Knowledge (XXG)

Root-finding algorithm

Source đź“ť

1636:. At each iteration, the domain is partitioned into two parts, and the algorithm decides - based on a small number of function evaluations - which of these two parts must contain a root. In one dimension, the criterion for decision is that the function has opposite signs. The main challenge in extending the method to multiple dimensions is to find a criterion that can be computed easily, and guarantees the existence of a root. 535:, except that, instead of retaining the last two points, it makes sure to keep one point on either side of the root. The false position method can be faster than the bisection method and will never diverge like the secant method; however, it may fail to converge in some naive implementations due to roundoff errors that may lead to a wrong sign for 578:) and then projection onto the minmax interval. The combination of these steps produces a simultaneously minmax optimal method with guarantees similar to interpolation based methods for smooth functions, and, in practice will outperform both the bisection method and interpolation based methods under both smooth and non-smooth functions. 664:. Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method, and is usually quadratic. Newton's method is also important because it readily generalizes to higher-dimensional problems. Newton-like methods with higher orders of convergence are the 571:). It does so by keeping track of both the bracketing interval as well as the minmax interval in which any point therein converges as fast as the bisection method. The construction of the queried point c follows three steps: interpolation (similar to the regula falsi), truncation (adjusting the regula falsi similar to 223:, which asserts that if a continuous function has values of opposite signs at the end points of an interval, then the function has at least one root in the interval. Therefore, they require to start with an interval such that the function takes opposite signs at the end points of the interval. However, in the case of 566:
is the only known method to bracket the root with the same worst case guarantees of the bisection method while guaranteeing a superlinear convergence to the root of smooth functions as the secant method. It is also the only known method guaranteed to outperform the bisection method on the average for
175:
of the root as starting values, then each iteration of the algorithm produces a successively more accurate approximation to the root. Since the iteration must be stopped at some point, these methods produce an approximation to the root, not an exact solution. Many methods compute subsequent values by
1590:
is a hybrid method that uses the value of function at the midpoint of the interval to perform an exponential interpolation to the root. This gives a fast convergence with a guaranteed convergence of at most twice the number of iterations as the bisection method.
1579:. At every iteration, Brent's method decides which method out of these three is likely to do best, and proceeds by doing a step according to that method. This gives a robust and fast method, which therefore enjoys considerable popularity. 636:
root-finding method generally uses a specific type of iteration, consisting of defining an auxiliary function, which is applied to the last computed approximations of a root for getting a new approximation. The iteration stops when a
191:, since algebraic properties of polynomials are fundamental for the most efficient algorithms. The efficiency of an algorithm may depend dramatically on the characteristics of the given functions. For example, many algorithms use the 1665:. This criterion is used by a method called Characteristic Bisection. It does not require to compute the topological degree - it only requires to compute the signs of function values. The number of required evaluations is at least 155:
defined by continuous functions. However, most root-finding algorithms do not guarantee that they will find all the roots; in particular, if such an algorithm does not find any root, that does not mean that no root exists.
594:
of low degree, which takes the same values at these approximate roots. Then the root of the polynomial is computed and used as a new approximate value of the root of the function, and the process is iterated.
400: 526: 1536: 2420: 1475: 1747: 1710: 1077: 1559:
method. Again, convergence is asymptotically faster than the secant method, but inverse quadratic interpolation often behaves poorly when the iterates are not close to the root.
1400: 1341: 1273: 219:
Bracketing methods determine successively smaller intervals (brackets) that contain a root. When the interval is small enough, then a root has been found. They generally use the
991: 620:
is also an interpolation method, which differs from the secant method by using, for interpolating by a line, two points that are not necessarily the last two computed points.
1204: 1643:
gives a criterion for the existence of a root in a rectangle, but it is hard to verify, since it requires to evaluate the function on the entire boundary of the rectangle.
