Knowledge

Reverse gyrase

Source 📝

382:(a Crenarchaeota TopR2 reverse gyrase) initiates an unwinding of approximately 20 base pairs upon binding to a DNA structure. Upon initial binding to the DNA, the helicase domain is in an open conformation, while the topoisomerase IA domain is in a closed conformation. After the binding of ATP to the reverse gyrase structure, the helicase domain closes, and the topoisomerase IA domain opens. This triggers a rewinding of 10 of the 20 base pairs in the unwound bubble, and the topoisomerase IA domain can introduce positive supercoiling during strand passage. As the strand passage occurs, reverse gyrase's topoisomerase IA domain is able to increase the linking number (how many times a strand of DNA is wrapped around the other strand) of the DNA strand as they are renatured. Following ATP hydrolysis-induced rewinding, the reverse gyrase enzyme domains return to their original state (open helicase domain and closed topoisomerase IA domain) and the reverse gyrase is released, ready to bind to a new region of DNA and repeat the process. 26: 229:. These positive supercoils can be introduced to DNA that is either negatively supercoiled or fully relaxed. Where DNA gyrase forms a tetramer and is capable of cleaving a double-stranded region of DNA, reverse gyrase can only cleave single stranded DNA. More specifically, reverse gyrase is a member of the type IA topoisomerase class; along with the ability to relax negatively or positively supercoiled DNA (which does not require ATP), type IA enzymes also tend to have RNA-topoisomerase activities. These RNA topoisomerases help keep longer RNA strands from becoming tangled in what are referred to as "pseudoknots." Due to their ability to interact with RNA, it is thought that this is one of the most ancient class of enzymes found to date. 347: 334:(organisms that can live in temperatures ranging from 40 °C up to as high as 122 °C) are thought to maintain several positive supercoils in their DNA in order to assist with maintaining structural integrity of the DNA under the denaturing capabilities of these high temperatures. Positive supercoiling, which is referred to as overwinding, results in the clockwise twisting of the strand. As previously discovered, one of the biggest benefits to maintaining positive supercoils in DNA strands is preventing separation of the strands in high temperatures. 279: 263:
under the topoisomerase umbrella. Furthermore, the 5.6 number designates this molecule as an isomerase that is capable of changing conformation in cellular molecules. 5.6.2 designates the enzyme further as being capable of altering nucleic acid, or DNA, conformations. Lastly, the full designation of 5.6.2.2 characterizes this enzyme as an ATP-dependent DNA topoisomerase.
337:
While positive supercoiling is certainly more common in thermophiles, positive supercoiling has been found in mesophilic organisms. For example, telomeres and condensins can both utilize positive supercoiling as a means for contributing to chromosomal structure. Furthermore, the reverse gyrase enzyme
249:
reverse gyrase being one of the first to be characterized. Additionally, it has been found that all thermophilic bacteria and archaea contain at least one reverse gyrase enzyme. Some organisms, such as members of the Crenarchaeota phylum, even have two reverse gyrase enzymes: TopR1, which tends to be
241:
domain, which is responsible for the actual introduction of coils into DNA. However, mechanistic studies have shown that these two domains tend to exhibit weak activities separately and can only perform efficient DNA positive supercoiling activity when working in tandem. Other studies have also shown
309:
The reverse gyrase enzyme contains a zinc finger domain, where two zinc ions help to coordinate enzymatic function. The first zinc ion is kept in place by interactions with four cysteine residues. The second zinc ion is not always found in reverse gyrase enzymes. However, when present, both ions are
262:
As seen in the information box above, reverse gyrase is designated under the EC number 5.6.2.2. The first number of this code (5) designates the enzymes identity as an isomerase. While the enzyme itself does have both a topoisomerase and helicase-like domain, as a gyrase, it is primarily classified
291:
Reverse gyrases have helicase and topoisomerase domains. The active site, where nucleotides are bound by the enzyme, is characterized by Asp78, Phe75, Gln83, Lys106, Asp203, and Thr107 residues. It is hypothesized that the H1 and H2 subdomains also contain nucleotide-binding abilities, and the DNA
300:
The latch domain appears to be variable across species, with domain size ranging from as small as 10 amino acids to as large as 120 amino acids. The latch is thought to function as a control mechanism to prevent the topoisomerase domain from creating negative supercoils and relaxing the DNA, and
326:
in their DNA strands. This helps to condense the genetic material so that it fits within the host cells (or in the case of eukaryotes, within the cell's nuclear region). Negative supercoiling, also referred to as underwinding, results in the counterclockwise twisting of the DNA strand. Negative
242:
that reverse gyrase enzymes tend to favorably attack regions of single-stranded DNA versus double-stranded DNA, which suggests that this enzyme's critical biological function is to ensure the constant renaturation of melted DNA strands, especially in organisms that grow at high temperatures.
