Knowledge (XXG)

Reuleaux polygon

Source đź“ť

53: 41: 193: 20: 69: 204:. These polygons are optimal in multiple ways: they have the largest possible perimeter for their diameter, the largest possible width for their diameter, and the largest possible width for their perimeter. 200:
A regular Reuleaux polygon has sides of equal length. More generally, when a Reuleaux polygon has sides that can be split into arcs of equal length, the convex hull of the arc endpoints is a
111:
with an odd number of sides as well as certain irregular polygons. Every curve of constant width can be accurately approximated by Reuleaux polygons. They have been applied in
107:
by connecting each pair of adjacent vertices with a circular arc centered on the opposing vertex, and Reuleaux polygons can be formed by a similar construction from any
186:
The Reuleaux polygons based on regular polygons are the only curves of constant width whose boundaries are formed by finitely many circular arcs of equal length.
165: 141: 147:
with an odd number of sides, in which each vertex is equidistant to the two opposite vertices and closer to all other vertices, then replacing each side of
212:
The constant width of these shapes allows their use as coins that can be used in coin-operated machines. For instance, the United Kingdom has made
506: 322: 276: 224:
dollar coin uses another regular Reuleaux polygon with 11 sides. However, some coins with rounded-polygon sides, such as the 12-sided 2017
178:
of its arc endpoints. However, it is possible for other curves of constant width to be made of an even number of arcs with varying radii.
540: 467: 441: 189:
Every curve of constant width can be approximated arbitrarily closely by a (possibly irregular) Reuleaux polygon of the same width.
167:
by an arc centered at its opposite vertex produces a Reuleaux polygon. As a special case, this construction is possible for every
517: 339: 174:
Every Reuleaux polygon must have an odd number of circular-arc sides, and can be constructed in this way from a polygon, the
231:
Although Chinese inventor Guan Baihua has made a bicycle with Reuleaux polygon wheels, the invention has not caught on.
213: 217: 545: 84: 196:
Four 15-sided Reinhardt polygons, formed from four different Reuleaux polygons with 9, 3, 5, and 15 sides
308: 104: 28: 377: 256: 412: 386: 290: 52: 463: 457: 437: 318: 314: 272: 201: 96: 24: 502: 396: 348: 264: 408: 362: 286: 404: 358: 282: 168: 108: 375:
Hare, Kevin G.; Mossinghoff, Michael J. (2019), "Most Reinhardt polygons are sporadic",
313:, Dolciani Mathematical Expositions, vol. 45, Mathematical Association of America, 429: 150: 144: 126: 112: 100: 72: 483: 534: 488: 416: 294: 225: 88: 192: 175: 40: 19: 400: 268: 261:
Bodies of Constant Width: An Introduction to Convex Geometry with Applications
68: 353: 59: 221: 92: 391: 337:
Firey, W. J. (1960), "Isoperimetric ratios of Reuleaux polygons",
191: 67: 18: 507:"A new bicycle reinvents the wheel, with a pentagon and triangle" 228:
coin, do not have constant width and are not Reuleaux polygons.
220:
coins in the shape of a regular Reuleaux heptagon. The Canadian
95:. These shapes are named after their prototypical example, the 99:, which in turn is named after 19th-century German engineer 310:
Icons of Mathematics: An Exploration of Twenty Key Images
434:
The Unexpected Hanging and Other Mathematical Diversions