2189: 1020:
and perform the iteration until it converges towards a root of the function. If the iteration converges, it will converge to a root. The iteration will only converge if
199:. In general, numerical algorithms are not guaranteed to find all the roots of a function, so failing to find a root does not prove that there is no root. However, for 1150: 1115: 936: 872: 837: 782: 704:
If we use a polynomial fit to remove the quadratic part of the finite difference used in the Secant method, so that it better approximates the derivative, we obtain
1018: 1658:. This criterion is the basis for several root-finding methods, such as by Stenger and Kearfott. However, computing the topological degree can be time-consuming. 901: 747: 802: 598:
Two values allow interpolating a function by a polynomial of degree one (that is approximating the graph of the function by a line). This is the basis of the
2413: 180:
of the auxiliary function, which is chosen for having the roots of the original equation as fixed points, and for converging rapidly to these fixed points.
1716:
is the length of the longest edge of the characteristic polyhedron. Note that prove a lower bound on the number of evaluations, and not an upper bound.
688:. This method does not require the computation (nor the existence) of a derivative, but the price is slower convergence (the order is approximately 1.6 ( 708:, which has quadratic convergence, and whose behavior (both good and bad) is essentially the same as Newton's method but does not require a derivative. 203:, there are specific algorithms that use algebraic properties for certifying that no root is missed, and locating the roots in separate intervals (or 2406: 1611:
is a long-standing problem that has been the object of much research throughout history. A testament to this is that up until the 19th century,
645:
the desired precision) of the auxiliary function is reached, that is when the new computed value is sufficiently close to the preceding ones.
2182: 1914: 1833: 346:
have opposite signs, and one has divided by two the size of the interval. Although the bisection method is robust, it gains one and only one
2387: 2313: 1601: 2667: 2175: 1640: 2377: 1729: 1576: 1556: 1792: 1647: 1719:
A fourth method uses an intermediate-value theorem on simplices. Again, no upper bound on the number of queries is given.
357: 437: 2598: 2568: 2553: 2341: 422:
method, is similar to the bisection method, but instead of using bisection search's middle of the interval it uses the
100:
for complex roots (an interval or disk output being equivalent to an approximate output together with an error bound).
2346: 228: 1895:"Generalizations of the Intermediate Value Theorem for Approximating Fixed Points and Zeros of Continuous Functions" 2623: 2497: 2487: 2467: 1776: 1482: 220: 2502: 1901:. Lecture Notes in Computer Science. Vol. 11974. Cham: Springer International Publishing. pp. 223–238. 177: 89: 2331: 2275: 1407: 590:. This consists in using the last computed approximate values of the root for approximating the function by a 2641: 2603: 2356: 2290: 2234: 2206: 2198: 1734: 1668: 665: 2447: 2280: 1753: 705: 152: 93: 85: 1348: 1280: 1212: 2507: 2477: 2372: 717: 638: 415: 350:
of accuracy with each iteration. Therefore, the number of function evaluations required for finding an
239:) for getting information on the number of roots in an interval. They lead to efficient algorithms for 2107: 941: 2618: 2593: 2538: 2351: 2326: 2161:
J.M. McNamee and Victor Pan: "Numerical Methods for Roots of Polynomials - Part II", Elsevier (2013).
1023: 1155: 2628: 2613: 2558: 2336: 2265: 2257: 1798: 1758: 1740: 1616: 693: 262: 240: 207:
for complex roots) that are small enough to ensure the convergence of numerical methods (typically
196: 168: 47: 2646: 2548: 2543: 2457: 2137: 2108:"Intermediate value theorem for simplices for simplicial approximation of fixed points and zeros" 2088: 2038: 1991: 1920: 1894: 1782: 603: 431:
of the line that connects the plotted function values at the endpoints of the interval, that is
302:
be the middle of the interval (the midpoint or the point that bisects the interval). Then either
204: 184: 97: 51: 43: 31: 2382: 2303: 2247: 2242: 1587: 669: 653: 611: 236: 232: 208: 1854:"On the Complexity of Isolating Real Roots and Computing with Certainty the Topological Degree" 2608: 2452: 2298: 2129: 2080: 2030: 1983: 1910: 1875: 1829: 1572: 1547:
The appearance of complex values in interpolation methods can be avoided by interpolating the
681: 547: 2588: 2573: 2214: 2119: 2072: 2022: 1975: 1902: 1865: 1773: â€“ Software for approximating the roots of a polynomial with arbitrarily high precision 1764: 1629: 1548: 1120: 1085: 906: 842: 807: 752: 633: 252: 188: 103: 996: 17: 2563: 1608: 877: 723: 2429: 787: 64: 2661: 2578: 2533: 2321: 2270: 2158:
J.M. McNamee: "Numerical Methods for Roots of Polynomials - Part I", Elsevier (2007).
