Knowledge (XXG)

Ricci-flat manifold

Source 📝

332:
Choquet-Bruhat and Geroch's work. Moreover, the analyticity and corresponding unique continuation of a Ricci-flat Riemannian metric has a fundamentally different character than Ricci-flat Lorentzian metrics, which have finite speeds of propagation and fully localizable phenomena. This can be viewed as a nonlinear geometric analogue of the difference between the
464:, every such metric is Ricci-flat. The Calabi–Yau theorem specializes to this context, giving a general existence and uniqueness theorem for hyperkähler metrics on compact Kähler manifolds admitting holomorphically symplectic structures. Examples of hyperkähler metrics on noncompact spaces had earlier been obtained by 547:
commented that all known examples of irreducible Ricci-flat Riemannian metrics on simply-connected closed manifolds have special holonomy groups, according to the above possibilities. It is not known whether this suggests an unknown general theorem or simply a limitation of known techniques. For this
331:
The study of Ricci-flatness in the Riemannian and Lorentzian cases are quite distinct. This is already indicated by the fundamental distinction between the geodesically complete metrics which are typical of Riemannian geometry and the maximal globally hyperbolic developments which arise from
164:. Conversely, it is automatic from the definitions that any flat metric is Ricci-flat. The study of flat metrics is usually considered as a topic unto itself. As such, the study of Ricci-flat metrics is only a distinct topic in dimension four and above. 222:. However, these constructions are not directly helpful for Ricci-flat Riemannian metrics, in the sense that any homogeneous Riemannian manifold which is Ricci-flat must be flat. However, there are homogeneous (and even 371:
on its topological data. As particular cases of well-known theorems on Riemannian manifolds of nonnegative Ricci curvature, any manifold with a complete Ricci-flat Riemannian metric must:
153:, it is straightforward to see that the converse also holds. This may also be phrased as saying that Ricci-flatness is characterized by the vanishing of the two non-Weyl parts of the 195:, a two-parameter family containing the Schwarzschild metrics as a special case. These metrics are fully explicit and are of fundamental interest in the mathematics and physics of 367:
Beyond Kähler geometry, the situation is not as well understood. A four-dimensional closed and oriented manifold supporting any Einstein Riemannian metric must satisfy the
1767: 1369: 1310: 325: 963: 348:
Yau's existence theorem for Ricci-flat Kähler metrics established the precise topological condition under which such a metric exists on a given closed
297: 274: 409:
with an arbitrary closed manifold. Every Ricci-flat Riemannian manifold in this class is flat, which is a corollary of Cheeger and Gromoll's
172:
As noted above, any flat metric is Ricci-flat. However it is nontrivial to identify Ricci-flat manifolds whose full curvature is nonzero.
257:. Due to his analytical techniques, the metrics are non-explicit even in the simplest cases. Such Riemannian manifolds are often called 1362: 1267: 1734: 1216: 1167: 1115: 1027: 985: 901: 851: 1964: 1699: 2326: 390: 368: 2552: 1906: 1412: 1355: 476: 246: 208: 1676: 452:. This condition on a Riemannian manifold may also be characterized (roughly speaking) by the existence of a 2-sphere of 2351: 1407: 319: 64: 1931: 296:
Analogously, relative to harmonic coordinates, Ricci-flatness of a Lorentzian metric can be interpreted as a system of
226:) Lorentzian manifolds which are Ricci-flat but not flat, as follows from an explicit construction and computation of 1557: 1248:
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, Physikalisch-Mathematische Klasse
1852: 1504: 1107: 969: 357: 115: 2191: 2146: 1159: 537:
implies that any such manifold is Ricci-flat. The existence of closed manifolds of this type was established by
2371: 2291: 2106: 2040: 1402: 146: 2251: 1873: 1847: 1588: 469: 258: 490:
showed that any such metric must be Einstein. Furthermore, any Ricci-flat quaternion-Kähler manifold must be
160:
Since the Weyl curvature vanishes in two or three dimensions, every Ricci-flat metric in these dimensions is
2511: 2321: 2035: 1878: 1719: 1477: 1419: 1099: 1058: 1019: 445: 316:
Ricci-flat Lorentzian metrics are prescribed and constructed by certain Riemannian data. These are known as
2276: 2017: 1823: 1714: 1686: 1509: 1149: 150: 2426: 1762: 1729: 1593: 1435: 361: 126:
is zero. It is direct to verify that, except in dimension two, a metric is Ricci-flat if and only if its
2131: 2071: 2012: 1979: 1974: 1772: 1470: 1465: 1460: 1445: 1308:(1978). "On the Ricci curvature of a compact Kähler manifold and the complex Monge−Ampère equation. I". 430: 301: 212: 142: 87: 72: 32: 2301: 2516: 1514: 1499: 1455: 402: 180: 441:
holonomy group of a Ricci-flat Kähler metric is necessarily contained in the special unitary group.