153: 129: 103:. The Reuleaux triangle can be constructed from an 159: 135: 436:, University of Chicago Press, pp. 212–221, 462:, Princeton University Press, pp. 104–105, 432:(1991), "Chapter 18: Curves of Constant Width", 8: 482:Freiberger, Marianne (December 13, 2016), 259:(2019), "Section 8.1: Reuleaux Polygons", 459:Single Digits: In Praise of Small Numbers 390: 352: 307:Alsina, Claudi; Nelsen, Roger B. (2011), 152: 128: 16:Constant-width curve of equal-radius arcs 518:"Inventor creates seriously cool wheels" 240: 516:Newitz, Annalee (September 30, 2014), 250: 248: 246: 244: 7: 14: 255:Martini, Horst; Montejano, Luis; 263:, Birkhäuser, pp. 167–169, 51: 39: 340:Pacific Journal of Mathematics 1: 171:with an odd number of sides. 562: 456:Chamberland, Marc (2015), 541:Piecewise-circular curves 401:10.1007/s10711-018-0326-5 269:10.1007/978-3-030-03868-7 75:coin, a Reuleaux heptagon 46:Regular Reuleaux polygons 27:replaces the sides of an 484:"New ÂŁ1 coin gets even" 354:10.2140/pjm.1960.10.823 85:curve of constant width 197: 161: 137: 76: 32: 195: 162: 138: 71: 22: 151: 127: 105:equilateral triangle 29:equilateral triangle 378:Geometriae Dedicata 58:Irregular Reuleaux 198: 157: 133: 77: 33: 503:du Sautoy, Marcus 324:978-0-88385-352-8 278:978-3-030-03866-3 257:Oliveros, DĂ©borah 202:Reinhardt polygon 160:{\displaystyle P} 136:{\displaystyle P} 97:Reuleaux triangle 25:Reuleaux triangle 553: 525: 524: 513: 505:(May 27, 2009), 499: 493: 492: 479: 473: 472: 453: 447: 446: 426: 420: 419: 394: 372: 366: 365: 356: 334: 328: 327: 304: 298: 297: 252: 166: 164: 163: 158: 142: 140: 139: 134: 81:Reuleaux polygon 55: 43: 31:by circular arcs 561: 560: 556: 555: 554: 552: 551: 550: 531: 530: 529: 528: 515: 501: 500: 496: 481: 480: 476: 470: 455: 454: 450: 444: 430:Gardner, Martin 428: 427: 423: 374: 373: 369: 336: 335: 331: 325: 306: 305: 301: 279: 254: 253: 242: 237: 210: 184: 169:regular polygon 149: 148: 125: 124: 121: 109:regular polygon 79:In geometry, a 66: 65: 64: 63: 62: 56: 48: 47: 44: 17: 12: 11: 5: 559: 557: 549: 548: 546:Constant width 543: 533: 532: 527: 526: 494: 474: 468: 448: 442: 421: 367: 347:(3): 823–829, 329: 323: 299: 277: 239: 238: 236: 233: 209: 206: 183: 180: 156: 145:convex polygon 132: 120: 117: 113:coinage shapes 101:Franz Reuleaux 73:Gambian dalasi 57: 50: 49: 45: 38: 37: 36: 35: 34: 15: 13: 10: 9: 6: 4: 3: 2: 558: 547: 544: 542: 539: 538: 536: 523: 519: 512: 508: 504: 498: 495: 491: 490: 489:Plus Magazine 485: 478: 475: 471: 469:9781400865697 465: 461: 460: 452: 449: 445: 443:0-226-28256-2 439: 435: 431: 425: 422: 418: 414: 410: 406: 402: 398: 393: 388: 384: 380: 379: 371: 368: 364: 360: 355: 350: 346: 342: 341: 333: 330: 326: 320: 316: 312: 311: 303: 300: 296: 292: 288: 284: 280: 274: 270: 266: 262: 258: 251: 249: 247: 245: 241: 234: 232: 229: 227: 226:British pound 223: 219: 215: 207: 205: 203: 194: 190: 187: 181: 179: 177: 172: 170: 154: 146: 130: 118: 116: 114: 110: 106: 102: 98: 94: 90: 89:circular arcs 86: 82: 74: 70: 61: 54: 42: 30: 26: 21: 521: 510: 497: 487: 477: 458: 451: 433: 424: 382: 376: 370: 344: 338: 332: 309: 302: 260: 230: 211: 208:Applications 199: 188: 185: 173: 122: 119:Construction 91:of constant 80: 78: 514:. See also 176:convex hull 87:made up of 535:Categories 235:References 182:Properties 511:The Times 417:119629098 392:1405.5233 295:127264210 385:: 1–18, 218:50-pence 214:20-pence 60:heptagon 522:Gizmodo 409:3933447 363:0113176 287:3930585 466:  440:  415:  407:  361:  321:  315:p. 155 293:  285:  275:  222:loonie 93:radius 413:S2CID 387:arXiv 291:S2CID 143:is a 83:is a 464:ISBN 438:ISBN 319:ISBN 273:ISBN 216:and 397:doi 383:198 349:doi 265:doi 123:If 537:: 520:, 509:, 486:, 411:, 405:MR 403:, 395:, 381:, 359:MR 357:, 345:10 343:, 317:, 289:, 283:MR 281:, 271:, 243:^ 115:. 23:A 399:: 389:: 351:: 267:: 155:P 131:P

Index


Reuleaux triangle
equilateral triangle


heptagon

Gambian dalasi
curve of constant width
circular arcs
radius
Reuleaux triangle
Franz Reuleaux
equilateral triangle
regular polygon
coinage shapes
convex polygon
regular polygon
convex hull

Reinhardt polygon
20-pence
50-pence
loonie
British pound




Oliveros, DĂ©borah

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