2141: 2092: 2061:"A rapid Generalized Method of Bisection for solving Systems of Non-linear Equations" 2042: 1995: 1924: 685: 599: 587: 532: 84:. As, generally, the zeros of a function cannot be computed exactly nor expressed in 2528: 2492: 2462: 2219: 1821: 1779: â€“ Number of times an object must be counted for making true a general formula 689: 572: 1750: â€“ Type of functions designed for being unsolvable by root-finding algorithms 2398: 1906: 1654:
on a rectangle is non-zero, then the rectangle must contain at least one root of
2482: 2124: 423: 243:
of polynomials, which ensure finding all real roots with a guaranteed accuracy.
60: 88:, root-finding algorithms provide approximations to zeros, expressed either as 2472: 2224: 2011:"An efficient degree-computation method for a generalized method of bisection" 661: 591: 568: 563: 224: 200: 192: 176:
evaluating an auxiliary function on the preceding values. The limit is thus a
2133: 2084: 2034: 1987: 1879: 2433: 1938: 629: 160: 39: 1870: 1853: 1820:
Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. (2007).
1646:
Another criterion is given by a theorem of Kronecker. It says that, if the
2167: 607: 402:. Other methods, under appropriate conditions, can gain accuracy faster. 164: 2583: 2076: 2026: 1979: 1770: 1612: 2060: 2010: 1963: 1743: â€“ Quasi-Newton root-finding method for the multivariable case 1632:
has been generalized to higher dimensions; these methods are called
187:. However, for polynomials, root-finding study belongs generally to 692:)). A generalization of the secant method in higher dimensions is 642: 2512: 1939:"Iterative solution of nonlinear equations in several variables" 1575:
is a combination of the bisection method, the secant method and
993:
so that we can perform the iteration. Next, we pick a value for
2402: 2171: 1852:
Mourrain, B.; Vrahatis, M. N.; Yakoubsohn, J. C. (2002-06-01).
567:
any continuous distribution on the location of the root (see
347: 183:
The behavior of general root-finding algorithms is studied in
648: 167:
of numbers that hopefully converges towards the root as its
1767: â€“ Graphical method for the real roots of a polynomial 1822:"Chapter 9. Root Finding and Nonlinear Sets of Equations" 938:
function). Next, we relabel each side of the equation as
1206:, we will rewrite it as one of the following equations. 1897:. In Sergeyev, Yaroslav D.; Kvasov, Dmitri E. (eds.). 1828:(3rd ed.). New York: Cambridge University Press. 1748:
Cryptographically secure pseudorandom number generator
649:
Newton's method (and similar derivative-based methods)
1671: 1485: 1410: 1351: 1283: 1215: 1158: 1123: 1088: 1026: 999: 944: 909: 880: 845: 810: 790: 755: 726: 440: 360: 1964:"Computing the topological degree of a mapping inRn" 606:, which approximates the graph of the function by a 395:{\displaystyle \log _{2}{\frac {b-a}{\varepsilon }}} 2521: 2440: 2365: 2312: 2289: 2256: 2233: 2205: 680:Replacing the derivative in Newton's method with a 521:{\displaystyle c={\frac {af(b)-bf(a)}{f(b)-f(a)}}.