2431: 2316: 1969: 1494: 282: 270: 184: 154: 91: 60: 56: 44: 281:
results that any Ricci-flat Riemannian metric on a smooth manifold is analytic, in the sense that
2476: 2396: 2296: 2256: 2136: 2101: 1936: 1813: 1709: 1450: 1262: 1243: 1153: 1056:(1963). "Gravitational field of a spinning mass as an example of algebraically special metrics". 959: 884:. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Vol. 10. Reprinted in 2008. Berlin: 457: 305: 200: 176: 79: 2186: 1863: 1193: 103: 2441: 2346: 2181: 2091: 2061: 1857: 1752: 1704: 1598: 1212: 1163: 1111: 1023: 981: 897: 847: 410: 383: 353: 290: 286: 238: 219: 131: 99: 52: 249:, established a comprehensive existence theory for Ricci-flat metrics in the special case of 2451: 2386: 2356: 2236: 2176: 2141: 2086: 2076: 2056: 1989: 1941: 1899: 1804: 1797: 1790: 1783: 1776: 1694: 1484: 1392: 1335: 1319: 1292: 1276: 1251: 1230: 1204: 1181: 1129: 1095: 1083: 1067: 1041: 999: 973: 943: 931: 915: 889: 865: 839: 525: 512: 453: 449: 422: 349: 333: 273:, the condition of Ricci-flatness for a Riemannian metric can be interpreted as a system of 254: 250: 135: 1331: 1288: 1226: 1177: 1125: 1079: 1037: 995: 911: 861: 2531: 2486: 2436: 2421: 2411: 2306: 2271: 2096: 1666: 1440: 1339: 1327: 1296: 1284: 1255: 1234: 1222: 1185: 1173: 1133: 1121: 1087: 1075: 1045: 1033: 1003: 991: 955: 947: 927: 919: 907: 885: 869: 857: 835: 242: 223: 204: 127: 123: 2376: 1246:(1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie". 460:. This says in particular that every hyperkähler metric is Kähler; furthermore, via the 2506: 2501: 2461: 2401: 2391: 2311: 2231: 2221: 2216: 2211: 2126: 2121: 2116: 2081: 2066: 1994: 1671: 1534: 1305: 1201: 1141: 534: 465: 461: 426: 308:
of the Ricci-flatness condition. She reached a definitive result in collaboration with
234: 95: 1208: 2546: 2496: 2481: 2456: 2446: 2416: 2361: 2336: 2281: 2266: 2261: 2226: 2201: 2161: 1951: 1603: 1519: 1397: 1378: 1265:(2003). "On the gravitational field of a mass point according to Einstein's theory". 1011: 827: 544: 538: 487: 406: 394: 337: 309: 161: 2526: 2366: 2246: 2196: 2166: 2151: 1959: 1926: 1818: 1744: 1724: 1661: 1524: 877: 376: 2521: 2491: 2471: 2331: 2286: 2241: 2206: 2156: 1921: 1890: 1651: 1608: 502: 227: 192: 28: 1071: 241:
in the 1970s, it was not known whether every Ricci-flat Riemannian metric on a
78:
In Lorentzian geometry, a number of Ricci-flat metrics are known from works of
2466: 2406: 2341: 2004: 1984: 1883: 1842: 1656: 1280: 1145: 968:. Cambridge Monographs on Mathematical Physics. Vol. 1. London−New York: 893: 843: 519: 196: 977: 548:
reason, Berger considered Ricci-flat manifolds to be "extremely mysterious."
