 4563: 4560: 4558: 4555: 4553: 4550: 4549: 4548: 4545: 4541: 4538: 4536: 4533: 4531: 4528: 4526: 4523: 4522: 4521: 4518: 4514: 4511: 4509: 4506: 4504: 4501: 4499: 4496: 4495: 4494: 4491: 4488: 4485: 4484: 4479: 4476: 4475: 4474: 4471: 4469: 4468:Topoisomerase 4466: 4462: 4459: 4458: 4457: 4454: 4450: 4447: 4446: 4445: 4442: 4441: 4439: 4436: 4427: 4419: 4416: 4415: 4414: 4410: 4407: 4406: 4401: 4398: 4397: 4396: 4395:Topoisomerase 4393: 4391: 4388: 4386: 4383: 4381: 4378: 4374: 4371: 4369: 4366: 4364: 4361: 4359: 4356: 4354: 4351: 4349: 4346: 4344: 4341: 4339: 4336: 4334: 4331: 4329: 4326: 4324: 4321: 4319: 4316: 4315: 4314: 4311: 4310: 4308: 4305: 4298: 4295: 4293: 4289: 4279: 4276: 4274: 4271: 4267: 4263: 4260: 4259: 4258: 4255: 4254: 4251: 4247: 4243: 4240: 4239: 4237: 4233: 4227: 4224: 4222: 4218: 4215: 4214: 4211: 4207: 4204: 4203: 4198: 4195: 4193: 4190: 4189: 4188: 4185: 4184: 4179: 4176: 4174: 4171: 4169: 4166: 4165: 4164: 4161: 4160: 4157: 4154: 4153: 4150: 4147: 4146: 4141: 4138: 4136: 4133: 4131: 4128: 4126: 4123: 4121: 4118: 4116: 4113: 4112: 4111: 4108: 4107: 4104: 4101: 4100: 4097: 4094: 4093: 4088: 4085: 4083: 4080: 4078: 4075: 4073: 4070: 4068: 4065: 4063: 4060: 4059: 4058: 4055: 4054: 4051: 4048: 4047: 4045: 4042: 4033: 4025: 4022: 4021: 4020: 4017: 4016: 4011: 4008: 4006: 4003: 4001: 3998: 3997: 3996: 3993: 3992: 3989: 3986: 3985: 3982: 3979: 3978: 3976: 3973: 3966: 3963: 3961: 3957: 3952: 3948: 3944: 3937: 3932: 3930: 3925: 3923: 3918: 3917: 3914: 3904: 3900: 3896: 3892: 3888: 3884: 3880: 3876: 3869: 3866: 3861: 3857: 3852: 3847: 3843: 3839: 3835: 3831: 3827: 3820: 3817: 3812: 3808: 3804: 3800: 3796: 3792: 3785: 3782: 3777: 3773: 3769: 3765: 3760: 3755: 3751: 3747: 3743: 3736: 3733: 3728: 3724: 3719: 3714: 3710: 3706: 3702: 3698: 3694: 3690: 3686: 3679: 3676: 3671: 3667: 3662: 3657: 3652: 3647: 3643: 3639: 3635: 3628: 3625: 3620: 3616: 3612: 3608: 3604: 3600: 3596: 3592: 3588: 3584: 3577: 3574: 3569: 3565: 3558: 3555: 3550: 3548:0-8153-3218-1 3544: 3540: 3536: 3529: 3526: 3521: 3519:1-85996-228-9 3515: 3511: 3507: 3503: 3496: 3493: 3488: 3482: 3478: 3471: 3468: 3463: 3459: 3455: 3451: 3446: 3441: 3438:(7): 1233–5. 3437: 3433: 3429: 3422: 3420: 3418: 3416: 3414: 3412: 3408: 3396: 3395:Howstuffworks 3392: 3385: 3382: 3377: 3371: 3367: 3360: 3357: 3352: 3348: 3343: 3338: 3334: 3330: 3326: 3322: 3318: 3311: 3308: 3303: 3299: 3294: 3289: 3285: 3281: 3276: 3271: 3267: 3263: 3259: 3252: 3249: 3244: 3242:0-8153-3218-1 3238: 3234: 3230: 3223: 3220: 3215: 3211: 3207: 3203: 3199: 3195: 3188: 3185: 3180: 3178:0-8153-3218-1 3174: 3170: 3166: 3159: 3156: 3151: 3147: 3142: 3137: 3133: 3129: 3126:(6429): 835. 