} 1826:Numerical Recipes: The Art of Scientific Computing 1795: â€“ Roots of multiple multivariate polynomials 1704: 1530: 1469: 1394: 1335: 1267: 1198: 1144: 1109: 1071: 1012: 985: 930: 895: 866: 831: 796: 776: 741: 520: 394: 195:of the input function, while others work on every 2059:Vrahatis, M. N.; Iordanidis, K. I. (1986-03-01). 720:to find the root of a function. Given a function 151:. Thus root-finding algorithms allow solving any 124:is the same as finding the roots of the function 1801: â€“ About the convergence of Newton's method 628:Although all root-finding algorithms proceed by 1761: â€“ Algorithm for finding polynomial roots 265:, for which one knows an interval such that 2414: 2183: 1899:Numerical Computations: Theory and Algorithms 1531:{\displaystyle x_{n+1}=\pm {\sqrt {1-x_{n}}}} 8: 749:which we have set to zero to find the root ( 251:The simplest root-finding algorithm is the 2421: 2407: 2399: 2190: 2176: 2168: 1470:{\displaystyle x_{n+1}=x_{n}^{2}+2x_{n}-1} 554:is large in the neighborhood of the root. 2123: 1869: 1691: 1676: 1670: 1520: 1508: 1490: 1484: 1455: 1439: 1434: 1415: 1409: 1386: 1381: 1356: 1350: 1318: 1306: 1288: 1282: 1250: 1241: 1220: 1214: 1178: 1157: 1122: 1087: 1058: 1027: 1025: 1004: 998: 974: 949: 943: 908: 879: 844: 809: 789: 754: 725: 668:. The first one after Newton's method is 447: 439: 374: 365: 359: 159:Most numerical root-finding methods use 1812: 784:), we rewrite the equation in terms of 1705:{\displaystyle \log _{2}(D/\epsilon )} 287:have opposite signs (a bracket). Let 7: 2054: 2052: 1847: 1845: 586:Many root-finding processes work by 67:to the complex numbers, is a number 2106:Vrahatis, Michael N. (2020-04-15). 1395:{\displaystyle x_{n+1}=1-x_{n}^{2}} 1336:{\displaystyle x_{n+1}=1/(x_{n}+1)} 1268:{\displaystyle x_{n+1}=(1/x_{n})-1} 546:; typically, this may occur if the 1624:Finding roots in higher dimensions 1602:Polynomial root-finding algorithms 25: 672:with cubic order of convergence. 531:False position is similar to the 211:) to the unique root so located. 27:Algorithms for zeros of functions 2388:Sidi's generalized secant method 1661:A third criterion is based on a 1600:This section is an excerpt from 986:{\displaystyle x_{n+1}=g(x_{n})} 2378:Inverse quadratic interpolation 1730:List of root finding algorithms 1577:inverse quadratic interpolation 1557:inverse quadratic interpolation 1072:{\displaystyle |g'(root)|<1} 573:Regula falsi § Improvements in 2009:Kearfott, Baker (1979-06-01). 1793:System of polynomial equations 1699: 1685: 1617:theory of polynomial equations 1330: 1311: 1256: 1235: 1199:{\displaystyle f(x)=x^{2}+x-1} 1168: 1162: 1139: 1133: 1098: 1092: 1059: 1055: 1040: 1028: 980: 967: 919: 913: 890: 884: 861: 855: 820: 814: 765: 759: 736: 730: 509: 503: 494: 488: 480: 474: 462: 456: 92:numbers or as small isolating 1: 2112:Topology and Its Applications 1962:Stenger, Frank (1975-03-01). 1893:Vrahatis, Michael N. (2020). 