232:
Reverse gyrase is an ATP-dependent topoisomerase in terms of its positive supercoiling activity, however, reverse gyrase can also relax DNA strands without introducing positive supercoils through interaction with ADP. The structure of the enzyme includes both a
354:
It is suspected that the helicase and topoisomerase domains of the reverse gyrase enzyme work together to promote positive supercoiling in DNA. However, the exact mechanisms of action appear to differ between organisms. For example,
459:
Fogg JM, Catanese DJ, Randall GL, Swick MC, Zechiedrich L (2009). Benham CJ, Harvey S, Olson WK, Sumners WL, Swigon D (eds.). "Differences Between Positively and Negatively Supercoiled DNA that Topoisomerases May Distinguish".
327:
supercoiling leaves the DNA strands available for various cellular processes, like genome replication and transcription, as DNA typically needs to be underwound in order to be denatured and accessed by the proper enzymes.
338:
is not exclusive to thermophiles. Some reverse gyrase enzymes even function outside of thermophilic temperature ranges, suggesting that there may be some organisms at mesophilic temperatures that utilize this enzyme.
310:
found near the binding site for nucleic acids. It is thought that these zinc fingers play a role in initial binding of DNA and strand passage, but their exact mechanisms of action appear to vary between organisms.
385:
Regardless of the differences in interactions between the topoisomerase and helicase domains, in general, reverse gyrase enzymes all undergo conformational changes when nucleotides are bound to the active site.
378:
When bound to the DNA, reverse gyrase induces a change in structure via a left-handed wrapping, which more or less functions as an unwinding. Specifically, the reverse gyrase found in
30:
Molecular depictions of the different type I and type II topoisomerase classes. Reverse gyrase is indicated by the 'RG' tag under the type IA topoisomerase section of the diagram.
254:, whose reverse gyrase enzyme tends to naturally exist as two separate peptides versus the typical monomeric polypeptide with a topoisomerase IA domain and a helicase domain. 175: 194: 292:
strand is able to be grabbed by these subdomains and are subsequently fed up through the topoisomerase domain of the enzyme to complete positive supercoiling.
782:"Reverse gyrase functions as a DNA renaturase: annealing of complementary single-stranded circles and positive supercoiling of a bubble substrate" 1105:"Cell proliferation at 122 degrees C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation" 481: 271:
The crystal structure of reverse gyrase has been characterized fully, and a crystal structure has been produced based on the enzyme found in
1154:
Valenti A, Perugino G, Rossi M, Ciaramella M (January 2011). "Positive supercoiling in thermophiles and mesophiles: of the good and evil".
301:
instead allows the enzyme to create positive supercoils in an ATP-dependent manner during the strand passage step of the helicase domain.
250:
active in increased temperatures, and TopR2, which shows activity in both low and high temperatures. Other exceptional organisms include
187: 130: 154: 499:"Reverse gyrase binding to DNA alters the double helix structure and produces single-strand cleavage in the absence of ATP" 403:
Kikuchi A, Asai K (21 June 1984). "Reverse gyrase--a topoisomerase which introduces positive superhelical turns into DNA".
148: 41: 357: 135: 223: 219: 199: 25: 123: 58: 350:
Visual depiction of the proposed mechanism of action of the reverse gyrase enzyme with ATP hydrolysis.
