Knowledge

Roadkill hotspot

Source 📝

31:
locations, prioritizing those with the most roadkill in number or those for a particular target species for conservation. Roadkill hotspots vary spatially and temporally, depending on the scale, duration of monitoring, and both the species and season in question. They can be calculated using roadkill survey data; GPS coordinates of roadkill collected by researchers and highway maintenance personnel, or increasingly, civilian-reported data. Additionally, roadkill hotspots can be projected by using a model to ascertain probable locations; models typically use existing wildlife abundance, distribution, and mitigation data combined with landscape variables (distance to forest, wetland, grassland, road elevation, road width, speed limit, etc.) and climatic data (temperature, humidity, precipitation, etc.). Models are often used to determine the probable roadkill locations of ecologically sensitive animals or during the planning stages of a new road, it is noted that these locations may not align perfectly with sites of highest animal crossing attempts. Many academics stress the combined value of animal abundance and migration data with roadkill hotspots as a more assured way to ascertain the best locations to construct
87: 113:
ecosystem role, e.g. birds, small mammals, reptiles, specialists, etc. Additionally, specific animal types require specific types of mitigation infrastructure, e.g. even if a bird and reptile hotspot overlaps, both require different types of fencing. Combining an endangered animal with roadkill data from its animal type serves to protect both the endangered and all members of its kind, though hotspot locations can fluctuate between individual species within the same family group.
44: 70:
the road, which creates a barrier effect and can lead to passive Often, an animal will live long enough after a wildlife-vehicle collision to make it off of the roadway and therefore go undetected. The detection of roadkill, or lack thereof, is a concern for researchers, as animal size generally favours detectability, resulting in roadkill hotspots of larger, easily-detected animals.
57:, the results of wildlife-vehicle collisions claim hundreds of millions of animals per year, and the burden to mitigate ecological degradation often becomes the responsibility of governments. Roadkill hotspot locations can be prioritized by governments as areas to construct roadkill mitigating infrastructure (fencing, wildlife overpasses, wildlife crossing areas, reduced speed, etc.). 100:
scale used. Corresponding mitigation structures, e.g. fencing, would fence at minimum the length of the hotspot though likely more to avoid the ‘fence-end effect’ – fencing only the locations of roadkill hotspots is ineffective as the animal trying to cross would simply follow the fence to where it ends and cross there, creating a new hotspot.
77:
A lack of a certain type of roadkill is a variable to consider– for example, many amphibian species are removed from roadways by scavengers within hours of wildlife-vehicle collisions and as a consequence, would not appear in road survey data (surveys that are conducted on a daily, weekly, or monthly
73:
In instances where the target species for conservation has few remaining individuals, modelling can be employed to project hotspot locations, sites that can be prioritized for the construction of roadkill mitigation infrastructure. Fencing in these areas can aid in the recovery of animal populations.
69:
Researchers stress that an absence of hotspots in a given area should not be taken as conclusive evidence for a lack of roadway effects among local animal populations. It is possible that roadway effects have already exhausted local animal populations, resulting in fewer roadkill. Some animals avoid
121:
Roadkill hotspots are dynamic – their presence fluctuates over time. Roadkill hotspot presence and strength is subject to seasonality, animal migration patterns, dispersal, feeding, breeding, and journeys taken to complete lifecycle needs; likewise, roadkill data used to determine roadkill hotspots
95:
The strength of roadkill hotspots is a factor of the number of roadkill per unit length of roadway; if the number of roadkill decreases or the size of the scale increases, the strength of the hotspot will be reduced. Conversely, if the number of roadkill increase or the scale length decreases, the
99:
It is important to choose an appropriate scale (the diameter length containing the sum of roadkill data) to align with the practical considerations of roadkill mitigation structure and target animal in question (if present). The species in question and the area size of its range often dictate the
52:
Roadkill hotspots can be calculated using Ripley's K statistical analysis, which evaluate dispersion of events on different scales, as well as employing various freeware programs, such as Siriema, used "to determine the scales on which road-kills were significantly aggregated in space." Roadkill
30:
is an accumulation of roadkill along a given length of roadway with significantly more wildlife-vehicle collisions than expected to occur by chance, based on a normal distribution. Decision-makers can then authorize the construction of roadkill mitigation infrastructure based on roadkill hotspot
112:
Varying animal types produce roadkill hotspots in different locations, making it a challenge for researchers to recommend specific locations for mitigation that benefit the entire ecosystem. As a result, specific species may receive priority or roadkill data may be combined along animal type or
125:
Understanding roadkill hotspot variability over time is essential for mitigation purposes. For example, once hotspot seasonality is determined, warnings of potential animal crossings can be timed and delivered to motorists, increasing driver awareness. Studies have shown that permanent animal
65:
The presence of roadkill hotspots calculated using roadkill GPS data in a given location does not always align with locations of the highest number of road-crossing attempts but instead represent sites of the highest number of unsuccessful road crossings, resulting in an area of higher animal
122:
should consider these factors. Road mortality surveys (researcher-conducted scanning of the roadway looking for roadkill) are most effective when adhering to a consistent and systematic protocol so that accumulated data are a good representation of the research site regardless of time.