3125: 3121: 3117: 3110: 3107: 3102: 3098: 3094: 3090: 3086: 3082: 3075: 3072: 3067: 3063: 3059: 3052: 3049: 3044: 3040: 3035: 3030: 3026: 3022: 3018: 3014: 3010: 3003: 3000: 2995: 2991: 2986: 2981: 2977: 2973: 2969: 2965: 2961: 2954: 2951: 2946: 2942: 2938: 2934: 2930: 2926: 2922: 2918: 2911: 2908: 2903: 2899: 2894: 2889: 2885: 2881: 2877: 2873: 2869: 2862: 2859: 2854: 2850: 2845: 2840: 2836: 2832: 2828: 2821: 2818: 2813: 2809: 2805: 2799: 2795: 2788: 2786: 2784: 2782: 2780: 2778: 2776: 2774: 2772: 2768: 2763: 2759: 2754: 2749: 2745: 2741: 2737: 2730: 2727: 2722: 2718: 2713: 2708: 2704: 2700: 2696: 2689: 2686: 2681: 2677: 2672: 2667: 2662: 2657: 2653: 2649: 2645: 2638: 2635: 2632: 2627: 2625:0-7167-3136-3 2621: 2617: 2616: 2608: 2605: 2600: 2596: 2591: 2586: 2582: 2578: 2574: 2570: 2566: 2559: 2556: 2551: 2549:0-8153-3218-1 2545: 2541: 2537: 2530: 2527: 2524: 2520: 2517: 2516:0-8162-2450-1 2513: 2509: 2503: 2500: 2495: 2491: 2487: 2483: 2479: 2475: 2468: 2465: 2460: 2456: 2451: 2446: 2442: 2438: 2434: 2430: 2429:Cell Research 2426: 2419: 2417: 2413: 2410: 2405: 2403:0-7167-3051-0 2399: 2395: 2394: 2386: 2383: 2378: 2372: 2368: 2361: 2358: 2353: 2351:0-8153-3218-1 2347: 2343: 2336: 2333: 2322: 2318: 2312: 2309: 2298: 2291: 2288: 2283: 2279: 2274: 2269: 2265: 2261: 2257: 2253: 2249: 2242: 2239: 2227: 2226: 2221: 2214: 2211: 2206: 2202: 2197: 2192: 2187: 2182: 2178: 2174: 2170: 2163: 2160: 2155: 2151: 2146: 2141: 2137: 2133: 2130:: 3765–3778. 2129: 2125: 2121: 2119: 2110: 2108: 2106: 2102: 2097: 2093: 2088: 2083: 2079: 2075: 2071: 2067: 2063: 2059: 2055: 2048: 2045: 2034: 2030: 2024: 2021: 2010:on 2020-03-26 2009: 2005: 2003:0-7167-3051-0 1999: 1995: 1994: 1989: 1982: 1980: 1976: 1971: 1967: 1962: 1957: 1953: 1949: 1945: 1941: 1937: 1930: 1928: 1924: 1919: 1917:0-7167-3136-3 1913: 1909: 1905: 1898: 1896: 1892: 1881:on 2020-03-26 1880: 1876: 1874:0-7167-3051-0 1870: 1866: 1865: 1860: 1854: 1848: 1845: 1840: 1836: 1832: 1825: 1822: 1810: 1806: 1800: 1797: 1786: 1782: 1776: 1773: 1762: 1755: 1752: 1747: 1743: 1738: 1733: 1729: 1725: 1721: 1717: 1713: 1706: 1703: 1698: 1694: 1689: 1684: 1680: 1676: 1672: 1668: 1664: 1657: 1654: 1649: 1645: 1640: 1635: 1631: 1627: 1623: 1619: 1615: 1608: 1605: 1599: 1590: 1584: 1581: 1574: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1554:Hachimoji DNA 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1520: 1519:Cell division 1517: 1515: 1512: 1510: 1507: 1506: 1502: 1500: 1498: 1494: 1490: 1486: 1482: 1476: 1468: 1463: 1460: 1458: 1454: 1452: 1449: 1446: 1443: 1441: 1437: 1434: 1433: 1432: 1425: 1417: 1407: 1398: 1394: 1391:This section 1389: 1386: 1382: 1381: 1377: 1369: 1366: 1362: 1358: 1354: 1350: 1345: 1343: 1338: 1334: 1332: 1328: 1325: 1320: 1318: 1314: 1310: 1300: 1293: 1291: 1289: 1284: 1280: 1274: 1272: 1268: 1264: 1260: 1256: 1254: 1246: 1244: 1242: 1237: 1234: 1229: 1227: 1224: 1220: 1215: 1211: 1207: 1203: 1201: 1197: 1193: 1189: 1181: 1175: 1170: 1166: 1165:Cell