518:
is a Riemannian manifold whose holonomy group is contained in the Lie groups
145:, it is direct to see that any Ricci-flat metric has Weyl curvature equal to 2381: 2171: 2111: 1757: 1631: 1552: 1547: 1542: 480: 40: 1323: 17: 2027: 1916: 1911: 1641: 1636: 1573: 1489: 1053: 401:
of a closed manifold. The class of enlargeable manifolds is closed under
293:. This also holds in the broader setting of Einstein Riemannian metrics. 188: 83: 1646: 1626: 1583: 1578: 472:, discovered at the same time, is a special case of his construction. 360:
must be zero. The necessity of this condition was previously known by
261:, although various authors use this name in slightly different ways. 68: 379:
less than or equal to the dimension, whenever the manifold is closed
1618: 479:
is a Riemannian manifold whose holonomy group is contained in the
448:
is a Riemannian manifold whose holonomy group is contained in the
425:
Kähler manifold, a Kähler metric is Ricci-flat if and only if the
1347: 130:
is zero. Ricci-flat manifolds are one of three special types of
1351: 1106:. Princeton Mathematical Series. Vol. 38. Princeton, NJ: 934:[The foundation of the general theory of relativity]. 324:. In general relativity, this is typically interpreted as an 63:
are of fundamental interest, as they are the solutions of
1200:. Pure and Applied Mathematics. Vol. 103. New York: 1198:
Semi-Riemannian geometry. With applications to relativity
942:(7). Translated by Perrett, W.; Jeffery, G. B.: 769–822. 1275:(5). Translated by Antoci, S.; Loinger, A.: 951–959. 498:
holonomy group is contained in the symplectic group.
218:
Many pseudo-Riemannian manifolds are constructed as
2049: 2026: 2003: 1950: 1835: 1743: 1685: 1617: 1566: 1533: 1428: 1385: 932:"Die Grundlage der allgemeinen Relativitätstheorie" 621: 597: 312:in the 1960s, establishing how a certain class of 277:. It is a straightforward consequence of standard 733: 289:, and the local representation of the metric is 203:, Ricci-flat Lorentzian manifolds represent the 328:of Einstein's field equations for gravitation. 1311:Communications on Pure and Applied Mathematics 1363: 605: 8: 709: 601: 581: 569: 344:Topology of Ricci-flat Riemannian manifolds 102:produced a number of Ricci-flat metrics on 1370: 1356: 1348: 1018:. Oxford Mathematical Monographs. Oxford: 298:hyperbolic partial differential equations 405:, the taking of products, and under the 1016:Compact manifolds with special holonomy 965:The large scale structure of space-time 832:A panoramic view of Riemannian geometry 562: 275:elliptic partial differential equations 245:is flat. His work, using techniques of 809: 793: 797: 781: 769: 757: 745: 721: 697: 681: 669: 657: 645: 633: 593: 7: 1768:Bogomol'nyi–Prasad–Sommerfield bound 617: 437:direction still holds, but only the 433:. On a general Kähler manifold, the 685: 1268:General Relativity and Gravitation 25: 622:Misner, Thorne & Wheeler 1973 598:Misner, Thorne & Wheeler 1973 134:, arising as the special case of 1965:Eleven-dimensional supergravity 494:hyperkähler, meaning that the 247:partial differential equations 1: 1413:Second superstring revolution 1209:10.1016/s0079-8169(08)x6002-7 300:. Based on this perspective, 1907:Generalized complex manifold 1408:First superstring revolution 734:Lawson & Michelsohn 1989 417:Ricci-flatness and holonomy 141:From the definition of the 2569: 1505:Non-critical string theory 