1634:generalized bisection methods 1907:10.1007/978-3-030-40616-5_17 1082:As an example of converting 874:(note, there are often many 712:Fixed point iteration method 63:to real numbers or from the 2125:10.1016/j.topol.2019.107036 171:. They require one or more 18:Root-finding of polynomials 2684: 2207:Bracketing (no derivative) 1777:Multiplicity (mathematics) 1599: 221:intermediate value theorem 46:, also called "roots", of 2637: 1663:characteristic polyhedron 227:there are other methods ( 1641:Poincaré–Miranda theorem 1152:, if given the function 602:. Three values define a 229:Descartes' rule of signs 2668:Root-finding algorithms 2642:List of data structures 2357:Splitting circle method 2342:Jenkins–Traub algorithm 2199:Root-finding algorithms 1735:Fixed-point computation 1563:Combinations of methods 2347:Lehmer–Schur algorithm 1871:10.1006/jcom.2001.0636 1754:GNU Scientific Library 1706: 1567: 1532: 1471: 1396: 1337: 1269: 1200: 1146: 1145:{\displaystyle x=g(x)} 1111: 1110:{\displaystyle f(x)=0} 1073: 1014: 987: 932: 931:{\displaystyle f(x)=0} 897: 868: 867:{\displaystyle x=g(x)} 833: 832:{\displaystyle f(x)=0} 798: 778: 777:{\displaystyle f(x)=0} 743: 699: 522: 396: 36:root-finding algorithm 2373:Fixed-point iteration 2065:Numerische Mathematik 2015:Numerische Mathematik 1968:Numerische Mathematik 1858:Journal of Complexity 1707: 1595:Roots of polynomials 1582: 1543:Inverse interpolation 1533: 1472: 1397: 1338: 1270: 1201: 1147: 1112: 1074: 1015: 1013:{\displaystyle x_{1}} 988: 933: 898: 869: 834: 799: 779: 744: 718:fixed-point iteration 666:Householder's methods 660:to have a continuous 656:assumes the function 523: 416:false position method 397: 354:-approximate root is 2539:Breadth-first search 2332:Durand–Kerner method 2276:Newton–Krylov method 1669: 1483: 1408: 1349: 1281: 1213: 1156: 1121: 1086: 1024: 997: 942: 907: 896:{\displaystyle g(x)} 878: 843: 808: 788: 753: 742:{\displaystyle f(x)} 724: 438: 358: 48:continuous functions 2629:Topological sorting 2559:Dynamic programming 2281:Steffensen's method 1799:Kantorovich theorem 1555:, resulting in the 1444: 1391: 903:functions for each 706:Steffensen's method 700:Steffensen's method 569:ITP Method#Analysis 263:continuous function 241:real-root isolation 197:continuous function 104:Solving an equation 2647:List of algorithms 2554:Divide and conquer 2549:Depth-first search 2544:Brute-force search 2458:Binary search tree 2314:Polynomial methods 2077:10.1007/BF01389620 2027:10.1007/BF01404868 1980:10.1007/BF01419526 1702: 1648:topological degree 1615:meant essentially 1528: 1467: 1430: 1392: 1377: 1333: 1265: 1196: 1142: 1107: 1069: 1010: 983: 928: 893: 864: 829: 794: 774: 739: 604:quadratic function 518: 418:, also called the 392: 215:Bracketing methods 185:numerical analysis 52:zero of a function 32:numerical analysis 2655: 2654: 2453:Associative array 2396: 2395: 2352:Laguerre's method 2327:Bairstow's method 1916:978-3-030-40616-5 1835:978-0-521-88068-8 1788:th root algorithm 1526: 797:{\displaystyle x} 682:finite difference 624:Iterative methods 548:rate of variation 513: 390: 16:(Redirected from 2675: 2624:String-searching 2423: 2416: 2409: 2400: 2337:Graeffe's method 2266:Broyden's method 2215:Bisection method 2192: 2185: 2178: 2169: 2146: 2145: 2127: 2103: 2097: 2096: 2056: 2047: 2046: 2006: 2000: 1999: 1959: 1953: 1952: 1950: 1949: 1935: 1929: 1928: 1890: 1884: 1883: 1873: 1849: 1840: 1839: 1817: 1787: 1759:Graeffe's method 1741:Broyden's method 1711: 1709: 1708: 1703: 1695: 1681: 1680: 1630:bisection method 1609:polynomial