division 1158: 1156: 1154: 1150: 1145: 1143: 1137: 1135: 1131: 1127: 1123: 1119: 1118:somatic cells 1115: 1106: 1104: 1101: 1100: 1091: 1087: 1086:budding yeast 1081: 1078: 1070: 1063: 1061: 1059: 1058:DNA-unwinding 1055: 1051: 1047: 1043: 1039: 1035: 1032: 1031: 1021: 1017: 1016: 1011: 1009: 1006: 1005: 1001: 999: 996: 995: 991: 987: 985: 982: 981: 977: 975: 972: 971: 967: 965: 964:Topoisomerase 962: 961: 957: 955: 952: 951: 947: 945: 942: 941: 936: 934: 931: 930: 926: 922: 920: 917: 916: 912: 909: 908: 905: 903: 895: 893: 889: 887: 883: 879: 874: 872: 868: 863: 861: 857: 851: 845: 841: 836: 829: 827: 825: 821: 817: 813: 809: 804: 797: 795: 789: 787: 784: 780: 772: 766: 759: 752: 750: 748: 744: 739: 737: 732: 730: 726: 722: 717: 713: 712: 706: 704: 699: 697: 696:topoisomerase 693: 692:Rossmann-like 689: 685: 681: 677: 672: 670: 665: 661: 657: 652: 644: 639: 635: 631: 630:geminiviruses 627: 623: 620: 616: 612: 609: 605: 601: 598: 594: 590: 586: 582: 581: 580: 577: 569: 567: 563: 561: 552: 550: 548: 543: 539: 534: 531: 527: 523: 522:budding yeast 518: 514: 509: 506: 502: 498: 494: 490: 486: 482: 478: 477: 472: 468: 464: 458: 450: 448: 446: 442: 433: 425: 418: 416: 409: 401: 396: 392: 384: 382: 380: 375: 371: 369: 368:pyrophosphate 365: 364:pyrophosphate 361: 357: 353: 349: 345: 341: 336: 334: 329: 325: 316: 311: 303: 301: 299: 294: 292: 288: 286: 282: 278: 274: 270: 266: 262: 258: 254: 250: 247: 243: 239: 235: 231: 227: 223: 215: 211: 207: 203: 199: 194: 188:DNA structure 187: 185: 183: 179: 175: 171: 167: 163: 159: 155: 151: 150: 144: 142: 138: 134: 130: 129:DNA synthesis 126: 122: 119:, results in 118: 114: 110: 106: 102: 97: 95: 91: 87: 83: 80: 79:complementary 76: 71: 69: 65: 61: 57: 53: 49: 41: 37: 32: 19: 5444:Viral vector 5287:Gerontoplast 5214:Transpoviron 5120: 4986:Nucleic acid 4972:Fungal prion 4870:Helper-virus 4857: 4850: 4757: 4750: 4607:Processivity 4433:synthesis in 3942: 3878: 3874: 3868: 3833: 3829: 3819: 3794: 3790: 3784: 3749: 3745: 3735: 3692: 3688: 3678: 3641: 3638:PLOS Biology 3637: 3627: 3586: 3582: 3576: 3567: 3557: 3538: 3528: 3505: 3495: 3476: 3470: 3435: 3431: 3398:. Retrieved 3394: 3384: 3365: 3359: 3324: 3320: 3310: 3265: 3261: 3251: 3232: 3222: 3197: 3193: 3187: 3168: 3158: 3123: 3119: 3109: 3084: 3080: 3074: 3057: 3051: 3016: 3012: 3002: 2967: 2963: 2953: 2920: 2916: 2910: 2875: 2871: 2861: 2834: 2830: 2820: 2793: 2743: 2739: 2729: 2702: 2699:Cell Reports 2698: 2688: 2651: 2647: 2637: 2614: 2607: 2572: 2568: 2558: 2539: 2529: 2507: 2502: 2477: 2473: 2467: 2432: 2428: 2393:Biochemistry 2392: 2385: 2366: 2360: 2341: 2335: 2324:. Retrieved 2321:Khan Academy 2320: 2311: 2300:. Retrieved 2290: 2255: 2251: 2241: 2229:. Retrieved 2225:SciTechDaily 2223: 2213: 2176: 2172: 2162: 2127: 2123: 2117: 2061: 2057: 2047: 2036:. Retrieved 2032: 2023: 