1108:Princeton University Press 1072:10.1103/PhysRevLett.11.237 970:Cambridge University Press 477:quaternion-Kähler manifold 358:holomorphic tangent bundle 209:Einstein's field equations 116:pseudo-Riemannian manifold 65:Einstein's field equations 1160:W. H. Freeman and Company 894:10.1007/978-3-540-74311-8 844:10.1007/978-3-642-18245-7 397:introduced the notion of 369:Hitchin–Thorpe inequality 326:initial value formulation 2041:Introduction to M-theory 1735:Wess–Zumino–Witten model 1677:Hanany–Witten transition 1403:History of string theory 1100:Michelsohn, Marie-Louise 978:10.1017/CBO9780511524646 710:Hawking & Ellis 1973 147:Riemann curvature tensor 1720:Vertex operator algebra 1420:String theory landscape 1281:10.1023/A:1022971926521 1150:Wheeler, John Archibald 1059:Physical Review Letters 1020:Oxford University Press 183:, which are Ricci-flat 2018:AdS/CFT correspondence 1773:Exceptional Lie groups 1715:Superconformal algebra 1687:Conformal field theory 1558:Montonen–Olive duality 1510:Non-linear sigma model 1324:10.1002/cpa.3160310304 535:Ambrose–Singer theorem 462:Ambrose–Singer theorem 187:of nonzero curvature. 51:are a special kind of 39:is a condition on the 2013:Holographic principle 1980:Type IIB supergravity 1975:Type IIA supergravity 1827:-form electrodynamics 1446:Bosonic string theory 1158:. San Francisco, CA: 1096:Lawson, H. Blaine Jr. 431:special unitary group 386:of polynomial growth. 302:Yvonne Choquet-Bruhat 237:'s resolution of the 213:cosmological constant 199:. More generally, in 181:Schwarzschild metrics 143:Weyl curvature tensor 98:'s resolution of the 88:Yvonne Choquet-Bruhat 73:cosmological constant 33:differential geometry 2553:Riemannian manifolds 1932:Hořava–Witten theory 1879:Hyperkähler manifold 1567:Particles and fields 1515:Tachyon condensation 1500:Matrix string theory 1202:Academic Press, Inc. 748:, Proposition 10.29. 446:hyperkähler manifold 429:is contained in the 403:homotopy equivalence 285:define a compatible 283:harmonic coordinates 271:harmonic coordinates 265:Analytical character 259:Calabi–Yau manifolds 185:Lorentzian manifolds 61:Lorentzian manifolds 49:Ricci-flat manifolds 1970:Type I supergravity 1874:Calabi–Yau manifold 1869:Ricci-flat manifold 1848:Kaluza–Klein theory 1589:Ramond–Ramond field 1495:String field theory 712:, Sections 7.5–7.6. 470:Eguchi–Hanson space 320:globally hyperbolic 279:elliptic regularity 155:Ricci decomposition 92:Riemannian geometry 57:theoretical physics 45:Riemannian manifold 1937:K-theory (physics) 1814:ADE classification 1451:Superstring theory 1142:Misner, Charles W. 936:Annalen der Physik 882:Einstein manifolds 796:, Section 13.5.1; 684:, Sections 11B–C; 606:Schwarzschild 1916 454:complex structures 314:maximally extended 287:analytic structure 220:homogeneous spaces 201:general relativity 177:Karl Schwarzschild 80:Karl Schwarzschild 2540: 2539: 2322:van Nieuwenhuizen 1858:Why 10 dimensions 1763:Chern–Simons form 1730:Kac–Moody algebra 1710:Conformal algebra 1705:Conformal anomaly 1599:Magnetic monopole 1594:Kalb–Ramond field 1436:Nambu–Goto action 1263:Schwarzschild, K. 1244:Schwarzschild, K. 1012:Joyce, Dominic D. 812:, Section 11.4.6. 760:, Sections 14A–C. 672:, Paragraph 0.30. 