1202: 632: 412: 215: 935:"Reverse gyrase--recent advances and current mechanistic understanding of positive DNA supercoiling" 363: 278: 53: 867:"Separate and combined biochemical activities of the subunits of a naturally split reverse gyrase" 151: 1254: 436: 75: 1230: 1171: 1136: 1085: 964: 898: 844: 803: 757: 713: 660: 592: 528: 477: 428: 142: 1220: 1210: 1163: 1126: 1116: 1103:
Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, et al. (August 2008).
1075: 1067: 954: 946: 888: 878: 834: 793: 747: 705: 650: 640: 582: 572: 518: 510: 469: 420: 1191:"Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide" 375:
ATP hydrolysis ability via the helicase appears to be reduced by the topoisomerase domain.
371:
helicase's ability to hydrolyze ATP appears to be activated by the topoisomerase, whereas
346: 111: 1206: 709: 636: 416: 87: 1131: 1104: 959: 934: 893: 866: 823:"Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling" 655: 620: 587: 560: 514: 170: 46: 1080: 1055: 752: 735: 523: 498: 1248: 1225: 1190: 1056:"Crystal structure of reverse gyrase: insights into the positive supercoiling of DNA" 323: 238: 440: 1036: 678: 497:
Jaxel C, Nadal M, Mirambeau G, Forterre P, Takahashi M, Duguet M (October 1989).
1189:
Confalonieri F, Elie C, Nadal M, de La Tour C, Forterre P, Duguet M (May 1993).
473: 331: 1195:
Proceedings of the National Academy of Sciences of the United States of America
1109:
Proceedings of the National Academy of Sciences of the United States of America
625:
Proceedings of the National Academy of Sciences of the United States of America
322:(living in temperature ranges between 20 °C and 40 °C), tend to have 577: 226: 1071: 821:
Déclais AC, Marsault J, Confalonieri F, de La Tour CB, Duguet M (June 2000).
621:"Direct observation of helicase-topoisomerase coupling within reverse gyrase" 1215: 1121: 883: 645: 319: 245:
This enzyme has been extensively characterized across several Archaea, with
1175: 1140: 1089: 1018: 968: 902: 848: 839: 822: 807: 798: 781: 664: 596: 318:
Organisms that live under standard temperature and pressure conditions, or
1234: 761: 717: 532: 432: 1000: 950: 234: 222:
into DNA, contrary to the typical negative supercoils introduced by the
1167: 982: 118: 99: 424: 182: 94: 82: 70: 237:
domain, which is responsible for separating nucleic acids, and a
106: 367:
experience opposite phenomena in terms of helicase activity:
1043:. International Union of Biochemistry and Molecular Biology. 1025:. International Union of Biochemistry and Molecular Biology. 1007:. International Union of Biochemistry and Molecular Biology. 989:. International Union of Biochemistry and Molecular Biology. 685:. International Union of Biochemistry and Molecular Biology. 865:
Capp C, Qian Y, Sage H, Huber H, Hsieh TS (December 2010).
736:"Intrinsic DNA-dependent ATPase activity of reverse gyrase" 619:
Yang X, Garnier F, Débat H, Strick TR, Nadal M (May 2020).
559:
Garnier F, Couturier M, Débat H, Nadal M (25 May 2021).
734:
Shibata T, Nakasu S, Yasui K, Kikuchi A (August 1987).
1019:"EC 5.6.2 Enzymes altering nucleic acid conformation" 282:
Reverse gyrase linear domains and crystal structure.