2012:. Retrieved 2008:the original 1993:Biochemistry 1992: 1943: 1939: 1907: 1883:. Retrieved 1879:the original 1864:Biochemistry 1863: 1847: 1838: 1834: 1824: 1813:. Retrieved 1808: 1799: 1788:. Retrieved 1785:pathwayz.org 1784: 1775: 1764:. Retrieved 1754: 1719: 1715: 1705: 1670: 1666: 1656: 1621: 1617: 1607: 1583: 1480: 1478: 1430: 1401: 1397:adding to it 1392: 1341: 1339: 1335: 1323: 1321: 1308: 1305: 1287: 1282: 1278: 1275: 1258: 1257: 1252: 1250: 1238: 1230: 1216: 1212: 1208: 1204: 1185: 1148: 1146: 1138: 1110: 1097: 1094: 1076: 1075: 1028: 1027: 1013: 919:DNA helicase 899: 890: 875: 864: 852: 848: 807: 805: 801: 793: 782: 781: 777: 740: 733: 709: 707: 700: 673: 656:processivity 648: 634:parvoviruses 626:circoviruses 615:adenoviruses 604:retroviruses 573: 564: 556: 535: 510: 474: 460: 438: 414: 378: 376: 372: 337: 322: 295: 289: 222:double helix 219: 198:double helix 178:genetic code 166:transfer RNA 147: 145: 98: 90:proofreading 75:double helix 72: 51: 45: 36:double helix 5468:Cancer cell 5334:Abiogenesis 5282:Chromoplast 5277:Chloroplast 5060:Degradative 4802:dsRNA virus 4797:ssDNA virus 4790:Giant virus 4785:dsDNA virus 4626:Termination 4300:Prokaryotic 4292:Replication 3968:Prokaryotic 3947:prokaryotic 3945:(comparing 3644:(6): e185. 3400:January 20, 3262:BMC Biology 1544:Epigenetics 1509:Autopoiesis 1153:Tus protein 1142:Ter protein 1107:Termination 725:exonuclease 716:DNA Pol III 505:Mcm complex 356:nucleotides 340:nucleotides 269:pyrimidines 246:nucleobases 230:deoxyribose 226:nucleotides 182:abiogenesis 170:translation 160:(LCR), and 137:nucleotides 40:Nucleotides 5545:Senescence 5534:Categories 5376:Proteinoid 5371:Coacervate 5324:Nitroplast 5317:Trophosome 5312:Bacteriome 5297:Apicoplast 5292:Leucoplast 5133:Chromosome 5051:Resistance 4759:Parakaryon 4638:Telomerase 4612:DNA ligase 4605:Movement: 4429:Eukaryotic 4400:DNA gyrase 4385:DNA ligase 4304:elongation 4035:Eukaryotic 3972:initiation 3960:Initiation 3951:eukaryotic 3836:(1): 2–9. 2654:: 103131. 2648:DNA Repair 2326:2020-12-10 2302:2023-08-04 2179:: e63431. 2038:2020-12-10 2033:yourgenome 2014:2019-08-09 1885:2019-08-09 1815:2020-12-10 1790:2020-12-10 1766:2023-08-04 1600:References 1589:energetics 1483:using the 1353:Min System 1347:See also: 1327:methylates 1279:clustering 1188:cell cycle 1182:Eukaryotes 1169:Cell cycle 1159:Regulation 1130:telomerase 1050:polymerase 1008:Telomerase 984:DNA ligase 974:DNA gyrase 882:chaperones 860:supercoils 856:DNA gyrase 824:DNA ligase 736:eukaryotes 684:eukaryotes 570:Elongation 465:and early 419:Initiation 319:continues. 281:base pairs 242:nucleotide 238:nucleobase 214:base pairs 141:interphase 5524:Astronomy 5385:Research 5366:Protocell 5105:Retrozyme 5064:Virulence 5046:Fertility 4893:Virophage 4881:Satellite 4872:dependent 4724:Eukaryota 4576:DNA clamp 4390:DNA clamp 4380:Replisome 3709:1943-0264 3284:1741-7007 3268:(1): 61. 