47:
Roadkill Hotspot analysis, calculated in the freeware program Siriema, at a diameter scale of 1000m (radius of 500m). Areas in red represent roadkill hotspots, where calculated values (blue line) rises above the upper confidence interval (upper black line), set at
466:
Teixeira, Fernanda Zimmermann; Coelho, Igor Pfeifer; Esperandio, Isadora Beraldi; Oliveira, Nicole Rosa; Peter, FlĂĄvia Porto; Dornelles, Sidnei S.; Delazeri, NatĂĄlia Rosa; Tavares, MaurĂ­cio; Martins, MĂĄrcio Borges; Kindel, Andreas (March 2013).
103:
In practice, monetary costs are levied on the tax payer, therefore efficiency with mitigating structures is key. The roadkill hotspot scale and subsequent mitigating structure scale is usually a compromise between ecology and economics.
90:
Siriema Roadkill Hotspot locations in Geographic Information System (GIS), with applicable scales as buffers in red (scales of 100m, 200m, and 1000m are depicted). A statistically significant lack of roadkill, 'coldspots,' are in
773: 66:
mortality. It is possible that more animals are attempting a crossing somewhere else along the roadway and are more successful at doing so, for whatever reason.
721:
Ascensão, Fernando; Kindel, Andreas; Teixeira, Fernanda Zimmermann; Barrientos, Rafael; D'Amico, Marcello; Borda-de-Água, Luís; Pereira, Henrique M. (July 2019).
180: 96:
strength of the hotspot increases. Strength here is a measure of anomaly – how far outside the set confidence interval the value of the roadkill hotspot lies.
1018:
Lima Santos, Rodrigo Augusto; AscensĂŁo, Fernando; Ribeiro, Marina Lopes; Bager, Alex; Santos-Reis, Margarida; Aguiar, Ludmilla M.S. (January 2017).
209:
Neumann, Wiebke; Ericsson, Göran; Dettki, Holger; Bunnefeld, Nils; Keuler, Nicholas S.; Helmers, David P.; Radeloff, Volker C. (January 2012).
156: 683:
Zimmermann Teixeira, Fernanda; Kindel, Andreas; Hartz, Sandra Maria; Mitchell, Scott; Fahrig, Lenore (October 2017). Cadotte, Marc (ed.).
597:
Coelho, Igor Pfeifer; Teixeira, Fernanda Zimmermann; Colombo, Patrick; Coelho, Artur Vicente Pfeifer; Kindel, Andreas (December 2012).
641:"Spatial wildlife-vehicle collision models: A review of current work and its application to transportation mitigation projects" 958:
Plante, Judith; BĂ©langer-Smith, Katrina; Spanowicz, Ariel G.; Clevenger, Anthony P.; Jaeger, Jochen A.G. (December 2018).
849:
Collinson, Wendy J.; Parker, Daniel M.; Bernard, Ric T. F.; Reilly, Brian K.; Davies‐Mostert, Harriet T. (August 2014).
960:"Road mortality locations of small and medium-sized mammals along a partly-fenced highway in Quebec, Canada, 2012–2015" 184: 535:"The identification of wildlife-vehicle collision hotspots: Citizen science reveals spatial and temporal patterns" 86: 53:
hotspots are a useful by providing researchers and decision-makers with high-roadkill location. A strong
931: 723:"Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures" 774:"Wildlife can be saved from becoming roadkill with a new tool that finds the best locations for fences" 394:
Garrah, Evelyn; Danby, Ryan K.; Eberhardt, Ewen; Cunnington, Glenn M.; Mitchell, Scott (October 2015).
971: 862: 546: 407: 337: 222: 54: 914:
Coelho, Artur Pfeifer; Coelho, Igor Pfeifer; Teixeira, Fernanda Zimmermann; Kindel, Andreas (2017).
