Knowledge (XXG)

Rigid origami

Source đź“ť

17: 142: 42:. That is, unlike in traditional origami, the panels of the paper cannot be bent during the folding process; they must remain flat at all times, and the paper only folded along its hinges. A rigid origami model would still be foldable if it was made from glass sheets with hinges in place of its crease lines. 133:. This is true even for determining the existence of a folding motion that keeps the paper arbitrarily close to its flat state, so (unlike for other results in the hardness of folding origami crease patterns) this result does not rely on the impossibility of self-intersections of the folded paper. 173:
are commonly folded flat and then unfolded open, the standard folding pattern for doing so is not rigid; the sides of the bag bend slightly when it is folded and unfolded. The tension in the paper from this bending causes it to snap into its two flat states, the flat-folded and opened bag.
22: 21: 18: 23: 20: 84:
restrict the folding patterns that are possible, just as they do in conventional origami, but they no longer form an exact characterization: some patterns that can be folded flat in conventional origami cannot be folded flat rigidly.
19: 103:
asks whether it is possible to fold a square so the perimeter of the resulting flat figure is increased. That this can be solved within rigid origami was proved by A.S. Tarasov in 2004.
581: 117:
has a net with a blooming, it is not known whether there exists a blooming that does not cut across faces of the polyhedron, or whether all nets of convex polyhedra have bloomings.
511: 574: 567: 816: 374: 76:, the fold lines can be calculated rather than having to be constructed from existing lines and points. When folding rigid origami flat, 837: 737: 338: 438: 260: 979: 878: 948: 644: 69: 675: 823: 590: 53: 467: 129:
can be folded simultaneously as a piece of rigid origami, or whether a subset of the creases can be folded, are both
873: 614: 73: 908: 844: 548: 425: 247: 72:
that can be folded using rigid origami is restricted by its rules. Rigid origami does not have to follow the
750: 634: 100: 505: 619: 77: 794: 624: 604: 81: 57: 433: 761: 742: 106: 93: 923: 746: 721: 447: 401: 285: 195:
are toys, usually made of paper, which give an effect similar to a kaleidoscope when convoluted.
89: 45:
However, there is no requirement that the structure start as a single flat sheet – for instance
943: 830: 701: 307: 114: 984: 903: 868: 799: 771: 756: 639: 383: 269: 220: 110: 397: 350: 323: 281: 883: 711: 696: 393: 319: 303: 277: 670: 953: 928: 918: 913: 898: 893: 776: 609: 489: 429: 255: 251: 243: 182: 163: 145: 126: 973: 113:
from its flat unfolded state to the folded polyhedron, or vice versa. Although every
493: 405: 958: 888: 660: 485: 421: 289: 239: 212: 192: 170: 46: 370:"Metric combinatorics of convex polyhedra: Cut loci and nonoverlapping unfoldings" 552: 938: 629: 157: 559: 933: 766: 691: 526: 388: 369: 153: 148:
for a Miura fold. The parallelograms of this example have 84° and 96° angles.
38:
which is concerned with folding structures using flat rigid sheets joined by
851: 141: 665: 365: 273: 186: 160:
arrays for space satellites, which have to be folded before deployment.
166:
has applied rigid origami to the problem of folding a space telescope.
130: 35: 498:
Abstracts from the 14th Annual Fall Workshop on Computational Geometry
224: 716: 452: 140: 39: 15: 563: 258:(2016). "Rigid origami vertices: conditions and forcing sets". 56:, and rigid origami structures can be considered as a type of 49:
with flat bottoms are studied as part of rigid origami.
27:
One-DOF Superimposed Rigid Origami with Multiple States
189:
which are a form of rigid origami and the flexatube.