462:
The IMA Volumes in Mathematics and Its Applications
193: 181: 169: 164: 141: 129: 117: 105: 93: 81: 69: 64: 52: 40: 35: 18: 561:"Archaea: A Gold Mine for Topoisomerase Diversity" 8: 161: 24: 1224: 1214: 1130: 1120: 1079: 958: 892: 882: 838: 797: 751: 654: 644: 586: 576: 522: 696:Gellert M (1981). "DNA topoisomerases". 345: 277: 1054:Rodríguez AC, Stock D (February 2002). 933:Lulchev P, Klostermeier D (July 2014). 395: 15: 928: 926: 924: 922: 920: 918: 916: 914: 912: 860: 858: 7: 775: 773: 771: 729: 727: 614: 612: 610: 608: 606: 554: 552: 550: 548: 546: 544: 542: 454: 452: 450: 871:The Journal of Biological Chemistry 827:The Journal of Biological Chemistry 786:The Journal of Biological Chemistry 740:The Journal of Biological Chemistry 710:10.1146/annurev.bi.50.070181.004311 515:10.1002/j.1460-2075.1989.tb08466.x 14: 780:Hsieh TS, Plank JL (March 2006). 1156:Biochemical Society Transactions 1: 753:10.1016/S0021-9258(18)60974-3 698:Annual Review of Biochemistry 474:10.1007/978-1-4419-0670-0_5 1271: 1041:IUBMB Enzyme Nomenclature 1023:IUBMB Enzyme Nomenclature 1005:IUBMB Enzyme Nomenclature 987:IUBMB Enzyme Nomenclature 683:IUBMB Enzyme Nomenclature 578:10.3389/fmicb.2021.661411 565:Frontiers in Microbiology 247:Sulfolobus acidocaldarius 160: 23: 314:Thermophile significance 1216:10.1073/pnas.90.10.4753 1122:10.1073/pnas.0712334105 884:10.1074/jbc.M110.173989 646:10.1073/pnas.1921848117 369:Sulfolobus solfataricus 358:Sulfolobus solfataricus 1072:10.1093/emboj/21.3.418 939:Nucleic Acids Research 840:10.1074/jbc.M910091199 799:10.1074/jbc.M513252200 351: 342:Supercoiling mechanism 283: 349: 324:negative supercoiling 281: 252:Nanoarchaeum equitans 224:type II topoisomerase 216:type I topoisomerase 1207:1993PNAS...90.4753C 1115:(31): 10949–10954. 877:(51): 39637–39645. 833:(26): 19498–19504. 746:(22): 10419–10421. 637:2020PNAS..11710856Y 631:(20): 10856–10864. 417:1984Natur.309..677K 373:Thermotoga maritima 364:Thermotoga maritima 330:On the other hand, 273:Thermotoga maritima 220:positive supercoils 1168:10.1042/BST0390058 983:"EC 5. Isomerases" 951:10.1093/nar/gku589 352: 284: 1201:(10): 4753–4757. 945:(13): 8200–8213. 509:(10): 3135–3139. 483:978-1-4419-0669-4 411:(5970): 677–681. 209: 208: 205: 204: 124:metabolic pathway 1262: 1239: 1238: 1228: 1218: 1186: 1180: 1179: 1151: 1145: 1144: 1134: 1124: 1100: 1094: 1093: 1083: 1060:The EMBO Journal 1051: 1045: 1044: 1033: 1027: 1026: 1015: 1009: 1008: 997: 991: 990: 979: 973: 972: 962: 930: 907: 906: 896: 886: 862: 853: 852: 842: 818: 812: 811: 801: 792:(9): 5640–5647. 