1020:"Assessing the consistency of hotspot and hot-moment patterns of wildlife road mortality over time" 211:"Difference in spatiotemporal patterns of wildlife road-crossings and wildlife-vehicle collisions" 828: 754: 640: 598: 572: 439: 369: 287: 210: 174: 1081: 997: 896: 878: 820: 799:"The effect of wildlife carcass underreporting on KDE+ hotspots identification and importance" 660: 618: 564: 431: 423: 361: 353: 279: 271: 162: 152: 32: 1031: 987: 979: 919: 886: 870: 810: 744: 734: 696: 652: 610: 554: 490: 480: 415: 345: 261: 230: 250:"On reliable identification of factors influencing wildlife-vehicle collisions along roads" 944: 468: 1051: 325: 324:
Spanowicz, Ariel G.; Teixeira, Fernanda Zimmermann; Jaeger, Jochen A. G. (October 2020).
975: 866: 550: 411: 341: 326:"An adaptive plan for prioritizing road sections for fencing to reduce animal mortality" 226: 43: 992: 959: 891: 851:"Wildlife road traffic accidents: a standardized protocol for counting flattened fauna" 850: 396:"Hot Spots and Hot Times: Wildlife Road Mortality in a Regional Conservation Corridor" 1075: 832: 758: 576: 395: 373: 443: 291: 599:"Anuran road-kills neighboring a peri-urban reserve in the Atlantic Forest, Brazil" 815: 798: 656: 614: 266: 249: 685:"When road-kill hotspots do not indicate the best sites for road-kill mitigation" 234: 1036: 1019: 923: 739: 722: 915: 559: 534: 983: 485: 419: 882: 568: 427: 357: 275: 166: 701: 684: 1001: 900: 824: 664: 622: 435: 365: 283: 639:
Gunson, Kari E.; Mountrakis, Giorgos; Quackenbush, Lindi J. (April 2011).
248:
BĂ­l, Michal; AndrĂĄĆĄik, Richard; DuÄŸa, Martin; SedonĂ­k, Jiƙí (2019-05-01).
146: 1052:"What Can Highway Managers Do? - | Wildlife Collision Prevention Program" 749: 533:
Valerio, Francesco; Basile, Marco; Balestrieri, Rosario (December 2021).
21: 495: 349: 151:. Rodney Van der Ree, Daniel J. Smith, Clara Grilo. Hoboken, NJ. 2015. 874: 772:
Spanowicz, Ariel; Teixeira, Fernanda Zimmermann; Jaeger, Jochen A. G.
469:"Are Road-Kill Hotspots Coincident Among Different Vertebrate Groups?" 85: 42: 16:
Location with higher than expected wildlife-vehicle collisions
510: 916:"Siriema: road mortality software. User's Manual V. 2.0" 126:crossing signs are all but ignored by motorists. 797:BĂ­l, Michal; AndrĂĄĆĄik, Richard (December 2020). 8: 179:: CS1 maint: location missing publisher ( 1035: 991: 890: 814: 748: 738: 700: 558: 494: 484: 265: 1024:Perspectives in Ecology and Conservation 61:Presence or absence of roadkill hotspots 135: 1013: 1011: 940: 929: 634: 632: 172: 844: 842: 716: 714: 712: 678: 676: 674: 7: 592: 590: 588: 586: 528: 526: 524: 522: 520: 461: 459: 457: 455: 453: 389: 387: 385: 383: 319: 317: 315: 313: 311: 309: 307: 305: 303: 301: 204: 202: 200: 198: 196: 194: 141: 139: 117:Temporal nature of roadkill hotspots 803:Journal of Environmental Management 645:Journal of Environmental Management 603:Journal of Environmental Management 254:Journal of Environmental Management 14: 727:Global Ecology and Conservation 33:roadkill mitigation structures 1: 816:10.1016/j.jenvman.2020.111254 657:10.1016/j.jenvman.2010.11.027 615:10.1016/j.jenvman.2012.07.004 267:10.1016/j.jenvman.2019.02.076 