roots 1537: 1535: 1534: 1529: 1527: 1525: 1524: 1509: 1501: 1500: 1476: 1474: 1473: 1468: 1460: 1459: 1443: 1438: 1426: 1425: 1401: 1399: 1398: 1393: 1390: 1385: 1367: 1366: 1342: 1340: 1339: 1334: 1323: 1322: 1310: 1299: 1298: 1274: 1272: 1271: 1266: 1255: 1254: 1245: 1231: 1230: 1205: 1203: 1202: 1197: 1183: 1182: 1151: 1149: 1148: 1143: 1116: 1114: 1113: 1108: 1078: 1076: 1075: 1070: 1062: 1039: 1031: 1019: 1017: 1016: 1011: 1009: 1008: 992: 990: 989: 984: 979: 978: 960: 959: 937: 935: 934: 929: 902: 900: 899: 894: 873: 871: 870: 865: 838: 836: 835: 830: 803: 801: 800: 795: 783: 781: 780: 775: 748: 746: 745: 740: 694:Broyden's method 553: 545: 527: 525: 524: 519: 514: 512: 483: 448: 428: 406:False position ( 401: 399: 398: 393: 391: 386: 375: 370: 369: 345: 334: 323: 312: 301: 286: 275: 260: 253:bisection method 247:Bisection method 189:computer algebra 150: 123: 83: 72: 58: 21: 2683: 2682: 2678: 2677: 2676: 2674: 2673: 2672: 2658: 2657: 2656: 2651: 2633: 2564:Graph traversal 2517: 2441:Data structures 2436: 2430:Data structures 2427: 2397: 2392: 2383:Muller's method 2361: 2308: 2304:Ridders' method 2285: 2252: 2248:Halley's method 2243:Newton's method 2229: 2201: 2196: 2165: 2155: 2153:Further reading 2150: 2149: 2105: 2104: 2100: 2058: 2057: 2050: 2008: 2007: 2003: 1961: 1960: 1956: 1947: 1945: 1937: 1936: 1932: 1917: 1892: 1891: 1887: 1851: 1850: 1843: 1836: 1819: 1818: 1814: 1809: 1804: 1783: 1725: 1672: 1667: 1666: 1626: 1621: 1620: 1605: 1597: 1588:Ridders' method 1585: 1583:Ridders' method 1570: 1565: 1545: 1516: 1486: 1481: 1480: 1451: 1411: 1406: 1405: 1352: 1347: 1346: 1314: 1284: 1279: 1278: 1246: 1216: 1211: 1210: 1174: 1154: 1153: 1119: 1118: 1084: 1083: 1032: 1022: 1021: 1000: 995: 994: 970: 945: 940: 939: 905: 904: 876: 875: 841: 840: 806: 805: 786: 785: 751: 750: 722: 721: 716:We can use the 714: 702: 678: 670:Halley's method 654:Newton's method 651: 626: 612:Muller's method 584: 560: 551: 536: 484: 449: 436: 435: 424: 412: 376: 361: 356: 355: 336: 325: 314: 303: 288: 277: 266: 256: 249: 237:Sturm's theorem 233:Budan's theorem 217: 209:Newton's method 173:initial guesses 125: 106: 74: 68: 65:complex numbers 54: 28: 23: 22: 15: 12: 11: 5: 2681: 2679: 2671: 2670: 2660: 2659: 2653: 2652: 2650: 2649: 2644: 2638: 2635: 2634: 2632: 2631: 2626: 2621: 2616: 2611: 2606: 2601: 2596: 2591: 2586: 2581: 2576: 2571: 2566: 2561: 2556: 2551: 2546: 2541: 2536: 2531: 2525: 2523: 2519: 2518: 2516: 2515: 2510: 2505: 2500: 2495: 2490: 2485: 2480: 2475: 2470: 2465: 2460: 2455: 2450: 2444: 2442: 2438: 2437: 2428: 2426: 2425: 2418: 2411: 2403: 2394: 2393: 2391: 2390: 2385: 2380: 2375: 2369: 2367: 2363: 2362: 2360: 2359: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2318: 2316: 2310: 2309: 2307: 2306: 2301: 2299:Brent's method 2295: 2293: 2291:Hybrid methods 2287: 2286: 2284: 2283: 2278: 2273: 2268: 2262: 2260: 2254: 2253: 2251: 2250: 2245: 2239: 2237: 2231: 2230: 2228: 2227: 2222: 2217: 2211: 2209: 2203: 2202: 2197: 2195: 2194: 2187: 2180: 2172: 2163: 2162: 2159: 2154: 2151: 2148: 2147: 2098: 2071:(2): 123–138. 2048: 2021:(2): 109–127. 2001: 1954: 1930: 1915: 1885: 1864:(2): 612–640. 