411:splitting theorem 384:fundamental group 362:Chern–Weil theory 354:first Chern class 255:complex manifolds 239:Calabi conjecture 132:Einstein manifold 100:Calabi conjecture 53:Einstein manifold 16:(Redirected from 2560: 2050:String theorists 1990:Lie superalgebra 1942:Twisted K-theory 1900:Spin(7)-manifold 1853:Compactification 1695:Virasoro algebra 1478:Heterotic string 1372: 1365: 1358: 1349: 1343: 1301: 1300: 1259: 1238: 1194:O'Neill, Barrett 1189: 1137: 1091: 1049: 1007: 951: 923: 878:Besse, Arthur L. 873: 813: 807: 801: 791: 785: 779: 773: 767: 761: 755: 749: 743: 737: 731: 725: 724:, Sections 6D–E. 719: 713: 707: 701: 695: 689: 679: 673: 667: 661: 660:, Theorem 7.118. 655: 649: 643: 637: 631: 625: 615: 609: 591: 585: 579: 573: 567: 531: 522: 515: 508: 485: 450:symplectic group 423:simply-connected 350:complex manifold 334:Laplace equation 205:vacuum solutions 191:later found the 136:scalar curvature 104:Kähler manifolds 21: 2568: 2567: 2563: 2562: 2561: 2559: 2558: 2557: 2543: 2542: 2541: 2536: 2045: 2022: 1999: 1946: 1894: 1864:Kähler manifold 1831: 1808: 1801: 1794: 1787: 1780: 1739: 1700:Mirror symmetry 1681: 1667:Brane cosmology 1613: 1562: 1529: 1485:N=2 superstring 1471:Type IIB string 1466:Type IIA string 1441:Polyakov action 1424: 1381: 1376: 1346: 1306:Yau, Shing Tung 1304: 1261: 1260: 1242: 1241: 1219: 1192: 1170: 1140: 1118: 1094: 1052: 1030: 1010: 988: 960:Ellis, G. F. R. 954: 926: 904: 886:Springer-Verlag 876: 854: 836:Springer-Verlag 826: 817: 816: 808: 804: 792: 788: 780: 776: 768: 764: 756: 752: 744: 740: 736:, Section IV.5. 732: 728: 720: 716: 708: 704: 696: 692: 680: 676: 668: 664: 656: 652: 648:, Theorem 7.61. 644: 640: 632: 628: 616: 612: 592: 588: 580: 576: 568: 564: 554: 530: 526: 520: 513: 507: 503: 483: 419: 346: 267: 243:closed manifold 211:with vanishing 170: 138:equaling zero. 128:Einstein tensor 124:Ricci curvature 112: 71:with vanishing 23: 22: 15: 12: 11: 5: 2566: 2564: 2556: 2555: 2545: 2544: 2538: 2537: 2535: 2534: 2529: 2524: 2519: 2514: 2509: 2504: 2499: 2494: 2489: 2484: 2479: 2474: 2469: 2464: 2459: 2454: 2449: 2444: 2439: 2434: 2429: 2424: 2419: 2414: 2409: 2404: 2399: 2394: 2389: 2384: 2379: 2374: 2372:Randjbar-Daemi 2369: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2289: 2284: 2279: 2274: 2269: 2264: 2259: 2254: 2249: 2244: 2239: 2234: 2229: 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2094: 2089: 2084: 2079: 2074: 2069: 2064: 2059: 2053: 2051: 2047: 2046: 2044: 2043: 2038: 2032: 2030: 2024: 2023: 2021: 2020: 2015: 2009: 2007: 2001: 2000: 1998: 1997: 1995:Lie supergroup 1992: 1987: 1982: 1977: 1972: 1967: 1962: 1956: 1954: 1948: 1947: 1945: 1944: 1939: 1934: 1929: 1924: 1919: 1914: 1909: 1904: 1903: 1902: 1897: 1892: 1888: 1887: 1886: 1876: 1866: 1861: 1855: 1850: 1845: 1839: 1837: 1833: 1832: 1830: 1829: 1821: 1816: 1811: 1806: 1799: 1792: 1785: 1778: 1770: 1765: 1760: 1755: 1749: 1747: 1741: 1740: 1738: 1737: 1732: 1727: 1722: 1717: 1712: 1707: 1702: 1697: 1691: 1689: 1683: 1682: 1680: 1679: 1674: 1672:Quiver diagram 1669: 1664: 1659: 1654: 1649: 1644: 1639: 1634: 1629: 1623: 1621: 1615: 1614: 1612: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1576: 1570: 1568: 1564: 1563: 1561: 1560: 1555: 1550: 1545: 1539: 1537: 1535:String duality 1531: 1530: 1528: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1492: 1487: 1482: 1481: 1480: 1475: 1474: 1473: 1468: 1461:Type II string 1458: 1448: 1443: 1438: 1432: 1430: 1426: 1425: 1423: 1422: 1417: 1416: 1415: 1410: 1400: 1398:Cosmic strings 1395: 1389: 1387: 1383: 1382: 1377: 1375: 1374: 1367: 1360: 1352: 1345: 1344: 1318:(3): 339–411. 