235:10.1016/j.biocon.2011.10.011 1037:10.1016/j.pecon.2017.03.003 924:10.13140/RG.2.2.19953.38242 740:10.1016/j.gecco.2019.e00661 511:"Nature Conservancy Canada" 1098: 689:Journal of Applied Ecology 560:10.1186/s13717-020-00271-4 1056:www.wildlifecollisions.ca 984:10.1016/j.dib.2018.10.048 486:10.4257/oeco.2013.1701.04 420:10.1007/s00267-015-0566-1 400:Environmental Management 148:Handbook of road ecology 702:10.1111/1365-2664.12870 215:Biological Conservation 939:Cite journal requires 92: 49: 855:Ecology and Evolution 183:) CS1 maint: others ( 89: 46: 539:Ecological Processes 330:Conservation Biology 55:anthropogenic effect 39:Calculation and uses 976:2018DIB....21.1209P 867:2014EcoEv...4.3060C 551:2021EcoPr..10....6V 473:Oecologia Australis 412:2015EnMan..56..874G 342:2020ConBi..34.1210S 227:2012BCons.145...70N 350:10.1111/cobi.13502 93: 50: 875:10.1002/ece3.1097 861:(15): 3060–3071. 158:978-1-118-56816-3 1089: 1066: 1065: 1063: 1062: 1048: 1042: 1041: 1039: 1015: 1006: 1005: 995: 955: 949: 948: 942: 937: 935: 927: 911: 905: 904: 894: 846: 837: 836: 818: 794: 788: 787: 785: 784: 778:The Conversation 769: 763: 762: 752: 742: 718: 707: 706: 704: 695:(5): 1544–1551. 680: 669: 668: 651:(4): 1074–1082. 636: 627: 626: 594: 581: 580: 562: 530: 515: 514: 507: 501: 500: 498: 488: 463: 448: 447: 391: 378: 377: 336:(5): 1210–1220. 321: 296: 295: 269: 245: 239: 238: 206: 189: 188: 178: 170: 143: 1097: 1096: 1092: 1091: 1090: 1088: 1087: 1086: 1072: 1071: 1070: 1069: 1060: 1058: 1050: 1049: 1045: 1017: 1016: 1009: 957: 956: 952: 938: 928: 913: 912: 908: 848: 847: 840: 796: 795: 791: 782: 780: 771: 770: 766: 720: 719: 710: 682: 681: 672: 638: 637: 630: 596: 595: 584: 532: 531: 518: 509: 508: 504: 465: 464: 451: 393: 392: 381: 323: 322: 299: 247: 246: 242: 208: 207: 192: 171: 159: 145: 144: 137: 132: 119: 110: 84: 63: 41: 17: 12: 11: 5: 1095: 1093: 1085: 1084: 1074: 1073: 1068: 1067: 1043: 1007: 950: 941:|journal= 906: 838: 789: 764: 708: 670: 628: 582: 516: 502: 449: 406:(4): 874–889. 379: 297: 240: 190: 157: 134: 133: 131: 128: 118: 115: 109: 106: 83: 80: 62: 59: 40: 37: 15: 13: 10: 9: 6: 4: 3: 2: 1094: 1083: 1080: 1079: 1077: 1057: 1053: 1047: 1044: 1038: 1033: 1029: 1025: 1021: 1014: 1012: 1008: 1003: 999: 994: 989: 985: 981: 977: 973: 970:: 1209–1215. 969: 965: 964:Data in Brief 961: 954: 951: 946: 933: 925: 921: 917: 910: 907: 902: 898: 893: 888: 884: 880: 876: 872: 868: 864: 860: 856: 852: 845: 843: 839: 834: 830: 826: 822: 817: 812: 808: 804: 800: 793: 790: 779: 775: 768: 765: 760: 756: 751: 750:10400.5/18223 746: 741: 736: 732: 728: 724: 717: 715: 713: 709: 703: 698: 694: 690: 686: 679: 677: 675: 671: 666: 662: 658: 654: 650: 646: 642: 635: 633: 629: 624: 620: 616: 612: 608: 604: 600: 593: 591: 589: 587: 583: 578: 574: 570: 566: 561: 556: 552: 548: 544: 540: 536: 529: 527: 525: 523: 521: 517: 512: 506: 503: 497: 492: 487: 482: 478: 474: 470: 462: 460: 458: 456: 454: 450: 445: 441: 437: 433: 429: 425: 421: 417: 413: 409: 405: 401: 397: 390: 388: 386: 384: 380: 375: 371: 367: 363: 359: 355: 351: 347: 343: 339: 335: 331: 327: 320: 318: 316: 314: 312: 310: 308: 306: 304: 302: 298: 293: 289: 285: 281: 277: 273: 268: 263: 259: 255: 251: 244: 241: 236: 232: 228: 224: 220: 216: 212: 205: 203: 201: 199: 197: 195: 191: 186: 182: 176: 168: 164: 160: 154: 150: 149: 142: 140: 136: 129: 127: 123: 116: 114: 107: 105: 101: 97: 88: 81: 79: 75: 71: 67: 60: 58: 56: 45: 38: 36: 34: 29: 25: 23: 1059:. Retrieved 1055: 1046: 1030:(1): 56–60. 