3066:1802/6537 2923:: 39–80. 2078:1943-0264 1853:mutations 1462:Chromatin 1457:oncogenes 1126:germ cell 1114:Telomeres 944:DNA clamp 902:replisome 886:chromatin 721:DNA Pol I 560:α-primase 234:phosphate 232:sugar, a 115:known as 107:, in the 5412:Organism 5405:See also 5381:Sulphobe 5358:Ribozyme 5353:RNA life 5260:Mitosome 5204:Prophage 5199:Provirus 5187:Replicon 5143:Circular 5090:Phagemid 5007:Mobilome 4999:elements 4909:Virusoid 4832:Subviral 4744:Protista 4729:Animalia 4714:Bacteria 4634:Telomere 4250:Replicon 4206:Helicase 4197:RNASEH2A 4041:G1 phase 3995:Helicase 3860:24366029 3776:14652024 3727:23818497 3670:16719561 3611:11429609 3462:15397410 3454:16814710 3351:20141833 3302:32517760 3150:30679383 3043:26186286 2994:17158702 2945:33197061 2937:11395402 2812:70173205 2762:12110182 2721:32160540 2680:33992866 2459:18166979 2282:12540918 2205:33648631 2154:34285777 2118:In vitro 2096:20452942 1970:36640769 1841:(1): 98. 1746:28537574 1697:27542827 1648:23818497 1503:See also 1481:in vitro 1438:Unusual 1404:May 2020 1322:Because 1294:Bacteria 1263:dynamics 1046:helicase 1030:In vitro 878:histones 808:template 676:bacteria 643:tyrosine 638:plasmids 593:plasmids 576:hydroxyl 467:G1 phase 461:In late 279:to form 253:cytosine 236:, and a 174:proteins 149:in vitro 125:proteins 117:helicase 94:fidelity 5560:Copying 5512:Biology 5498:Portals 5394:Jeewanu 5308:Organs 5272:Plastid 5072:Cryptic 5041:Plasmid 4739:Plantae 4719:Archaea 4547:epsilon 4435:S phase 4262:Lagging 4217:Primase 4192:RNASEH1 4187:RNase H 4019:Primase 3903:2448875 3883:Bibcode 3875:Science 3851:4354890 3811:4866337 3768:7553853 3718:3685895 3661:1470461 3619:4393812 3591:Bibcode 3568:Genomes 3506:Genomes 3342:3433953 3293:7281927 3214:1657531 3141:6681829 3120:Science 3101:5689363 3034:4636199 2985:1698513 2902:9722641 2853:9734354 2671:8296962 2599:9351837 2590:1170261 2450:3639319 2260:Bibcode 2231:3 April 2196:7924937 2145:8267548 2087:2845211 1961:9898300 1737:6386472 1688:5002974 1639:3685895 1489:primers 1357:Plasmid 1342:E. coli 1324:E. coli 1309:E. coli 1233:geminin 1196:cyclins 1149:E. coli 1099:Cohesin 1036:(using 998:Primase 938:cells. 812:primase 711:E. coli 680:archaea 651:primase 613:In the 597:primase 585:viruses 542:S phase 476:E. coli 471:origins 463:mitosis 379:E. coli 328:enzymes 261:thymine 257:guanine 249:adenine 210:element 204:). The 156:(PCR), 82:strands 77:of two 54:is the 5485:Virome 5463:Nanobe 5160:Genome 5138:Linear 5083:Fosmid 5078:Cosmid 4843:Viroid 4834:agents 4278:Primer 3901:  3858:  3848:  3809:  3774:  3766:  3725:  3715:  3707:  3668:  3658:  3617:  3609:  3583:Nature 3545:  3516:  3483:  3460:  3452:  3372:  3349:  3339:  3300:  3290:  3282:  3239:  3212:  3175:  3148:  3138:  3099:  3041:  