777: 766: 765: 755: 731: 722: 721: 693: 687: 686: 675: 669: 668: 658: 648: 616: 601: 600: 590: 580: 556: 537: 536: 526: 503:The EMBO Journal 494: 488: 487: 456: 445: 444: 425:10.1038/309677a0 400: 218:that introduces 162: 28: 16: 1270: 1269: 1265: 1264: 1263: 1261: 1260: 1259: 1245: 1244: 1243: 1242: 1188: 1187: 1183: 1153: 1152: 1148: 1102: 1101: 1097: 1053: 1052: 1048: 1035: 1034: 1030: 1017: 1016: 1012: 999: 998: 994: 981: 980: 976: 932: 931: 910: 864: 863: 856: 820: 819: 815: 779: 778: 769: 733: 732: 725: 695: 694: 690: 677: 676: 672: 618: 617: 604: 558: 557: 540: 496: 495: 491: 484: 458: 457: 448: 402: 401: 397: 392: 380:S. solfataricus 344: 316: 307: 298: 289: 269: 260: 31: 12: 11: 5: 1268: 1266: 1258: 1257: 1247: 1246: 1241: 1240: 1181: 1146: 1095: 1066:(3): 418–426. 1046: 1028: 1010: 992: 974: 908: 854: 813: 767: 723: 688: 670: 602: 538: 489: 482: 446: 394: 393: 391: 388: 343: 340: 315: 312: 306: 303: 297: 294: 288: 285: 268: 265: 259: 258:Classification 256: 212:Reverse gyrase 207: 206: 203: 202: 197: 191: 190: 185: 179: 178: 173: 167: 166: 158: 157: 146: 139: 138: 133: 127: 126: 121: 115: 114: 109: 103: 102: 97: 91: 90: 85: 79: 78: 73: 67: 66: 62: 61: 56: 50: 49: 44: 38: 37: 33: 32: 29: 21: 20: 19:Reverse gyrase 13: 10: 9: 6: 4: 3: 2: 1267: 1256: 1253: 1252: 1250: 1236: 1232: 1227: 1222: 1217: 1212: 1208: 1204: 1200: 1196: 1192: 1185: 1182: 1177: 1173: 1169: 1165: 1161: 1157: 1150: 1147: 1142: 1138: 1133: 1128: 1123: 1118: 1114: 1110: 1106: 1099: 1096: 1091: 1087: 1082: 1077: 1073: 1069: 1065: 1061: 1057: 1050: 1047: 1042: 1038: 1032: 1029: 1024: 1020: 1014: 1011: 1006: 1002: 996: 993: 988: 984: 978: 975: 970: 966: 961: 956: 952: 948: 944: 940: 936: 929: 927: 925: 923: 921: 919: 917: 915: 913: 909: 904: 900: 895: 890: 885: 880: 876: 872: 868: 861: 859: 855: 850: 846: 841: 836: 832: 828: 824: 817: 814: 809: 805: 800: 795: 791: 787: 783: 776: 774: 772: 768: 763: 759: 754: 749: 745: 741: 737: 730: 728: 724: 719: 715: 711: 707: 703: 699: 692: 689: 684: 680: 674: 671: 666: 662: 657: 652: 647: 642: 638: 634: 630: 626: 622: 615: 613: 611: 609: 607: 603: 598: 594: 589: 584: 579: 574: 570: 566: 562: 555: 553: 551: 549: 547: 545: 543: 539: 534: 530: 525: 520: 516: 512: 508: 504: 500: 493: 490: 485: 479: 475: 471: 467: 463: 455: 453: 451: 447: 442: 438: 434: 430: 426: 422: 418: 414: 410: 406: 399: 396: 389: 387: 383: 381: 376: 374: 370: 366: 365: 360: 359: 348: 341: 339: 335: 333: 328: 325: 321: 313: 311: 304: 302: 295: 293: 286: 280: 276: 274: 266: 264: 257: 255: 253: 248: 243: 240: 239:topoisomerase 236: 230: 228: 225: 221: 217: 213: 201: 198: 196: 192: 189: 186: 184: 180: 177: 174: 172: 168: 163: 159: 156: 153: 150: 147: 144: 140: 137: 134: 132: 128: 125: 122: 120: 116: 113: 110: 108: 104: 101: 100:NiceZyme view 98: 96: 92: 89: 86: 84: 80: 77: 74: 72: 68: 63: 60: 57: 55: 51: 48: 45: 43: 39: 34: 27: 22: 17: 1198: 1194: 1184: 1162:(1): 58–63. 1159: 1155: 1149: 1112: 1108: 1098: 1063: 1059: 1049: 1040: 1031: 1022: 1013: 1004: 995: 986: 977: 942: 938: 874: 870: 830: 826: 816: 789: 785: 743: 739: 701: 697: 691: 682: 679:"EC 5.6.2.1" 673: 628: 624: 568: 564: 506: 502: 492: 465: 461: 408: 404: 398: 384: 379: 377: 372: 368: 362: 356: 353: 336: 332:thermophiles 329: 317: 308: 305:Zinc Fingers 299: 296:Latch Domain 290: 272: 270: 261: 251: 246: 244: 231: 211: 210: 88:BRENDA entry 59:143180-75-0 704:: 879–910. 