1302: 1239: 1217: 1190: 1168: 1146:Thorne, Kip S. 1138: 1116: 1092: 1066:(5): 237–238. 1050: 1028: 1008: 986: 956:Hawking, S. W. 952: 924: 902: 874: 852: 828:Berger, Marcel 823: 815: 814: 802: 786: 784:, Section 10F. 774: 772:, Section 14D. 762: 750: 738: 726: 714: 702: 690: 674: 662: 650: 638: 626: 610: 604:, Chapter 13; 600:, Chapter 31; 596:, Section 3F; 586: 584:, p. 336. 574: 561: 560: 553: 550: 541:in the 1990s. 528: 505: 466:Eugenio Calabi 456:which are all 427:holonomy group 418: 415: 399:enlargeability 391:Mikhael Gromov 388: 387: 380: 345: 342: 306:well-posedness 304:developed the 266: 263: 251:Kähler metrics 235:Shing-Tung Yau 169: 166: 118:is said to be 111: 108: 96:Shing-Tung Yau 37:Ricci-flatness 24: 14: 13: 10: 9: 6: 4: 3: 2: 2565: 2554: 2551: 2550: 2548: 2533: 2530: 2528: 2525: 2523: 2520: 2518: 2517:Zamolodchikov 2515: 2513: 2512:Zamolodchikov 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2493: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2288: 2285: 2283: 2280: 2278: 2275: 2273: 2270: 2268: 2265: 2263: 2260: 2258: 2255: 2253: 2250: 2248: 2245: 2243: 2240: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2054: 2052: 2048: 2042: 2039: 2037: 2036:Matrix theory 2034: 2033: 2031: 2029: 2025: 2019: 2016: 2014: 2011: 2010: 2008: 2006: 2002: 1996: 1993: 1991: 1988: 1986: 1983: 1981: 1978: 1976: 1973: 1971: 1968: 1966: 1963: 1961: 1958: 1957: 1955: 1953: 1952:Supersymmetry 1949: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1901: 1898: 1896: 1889: 1885: 1882: 1881: 1880: 1877: 1875: 1872: 1871: 1870: 1867: 1865: 1862: 1859: 1856: 1854: 1851: 1849: 1846: 1844: 1841: 1840: 1838: 1834: 1828: 1826: 1822: 1820: 1817: 1815: 1812: 1809: 1802: 1795: 1788: 1781: 1774: 1771: 1769: 1766: 1764: 1761: 1759: 1756: 1754: 1751: 1750: 1748: 1746: 1742: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1711: 1708: 1706: 1703: 1701: 1698: 1696: 1693: 1692: 1690: 1688: 1684: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1624: 1622: 1620: 1616: 1610: 1607: 1605: 1604:Dual graviton 1602: 1600: 1597: 1595: 1592: 1590: 1587: 1585: 1582: 1580: 1577: 1575: 1572: 1571: 1569: 1565: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1540: 1538: 1536: 1532: 1526: 1523: 1521: 1520:RNS formalism 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1479: 1476: 1472: 1469: 1467: 1464: 1463: 1462: 1459: 1457: 1456:Type I string 1454: 1453: 1452: 1449: 1447: 1444: 1442: 1439: 1437: 1434: 1433: 1431: 1427: 1421: 1418: 1414: 1411: 1409: 1406: 1405: 1404: 1401: 1399: 1396: 1394: 1391: 1390: 1388: 1384: 1380: 1379:String theory 1373: 1368: 1366: 1361: 1359: 1354: 1353: 1350: 1341: 1337: 1333: 1329: 1325: 1321: 1317: 1313: 1312: 1307: 1303: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1269: 1264: 1257: 1253: 1249: 1245: 1240: 1236: 1232: 1228: 1224: 1220: 1218:0-12-526740-1 1214: 1210: 1206: 1203: 1199: 1195: 1191: 1187: 1183: 1179: 1175: 1171: 1169:0-7503-0948-2 1165: 1161: 1157: 1156: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1117:0-691-08542-0 1113: 1109: 1105: 1104:Spin geometry 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1060: 1055: 1051: 1047: 1043: 1039: 1035: 1031: 1029:0-19-850601-5 1025: 1021: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 987:0-521-20016-4 983: 979: 975: 971: 967: 966: 961: 957: 953: 949: 945: 941: 937: 933: 929: 925: 921: 917: 913: 909: 905: 903:3-540-15279-2 899: 895: 891: 887: 883: 879: 875: 871: 867: 863: 859: 855: 853:3-540-65317-1 849: 845: 841: 837: 833: 829: 825: 824: 822: 821: 811: 806: 803: 799: 795: 790: 787: 783: 778: 775: 771: 766: 763: 759: 754: 751: 747: 742: 739: 735: 730: 727: 723: 718: 715: 711: 706: 703: 700:, Section 5F. 699: 694: 691: 687: 683: 678: 675: 671: 666: 663: 659: 654: 651: 647: 642: 639: 636:, Section 3C. 635: 630: 627: 624:, Chapter 33. 