3031:  2992:  2982:  2943:  2935:  2900:  2893:147817 2890:  2851:  2810:  2800:  2760:  2719:  2678:  2668:  2622:  2597:  2587:  2546:  2521:  2514:  2494:789903 2492:  2457:  2447:  2400:  2373:  2348:  2280:  2252:Nature 2203:  2193:  2152:  2142:  2094:  2084:  2076:  2000:  1968:  1958:  1914:  1871:  1744:  1734:  1695:  1685:  1646:  1636:  1549:Genome 1363:, and 1271:lamins 1134:cancer 1052:, and 910:Enzyme 840:trimer 669:Ligase 632:, the 628:, the 595:use a 589:phages 513:cyclin 473:". In 439:For a 333:primer 265:purine 259:, and 200:(type 113:enzyme 109:genome 4959:Prion 4930:Other 4777:Virus 4734:Fungi 4567:POLE4 4562:POLE3 4557:POLE2 4540:POLD4 4535:POLD3 4530:POLD2 4525:POLD1 4520:delta 4513:PRIM2 4508:PRIM1 4503:POLA2 4498:POLA1 4493:alpha 4226:PRIM2 4221:PRIM1 4178:SSBP4 4173:SSBP3 4168:SSBP2 3772:S2CID 3615:S2CID 3458:S2CID 2941:S2CID 2173:eLife 1575:Notes 664:RNase 485:yeast 483:; in 481:Dna A 206:atoms 202:B-DNA 99:In a 5473:HeLa 5417:Cell 5165:Gene 4653:DKC1 4648:TERC 4643:TERT 4599:Both 4581:PCNA 4552:POLE 4478:RPA1 4461:FEN1 4449:RFC1 4373:holE 4368:holD 4363:holC 4358:holB 4353:holA 4348:dnaX 4343:dnaT 4338:dnaQ 4333:dnaN 4328:dnaH 4323:dnaE 4318:dnaC 4264:and 4235:Both 4210:HFM1 4140:MCM7 4135:MCM6 4130:MCM5 4125:MCM4 4120:MCM3 4115:MCM2 4103:Cdt1 4096:Cdc6 4087:ORC6 4082:ORC5 4077:ORC4 4072:ORC3 4067:ORC2 4062:ORC1 4024:dnaG 4005:dnaB 4000:dnaA 3988:dnaC 3899:PMID 3856:PMID 3807:PMID 3764:PMID 3746:Cell 3723:PMID 3705:ISSN 3666:PMID 3607:PMID 3543:ISBN 3514:ISBN 3481:ISBN 3450:PMID 3432:Cell 3402:2015 3370:ISBN 3347:PMID 3321:Cell 3298:PMID 3280:ISSN 3237:ISBN 3210:PMID 3173:ISBN 3146:PMID 3097:PMID 3039:PMID 2990:PMID 2933:PMID 2898:PMID 2849:PMID 2808:OCLC 2798:ISBN 2758:PMID 2740:Cell 2717:PMID 2676:PMID 2620:ISBN 2595:PMID 2544:ISBN 2519:ISBN 2512:ISBN 2490:PMID 2455:PMID 2398:ISBN 2371:ISBN 2346:ISBN 2278:PMID 2233:2021 2201:PMID 2150:PMID 2092:PMID 2074:ISSN 1998:ISBN 1966:PMID 1912:ISBN 1869:ISBN 1742:PMID 1693:PMID 1644:PMID 1587:The 1559:Life 1534:Gene 1349:FtsZ 1331:SeqA 1219:Cdk1 1198:and 1167:and 1040:and 844:PCNA 810:, a 688:DnaG 678:and 591:and 547:DBF4 538:Cdc7 530:Clb6 528:and 526:Clb5 501:Cdt1 499:and 497:Cdc6 393:and 352:base 101:cell 5056:Col 4944:DNA 4941:RNA 4920:DNA 4917:RNA 4246:Ori 3949:to 3891:doi 3879:239 3846:PMC 3838:doi 3799:doi 3754:doi 3713:PMC 3697:doi 3656:PMC 3646:doi 3599:doi 3587:411 3440:doi 3436:125 3337:PMC 3329:doi 3325:140 3288:PMC 3270:doi 3202:doi 3136:PMC 3128:doi 3124:363 3089:doi 3062:hdl 3029:PMC 3021:doi 2980:PMC 2972:doi 2925:doi 2888:PMC 2880:doi 2839:doi 2748:doi 2744:109 2707:doi 2666:PMC 2656:doi 2652:103 2585:PMC 2577:doi 2482:doi 2478:106 2445:PMC 2437:doi 2268:doi 2256:421 2191:PMC 2181:doi 2140:PMC 2132:doi 2082:PMC 2066:doi 1956:PMC 1948:doi 1732:PMC 1724:doi 1683:PMC 1675:doi 1634:PMC 1626:doi 1399:. 