861: 808: 787: 730: 684: 653: 597: 156:is a rigid fold that has been used to pack large 219:(PhD thesis). University of Waterloo, Canada. 575: 339:"Solution of Arnold's "folded ruble" problem" 60:. Rigid origami has great practical utility. 8: 510:: CS1 maint: multiple names: authors list ( 52:Rigid origami is a part of the study of the 582: 568: 560: 451: 387: 96:has constant volume when flexed rigidly. 204: 503: 375:Discrete & Computational Geometry 125:Determining whether all creases of a 7: 817:Geometric Exercises in Paper Folding 838:A History of Folding in Mathematics 500:. Cambridge, Massachusetts: 14–15. 312:Beiträge zur Algebra und Geometrie 238:Abel, Zachary; Cantarella, Jason; 14: 439:Journal of Computational Geometry 261:Journal of Computational Geometry 306:; Sabitov, I.; Walz, A. (1997). 738:Alexandrov's uniqueness theorem 109:is a rigid origami motion of a 468:"The Eyeglass Space Telescope" 434:"Rigid foldability is NP-hard" 1: 676:Regular paperfolding sequence 494:"Folding Paper Shopping Bags" 824:Geometric Folding Algorithms 591:Mathematics of paper folding 349:(1): 174–187. Archived from 54:mathematics of paper folding 1001: 874:Margherita Piazzola Beloch 645:Yoshizawa–Randlett system 389:10.1007/s00454-008-9052-3 845:Origami Polyhedra Design 308:"The bellows conjecture" 68:The number of standard 337:Tarasov, A. S. (2004). 635:Napkin folding problem 149: 101:napkin folding problem 28: 980:Linkages (mechanical) 424:; Horiyama, Takashi; 343:Chebyshevskii Sbornik 217:Folding and Unfolding 144: 26: 795:Fold-and-cut theorem 751:Steffen's polyhedron 615:Huzita–Hatori axioms 605:Big-little-big lemma 410:. Announced in 2003. 274:10.20382/jocg.v7i1a9 74:Huzita–Hatori axioms 743:Flexible polyhedron 525:Weisstein, Eric W. 484:Devin. J. Balkcom, 111:net of a polyhedron 94:flexible polyhedron 924:Toshikazu Kawasaki 747:Bricard octahedron 722:Yoshimura buckling 620:Kawasaki's theorem 150: 78:Kawasaki's theorem 58:mechanical linkage 29: 967: 966: 831:Geometric Origami 702:Paper bag problem 625:Maekawa's theorem 531:Wolfram MathWorld 492:(November 2004). 490:Martin L. Demaine 178:Recreational uses 121:Complexity theory 115:convex polyhedron 82:Maekawa's theorem 24: 992: 904:David A. Huffman 869:Roger C. Alperin 772:Source unfolding 640:Pureland origami 584: 577: 570: 561: 556: 535: 534: 522: 516: 515: 509: 501: 481: 475: 474: 472: 464: 458: 457: 455: 417: 411: 409: 391: 382:(1–3): 339–388. 361: 355: 354: 334: 328: 327: 300: 294: 293: 250:; Ku, Jason S.; 240:Demaine, Erik D. 235: 229: 228: 209: 185:has popularised 25: 1000: 999: 995: 994: 993: 991: 990: 989: 970: 969: 968: 963: 949:Joseph O'Rourke 884:Robert Connelly 857: 804: 783: 726: 712:Schwarz lantern 697:Modular origami 680: 649: 593: 588: 553:"Rigid Origami" 547: 544: 539: 538: 524: 523: 519: 502: 486:Erik D. Demaine 483: 482: 478: 470: 466: 465: 461: 430:Tachi, Tomohiro 420:Akitaya, Hugo; 419: 418: 414: 363: 362: 358: 336: 335: 331: 302: 301: 297: 256:Tachi, Tomohiro 252:Lang, Robert J. 248:Hull, Thomas C. 244:Eppstein, David 237: 236: 232: 211: 210: 206: 201: 180: 169:Although paper 139: 123: 90:Bellows theorem 66: 34:is a branch of 16: 12: 11: 5: 998: 996: 988: 987: 982: 972: 971: 965: 964: 962: 961: 956: 954:Tomohiro Tachi 951: 946: 941: 936: 931: 929:Robert J. Lang 926: 921: 919:Humiaki Huzita 916: 911: 906: 901: 899:Rona Gurkewitz 896: 894:Martin Demaine 891: 886: 881: 876: 871: 865: 863: 859: 858: 856: 855: 848: 841: 834: 827: 820: 812: 810: 806: 805: 803: 802: 797: 791: 789: 785: 784: 782: 781: 780: 779: 777:Star unfolding 774: 769: 764: 754: 740: 734: 732: 728: 727: 725: 724: 719: 714: 709: 704: 699: 694: 688: 686: 682: 681: 679: 678: 673: 668: 663: 657: 655: 651: 650: 648: 647: 642: 637: 632: 627: 622: 617: 612: 610:Crease pattern 607: 601: 599: 595: 594: 589: 587: 586: 579: 572: 564: 558: 557: 543: 542:External links 540: 537: 536: 517: 476: 459: 412: 364:Miller, Ezra; 356: 353:on 2007-08-25. 