623: 619: 614: 611: 607: 603: 599: 595: 590: 587: 583: 578: 575: 572:, p. 87. 571: 566: 563: 559: 558: 551: 549: 546: 545:Marcel Berger 542: 540: 539:Dominic Joyce 536: 532: 523: 517: 510: 499: 497: 493: 489: 488:Marcel Berger 482: 478: 473: 471: 467: 463: 459: 455: 451: 447: 442: 440: 436: 432: 428: 424: 416: 414: 412: 408: 407:connected sum 404: 400: 396: 395:Blaine Lawson 392: 385: 381: 378: 374: 373: 372: 370: 365: 363: 359: 355: 351: 343: 341: 339: 338:wave equation 335: 329: 327: 323: 321: 315: 311: 310:Robert Geroch 307: 303: 299: 294: 292: 291:real-analytic 288: 284: 280: 276: 272: 264: 262: 260: 256: 252: 248: 244: 240: 236: 231: 229: 225: 221: 216: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 173: 167: 165: 163: 158: 156: 152: 148: 144: 139: 137: 133: 129: 125: 121: 117: 109: 107: 105: 101: 97: 93: 89: 85: 81: 76: 74: 70: 66: 62: 59:, Ricci-flat 58: 54: 50: 46: 42: 38: 34: 30: 19: 2062:Arkani-Hamed 1960:Supergravity 1927:Moduli space 1868: 1824: 1819:Dirac string 1745:Gauge theory 1725:Loop algebra 1662:Black string 1525:GS formalism 1315: 1309: 1272: 1266: 1247: 1197: 1154: 1103: 1063: 1057: 1054:Kerr, Roy P. 1015: 964: 939: 935: 928:Einstein, A. 881: 831: 819: 818: 805: 789: 777: 765: 753: 741: 729: 717: 705: 693: 677: 665: 653: 641: 629: 613: 602:O'Neill 1983 589: 582:O'Neill 1983 577: 570:O'Neill 1983 565: 556: 555: 543: 500: 495: 491: 474: 443: 438: 434: 420: 398: 389: 377:Betti number 366: 347: 330: 322:developments 317: 313: 295: 278: 269:Relative to 268: 232: 228:Lie algebras 217: 193:Kerr metrics 174: 171: 159: 149:. By taking 140: 119: 113: 77: 48: 36: 29:mathematical 26: 2422:Silverstein 1922:Orientifold 1657:Black holes 1652:Black brane 1609:Dual photon 1250:: 189–196. 1155:Gravitation 810:Berger 2003 794:Berger 2003 484:Sp(n)·Sp(1) 375:have first 197:black holes 2442:Strominger 2437:Steinhardt 2432:Staudacher 2347:Polchinski 2297:Nanopoulos 2257:Mandelstam 2237:Kontsevich 2077:Berenstein 2005:Holography 1985:Superspace 1884:K3 surface 1843:Worldsheet 1758:Instantons 1386:Background 1340:0369.53059 1297:1020.83005 1256:46.1296.02 1235:0531.53051 1186:1375.83002 1134:0688.57001 1088:0112.21904 1046:1027.53052 1004:0265.53054 948:46.1293.01 920:0613.53001 870:1038.53002 834:. Berlin: 798:Joyce 2000 782:Besse 1987 770:Besse 1987 758:Besse 1987 746:Besse 1987 722:Besse 1987 698:Besse 1987 682:Besse 1987 670:Besse 1987 658:Besse 1987 646:Besse 1987 634:Besse 1987 594:Besse 1987 552:References 496:restricted 439:restricted 253:on closed 179:found the 120:Ricci-flat 110:Definition 18:Ricci-flat 2477:Veneziano 2357:Rajaraman 2252:Maldacena 2142:Gopakumar 2092:Dijkgraaf 2087:Curtright 1753:Anomalies 1632:NS5-brane 1553:U-duality 1548:S-duality 1543:T-duality 618:Kerr 1963 481:Lie group 224:symmetric 175:In 1916, 41:curvature 31:field of 2547:Category 2532:Zwiebach 2487:Verlinde 2482:Verlinde 2457:Townsend 2452:Susskind 2387:Sagnotti 2352:Polyakov 2307:Nekrasov 2272:Minwalla 2267:Martinec 2232:Knizhnik 2227:Klebanov 2222:Kapustin 2187:'t Hooft 2122:Fischler 2057:Aganagić 2028:M-theory 1917:Conifold 1912:Orbifold 1895:manifold 1836:Geometry 1642:M5-brane 1637:M2-brane 1574:Graviton 1490:F-theory 1196:(1983). 