1315:to 1269:or 1223:SCF 816:RNA 734:In 517:Cdk 287:). 60:DNA 46:In 5536:: 5068:Ti 4636:: 4411:: 4219:: 4208:: 4010:T7 3897:. 3889:. 3877:. 3854:. 3844:. 3834:16 3832:. 3828:. 3805:. 3795:31 3793:. 3770:. 3762:. 3750:82 3748:. 3744:. 3721:. 3711:. 3703:. 3691:. 3687:. 3664:. 3654:. 3640:. 3636:. 3613:. 3605:. 3597:. 3585:. 3566:. 3537:. 3512:. 3508:. 3504:. 3456:. 3448:. 3434:. 3430:. 3410:^ 3393:. 3345:. 3335:. 3323:. 3319:. 3296:. 3286:. 3278:. 3266:18 3264:. 3260:. 3231:. 3208:. 3198:26 3196:. 3167:. 3144:. 3134:. 3122:. 3118:. 3095:. 3085:32 3083:. 3037:. 3027:. 3017:59 3015:. 3011:. 2988:. 2978:. 2968:70 2966:. 2962:. 2939:. 2931:. 2921:70 2919:. 2896:. 2886:. 2876:26 2874:. 2870:. 2847:. 2833:. 2829:. 2806:. 2770:^ 2756:. 2742:. 2738:. 2715:. 2703:30 2701:. 2697:. 2674:. 2664:. 2650:. 2646:. 2593:. 2583:. 2573:16 2571:. 2567:. 2538:. 2488:. 2476:. 2453:. 2443:. 2433:18 2431:. 2427:. 2415:^ 2319:. 2276:. 2266:. 2254:. 2250:. 2222:. 2199:. 2189:. 2177:10 2175:. 2171:. 2148:. 2138:. 2128:19 2126:. 2122:. 2104:^ 2090:. 2080:. 2072:. 2060:. 2056:. 2031:. 1990:. 1978:^ 1964:. 1954:. 1944:83 1942:. 1938:. 1926:^ 1906:. 1894:^ 1861:. 1855:. 1837:. 1833:. 1807:. 1783:. 1740:. 1730:. 1720:18 1718:. 1714:. 1691:. 1681:. 1671:30 1669:. 1665:. 1642:. 1632:. 1620:. 1616:. 1499:. 1359:, 1355:, 1351:, 1243:. 1144:. 1048:, 826:. 714:, 662:. 587:, 447:. 255:, 251:, 184:. 143:. 50:, 5500:: 5461:? 5455:? 5364:† 5351:? 5066:/ 4911:) 4895:) 4689:e 4682:t 4675:v 4489:: 4437:) 4431:( 4306:) 4302:( 4248:/ 4244:/ 4043:) 4037:( 3974:) 3970:( 3953:) 3935:e 3928:t 3921:v 3905:. 3893:: 3885:: 3862:. 3840:: 3813:. 3801:: 3778:. 3756:: 3729:. 3699:: 3693:5 3672:. 3648:: 3642:4 3621:. 3601:: 3593:: 3551:. 3522:. 3489:. 3464:. 3442:: 3404:. 3378:. 3353:. 3331:: 3304:. 3272:: 3245:. 3216:. 3204:: 3181:. 3152:. 3130:: 3103:. 3091:: 3068:. 3064:: 3045:. 3023:: 2996:. 2974:: 2947:. 2927:: 2904:. 2882:: 2855:. 2841:: 2835:2 2814:. 2764:. 2750:: 2723:. 2709:: 2682:. 2658:: 2628:. 2601:. 2579:: 2552:. 2496:. 2484:: 2461:. 2439:: 2406:. 2379:. 2354:. 2329:. 2305:. 2284:. 2270:: 2262:: 2235:. 2207:. 2183:: 2156:. 2134:: 2098:. 2068:: 2062:2 2041:. 2017:. 1972:. 1950:: 1920:. 1888:. 1839:1 1818:. 1793:. 1769:. 1748:. 1726:: 1699:. 1677:: 1650:. 1628:: 1622:5 1406:) 1402:( 682:/ 610:. 515:- 20:)

Index

Replication eye

double helix
Nucleotides
molecular biology
biological process
DNA
living organisms
biological inheritance
double helix
complementary
strands
semiconservative replication
proofreading
fidelity
cell
origins of replication
genome
enzyme
helicase
replication forks
proteins
DNA synthesis
DNA polymerase
nucleotides
interphase
in vitro
Polymerase chain reaction
ligase chain reaction
transcription-mediated amplification

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.