345:(in Russian). 329: 295: 268:(1): 171–184. 230: 213:Demaine, E. D. 203: 202: 200: 197: 183:Martin Gardner 179: 176: 164:Robert J. Lang 146:Crease pattern 138: 135: 127:crease pattern 122: 119: 65: 62: 13: 10: 9: 6: 4: 3: 2: 997: 986: 983: 981: 978: 977: 975: 960: 957: 955: 952: 950: 947: 945: 942: 940: 937: 935: 932: 930: 927: 925: 922: 920: 917: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 872: 870: 867: 866: 864: 860: 854: 853: 849: 847: 846: 842: 840: 839: 835: 833: 832: 828: 826: 825: 821: 819: 818: 814: 813: 811: 807: 801: 800:Lill's method 798: 796: 793: 792: 790: 788:Miscellaneous 786: 778: 775: 773: 770: 768: 765: 763: 760: 759: 758: 755: 752: 748: 744: 741: 739: 736: 735: 733: 729: 723: 720: 718: 715: 713: 710: 708: 707:Rigid origami 705: 703: 700: 698: 695: 693: 690: 689: 687: 685:3d structures 683: 677: 674: 672: 669: 667: 664: 662: 659: 658: 656: 654:Strip folding 652: 646: 643: 641: 638: 636: 633: 631: 628: 626: 623: 621: 618: 616: 613: 611: 608: 606: 603: 602: 600: 596: 592: 585: 580: 578: 573: 571: 566: 565: 562: 554: 550: 546: 545: 541: 532: 528: 521: 518: 513: 507: 499: 495: 491: 487: 480: 477: 469: 463: 460: 454: 449: 445: 441: 440: 435: 431: 428:; Ku, Jason; 427: 423: 422:Demaine, Erik 416: 413: 407: 403: 399: 395: 390: 385: 381: 377: 376: 371: 367: 360: 357: 352: 348: 344: 340: 333: 330: 325: 321: 317: 313: 309: 305: 299: 296: 291: 287: 283: 279: 275: 271: 267: 263: 262: 257: 253: 249: 245: 241: 234: 231: 226: 222: 218: 214: 208: 205: 198: 196: 194: 193:Kaleidocycles 190: 188: 184: 177: 175: 172: 171:shopping bags 167: 165: 161: 159: 155: 147: 143: 136: 134: 132: 128: 120: 118: 116: 112: 108: 104: 102: 97: 95: 91: 86: 83: 79: 75: 71: 70:origami bases 63: 61: 59: 55: 50: 48: 47:shopping bags 43: 41: 37: 33: 32:Rigid origami 959:Eve Torrence 889:Erik Demaine 850: 843: 836: 829: 822: 815: 809:Publications 706: 671:Möbius strip 661:Dragon curve 598:Flat folding 530: 520: 506:cite journal 497: 479: 462: 443: 437: 426:Hull, Thomas 415: 379: 373: 359: 351:the original 346: 342: 332: 315: 311: 304:Connelly, R. 298: 265: 259: 233: 216: 207: 191: 181: 168: 162: 151: 137:Applications 124: 105: 98: 92:says that a 87: 67: 51: 44: 31: 30: 944:KĹŤryĹŤ Miura 939:Jun Maekawa 914:KĂ´di Husimi 630:Map folding 527:"Flexatube" 318:(1): 1–10. 158:solar panel 64:Mathematics 974:Categories 934:Anna Lubiw 767:Common net 692:Miura fold 453:1812.01160 225:10012/1068 199:References 154:Miura fold 852:Origamics 731:Polyhedra 549:Hull, Tom 366:Pak, Igor 187:flexagons 909:Tom Hull 879:Yan Chen 762:Blooming 666:Flexagon 432:(2020). 406:10227925 368:(2008). 215:(2001). 107:Blooming 985:Origami 398:2383765 324:1447981 290:7181079 282:3491092 131:NP-hard 36:origami 862:People 717:Sonobe 404:  396:  322:  288:  280:  40:hinges 471:(PDF) 448:arXiv 446:(1). 402:S2CID 286:S2CID 512:link 152:The 99:The 88:The 80:and 757:Net 384:doi 270:doi 221:hdl 976:: 749:, 551:. 529:. 508:}} 504:{{ 496:. 488:, 444:11 442:. 436:. 400:. 394:MR 392:. 380:39 378:. 372:. 341:. 320:MR 316:38 314:. 310:. 284:. 278:MR 276:. 264:. 254:; 246:; 242:; 753:) 745:( 583:e 576:t 569:v 555:. 533:. 514:) 473:. 456:. 450:: 408:. 386:: 347:5 326:. 292:. 272:: 266:7 227:. 223::

Index

origami
hinges
shopping bags
mathematics of paper folding
mechanical linkage
origami bases
Huzita–Hatori axioms
Kawasaki's theorem
Maekawa's theorem
Bellows theorem
flexible polyhedron
napkin folding problem
Blooming
net of a polyhedron
convex polyhedron
crease pattern
NP-hard

Crease pattern
Miura fold
solar panel
Robert J. Lang
shopping bags
Martin Gardner
flexagons
Kaleidocycles
Demaine, E. D.
hdl
10012/1068
Demaine, Erik D.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