1152:(1973). 1102:(1989). 1014:(2000). 962:(1973). 930:(1916). 880:(1987). 830:(2003). 820:Sources. 686:Yau 1978 516:manifold 509:manifold 458:parallel 336:and the 318:maximal 189:Roy Kerr 168:Examples 84:Roy Kerr 2462:Trivedi 2447:Sundrum 2412:Shenker 2402:Seiberg 2397:Schwarz 2367:Randall 2327:Novikov 2317:Nielsen 2302:Năstase 2212:Kallosh 2197:Gibbons 2137:Gliozzi 2127:Friedan 2117:Ferrara 2102:Douglas 2097:Distler 1647:S-brane 1627:D-brane 1584:Tachyon 1579:Dilaton 1393:Strings 1332:0480350 1289:1982197 1227:0719023 1178:0418833 1126:1031992 1080:0156674 1038:1787733 996:0424186 912:0867684 862:2002701 521:Spin(7) 514:Spin(7) 492:locally 356:of the 122:if its 27:In the 2527:Zumino 2522:Zaslow 2507:Yoneya 2497:Witten 2417:Siegel 2392:Scherk 2362:Ramond 2337:Ooguri 2262:Marolf 2217:Kaluza 2202:Kachru 2192:Hořava 2182:Harvey 2177:Hanson 2162:Gubser 2152:Greene 2082:Bousso 2067:Atiyah 1619:Branes 1429:Theory 1338:  1330:  1295:  1287:  1254:  1233:  1225:  1215:  1184:  1176:  1166:  1132:  1124:  1114:  1086:  1078:  1044:  1036:  1026:  1002:  994:  984:  946:  918:  910:  900:  868:  860:  850:  557:Notes. 533:. The 468:. The 352:: the 233:Until 151:traces 86:, and 69:vacuum 2467:Turok 2377:Roček 2342:Ovrut 2332:Olive 2312:Neveu 2292:Myers 2287:Mukhi 2277:Moore 2247:Linde 2242:Klein 2167:Gukov 2157:Gross 2147:Green 2132:Gates 2112:Dvali 2072:Banks 421:On a 382:have 90:. In 67:in a 55:. In 43:of a 2492:Wess 2472:Vafa 2382:Rohm 2282:Motl 2207:Kaku 2172:Guth 2107:Duff 1213:ISBN 1164:ISBN 1112:ISBN 1024:ISBN 982:ISBN 898:ISBN 848:ISBN 393:and 162:flat 2502:Yau 2427:Sơn 2407:Sen 1336:Zbl 1320:doi 1293:Zbl 1277:doi 1252:JFM 1231:Zbl 1205:doi 1182:Zbl 1130:Zbl 1084:Zbl 1068:doi 1042:Zbl 1000:Zbl 974:doi 944:JFM 940:354 916:Zbl 890:doi 866:Zbl 840:doi 524:or 511:or 207:of 2549:: 1803:, 1796:, 1789:, 1782:, 1334:. 1328:MR 1326:. 1316:31 1314:. 1291:. 1285:MR 1283:. 1273:35 1271:. 1229:. 1223:MR 1221:. 1211:. 1180:. 1174:MR 1172:. 1162:. 1148:; 1144:; 1128:. 1122:MR 1120:. 1110:. 1098:; 1082:. 1076:MR 1074:. 1064:11 1062:. 1040:. 1034:MR 1032:. 1022:. 998:. 992:MR 990:. 980:. 972:. 958:; 938:. 914:. 908:MR 906:. 896:. 888:. 864:. 858:MR 856:. 846:. 838:. 620:; 501:A 486:. 475:A 444:A 435:if 413:. 364:. 340:. 230:. 215:. 157:. 114:A 106:. 94:, 82:, 75:. 47:. 35:, 1893:2 1891:G 1860:? 1825:p 1810:) 1807:8 1805:E 1800:7 1798:E 1793:6 1791:E 1786:4 1784:F 1779:2 1777:G 1775:( 1371:e 1364:t 1357:v 1342:. 1322:: 1299:. 1279:: 1258:. 1237:. 1207:: 1188:. 1136:. 1090:. 1070:: 1048:. 1006:. 976:: 950:. 922:. 892:: 872:. 842:: 800:. 688:. 608:. 529:2 527:G 506:2 504:G 20:)

Index

Ricci-flat
mathematical
differential geometry
curvature
Riemannian manifold
Einstein manifold
theoretical physics
Lorentzian manifolds
Einstein's field equations
vacuum
cosmological constant
Karl Schwarzschild
Roy Kerr
Yvonne Choquet-Bruhat
Riemannian geometry
Shing-Tung Yau
Calabi conjecture
Kähler manifolds
pseudo-Riemannian manifold
Ricci curvature
Einstein tensor
Einstein manifold
scalar curvature
Weyl curvature tensor
Riemann curvature tensor
traces
Ricci decomposition
flat
Karl Schwarzschild
Schwarzschild metrics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.