1027: 1023: 967: 963: 953: 932:cite journal 909: 858: 854: 806: 802: 792: 781:. Retrieved 777: 767: 730: 726: 692: 688: 648: 644: 606: 602: 542: 538: 505: 479:(1): 36–47. 476: 472: 403: 399: 333: 329: 257: 253: 243: 221:(1): 70–78. 218: 214: 147: 124: 120: 111: 102: 98: 94: 76: 72: 68: 64: 51: 27: 20: 18: 496:10261/80338 260:: 297–304. 1061:2021-04-21 809:: 111254. 783:2021-04-22 733:: e00661. 130:References 883:2045-7758 833:221326250 759:164360327 609:: 17–26. 577:231202636 569:2192-1709 428:0364-152X 374:214731676 358:0888-8892 276:0301-4797 175:cite book 167:897468593 28:blackspot 1082:Roadkill 1076:Category 1002:30456234 901:25247063 825:32841791 665:21190788 623:22858802 545:(1): 6. 444:12527592 436:26108412 366:32227646 292:73479327 284:30807975 78:basis). 22:roadkill 993:6231288 972:Bibcode 892:4161179 863:Bibcode 547:Bibcode 408:Bibcode 338:Bibcode 223:Bibcode 108:Species 24:hotspot 1000:  990:  899:  889:  881:  831:  823:  757:  663:  621:  575:  567:  442:  434:  426:  372:  364:  356:  290:  282:  274:  165:  155:  829:S2CID 755:S2CID 573:S2CID 440:S2CID 370:S2CID 288:S2CID 91:blue. 82:Scale 998:PMID 945:help 897:PMID 879:ISSN 821:PMID 661:PMID 619:PMID 565:ISSN 432:PMID 424:ISSN 362:PMID 354:ISSN 280:PMID 272:ISSN 185:link 181:link 163:OCLC 153:ISBN 48:95%. 1032:doi 988:PMC 980:doi 920:doi 887:PMC 871:doi 811:doi 807:275 745:hdl 735:doi 697:doi 653:doi 611:doi 607:112 555:doi 491:hdl 481:doi 416:doi 346:doi 262:doi 258:237 231:doi 219:145 26:or 1078:: 1054:. 1028:15 1026:. 1022:. 1010:^ 996:. 986:. 978:. 968:21 966:. 962:. 936:: 934:}} 930:{{ 918:. 895:. 885:. 877:. 869:. 857:. 853:. 841:^ 827:. 819:. 805:. 801:. 776:. 753:. 743:. 731:19 729:. 725:. 711:^ 693:54 691:. 687:. 673:^ 659:. 649:92 647:. 643:. 631:^ 617:. 605:. 601:. 585:^ 571:. 563:. 553:. 543:10 541:. 537:. 519:^ 489:. 477:17 475:. 471:. 452:^ 438:. 430:. 422:. 414:. 404:56 402:. 398:. 382:^ 368:. 360:. 352:. 344:. 334:34 332:. 328:. 300:^ 286:. 278:. 270:. 256:. 252:. 229:. 217:. 213:. 193:^ 177:}} 173:{{ 161:. 138:^ 35:. 19:A 1064:. 1040:. 1034:: 1004:. 982:: 974:: 947:) 943:( 926:. 922:: 903:. 873:: 865:: 859:4 835:. 813:: 786:. 761:. 747:: 737:: 705:. 699:: 667:. 655:: 625:. 613:: 579:. 557:: 549:: 513:. 499:. 493:: 483:: 446:. 418:: 410:: 376:. 348:: 340:: 294:. 264:: 237:. 233:: 225:: 187:) 169:.

Index

roadkill
roadkill mitigation structures

anthropogenic effect



Handbook of road ecology
ISBN
978-1-118-56816-3
OCLC
897468593
cite book
link
link






"Difference in spatiotemporal patterns of wildlife road-crossings and wildlife-vehicle collisions"
Bibcode
2012BCons.145...70N
doi
10.1016/j.biocon.2011.10.011
"On reliable identification of factors influencing wildlife-vehicle collisions along roads"
doi
10.1016/j.jenvman.2019.02.076
ISSN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