287:Active Site 76:IntEnz view 36:Identifiers 571:: 661411. 468:: 73–121. 390:References 320:mesophiles 227:DNA gyrase 145:structures 112:KEGG entry 1255:EC 5.99.1 1037:"5.6.2.2" 267:Structure 65:Databases 1249:Category 1176:21265747 1141:18664583 1090:11823434 1001:"EC 5.6" 969:25013168 903:20929866 849:10748189 808:16407212 665:32371489 597:34113328 235:helicase 200:proteins 188:articles 176:articles 149:RCSB PDB 1235:8389456 1203:Bibcode 1132:2490668 960:4117796 894:3000944 762:3038879 718:6267993 656:7245102 633:Bibcode 588:8185306 533:2555155 441:4242694 433:6328327 413:Bibcode 136:profile 119:MetaCyc 54:CAS no. 47:5.6.2.2 1233:  1223:  1174:  1139:  1129:  1088:  1081:125824 1078:  967:  957:  901:  891:  847:  806:  760:  716:  663:  653:  595:  585:  531:  524:401394 521:  480:  439:  431:  405:Nature 183:PubMed 165:Search 155:PDBsum 95:ExPASy 83:BRENDA 71:IntEnz 42:EC no. 1226:46591 437:S2CID 214:is a 131:PRIAM 1231:PMID 1172:PMID 1137:PMID 1086:PMID 965:PMID 899:PMID 845:PMID 804:PMID 758:PMID 714:PMID 661:PMID 593:PMID 529:PMID 478:ISBN 429:PMID 361:and 195:NCBI 152:PDBe 107:KEGG 1221:PMC 1211:doi 1164:doi 1127:PMC 1117:doi 1113:105 1076:PMC 1068:doi 955:PMC 947:doi 889:PMC 879:doi 875:285 835:doi 831:275 794:doi 790:281 748:doi 744:262 706:doi 651:PMC 641:doi 629:117 583:PMC 573:doi 519:PMC 511:doi 470:doi 466:150 421:doi 409:309 171:PMC 143:PDB 1251:: 1229:. 1219:. 1209:. 1199:90 1197:. 1193:. 1170:. 1160:39 1158:. 1135:. 1125:. 1111:. 1107:. 1084:. 1074:. 1064:21 1062:. 1058:. 1039:. 1021:. 1003:. 985:. 963:. 953:. 943:42 941:. 937:. 911:^ 897:. 887:. 873:. 869:. 857:^ 843:. 829:. 825:. 802:. 788:. 784:. 770:^ 756:. 742:. 738:. 726:^ 712:. 702:50 700:. 681:. 659:. 649:. 639:. 627:. 623:. 605:^ 591:. 581:. 569:12 567:. 563:. 541:^ 527:. 517:. 505:. 501:. 476:. 464:. 449:^ 435:. 427:. 419:. 407:. 1237:. 1213:: 1205:: 1178:. 1166:: 1143:. 1119:: 1092:. 1070:: 971:. 949:: 905:. 881:: 851:. 837:: 810:. 796:: 764:. 750:: 720:. 708:: 667:. 643:: 635:: 599:. 575:: 535:. 513:: 507:8 486:. 472:: 443:. 423:: 415:: 275:.

Index

The different protein structures of various topoisomerase enzymes. Type I topoisomerases tend to be much smaller than the type II topoisomerases, as type II topoisomerases tend to be multimers, while type I topoisomerases tend to be monomers.
EC no.
5.6.2.2
CAS no.
143180-75-0
IntEnz
IntEnz view
BRENDA
BRENDA entry
ExPASy
NiceZyme view
KEGG
KEGG entry
MetaCyc
metabolic pathway
PRIAM
profile
PDB
RCSB PDB
PDBe
PDBsum
PMC
articles
PubMed
articles
NCBI
proteins
type I topoisomerase
positive supercoils
type II topoisomerase

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.