1841: 1834: 1811: 1810: 1808: 1805: 1803: 1802: 1796: 1790: 1780: 1774: 1768: 1762: 1756: 1751: 1738: 1737: 1732: 1726: 1724: 1721: 1701: 1698: 1694: 1690: 1687: 1684: 1679: 1675: 1650:of a function 1625: 1622: 1606: 1598: 1596: 1593: 1584: 1581: 1573:Brent's method 1569: 1568:Brent's method 1566: 1564: 1561: 1544: 1541: 1540: 1539: 1523: 1519: 1515: 1512: 1507: 1504: 1499: 1496: 1493: 1489: 1478: 1466: 1463: 1458: 1454: 1450: 1447: 1442: 1437: 1433: 1429: 1424: 1421: 1418: 1414: 1403: 1389: 1384: 1380: 1376: 1373: 1370: 1365: 1362: 1359: 1355: 1344: 1332: 1329: 1326: 1321: 1317: 1313: 1309: 1305: 1302: 1297: 1294: 1291: 1287: 1276: 1264: 1261: 1258: 1253: 1249: 1244: 1240: 1237: 1234: 1229: 1226: 1223: 1219: 1195: 1192: 1189: 1186: 1181: 1177: 1173: 1170: 1167: 1164: 1161: 1141: 1138: 1135: 1132: 1129: 1126: 1106: 1103: 1100: 1097: 1094: 1091: 1068: 1065: 1061: 1057: 1054: 1051: 1048: 1045: 1042: 1038: 1035: 1030: 1007: 1003: 982: 977: 973: 969: 966: 963: 958: 955: 952: 948: 927: 924: 921: 918: 915: 912: 892: 889: 886: 883: 863: 860: 857: 854: 851: 848: 828: 825: 822: 819: 816: 813: 793: 773: 770: 767: 764: 761: 758: 738: 735: 732: 729: 713: 710: 701: 698: 677: 674: 650: 647: 625: 622: 583: 580: 559: 556: 529: 528: 517: 511: 508: 505: 502: 499: 496: 493: 490: 487: 482: 479: 476: 473: 470: 467: 464: 461: 458: 455: 452: 446: 443: 411: 404: 389: 385: 382: 379: 373: 368: 364: 248: 245: 216: 213: 163:, producing a 90:floating-point 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2680: 2669: 2666: 2665: 2663: 2648: 2645: 2643: 2640: 2639: 2636: 2630: 2627: 2625: 2622: 2620: 2617: 2615: 2612: 2610: 2607: 2605: 2602: 2600: 2597: 2595: 2592: 2590: 2587: 2585: 2582: 2580: 2579:Hash function 2577: 2575: 2572: 2570: 2567: 2565: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2537: 2535: 2534:Binary search 2532: 2530: 2527: 2526: 2524: 2520: 2514: 2511: 2509: 2506: 2504: 2501: 2499: 2496: 2494: 2491: 2489: 2486: 2484: 2481: 2479: 2476: 2474: 2471: 2469: 2466: 2464: 2461: 2459: 2456: 2454: 2451: 2449: 2446: 2445: 2443: 2439: 2435: 2431: 2424: 2419: 2417: 2412: 2410: 2405: 2404: 2401: 2389: 2386: 2384: 2381: 2379: 2376: 2374: 2371: 2370: 2368: 2366:Other methods 2364: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2322:Aberth method 2320: 2319: 2317: 2315: 2311: 2305: 2302: 2300: 2297: 2296: 2294: 2292: 2288: 2282: 2279: 2277: 2274: 2272: 2271:Secant method 2269: 2267: 2264: 2263: 2261: 2259: 2255: 2249: 2246: 2244: 2241: 2240: 2238: 2236: 2232: 2226: 2223: 2221: 2218: 2216: 2213: 2212: 2210: 2208: 2204: 2200: 2193: 2188: 2186: 2181: 2179: 2174: 2173: 2170: 2166: 2160: 2157: 2156: 2152: 2143: 2139: 2135: 2131: 2126: 2121: 2117: 2113: 2109: 2102: 2099: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2055: 2053: 2049: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2005: 2002: 1997: 1993: 1989: 1985: 1981: 1977: 1973: 1969: 1965: 1958: 1955: 1944: 1940: 1934: 1931: 1926: 1922: 1918: 1912: 1908: 1904: 1900: 1896: 1889: 1886: 1881: 1877: 1872: 1867: 1863: 1859: 1855: 1848: 1846: 1842: 1837: 1831: 1827: 1823: 1816: 1813: 1806: 1800: 1797: 1794: 1791: 1789: 1786: 1781: 1778: 1775: 1772: 1769: 1766: 1765:Lill's method 1763: 1760: 1757: 1755: 1752: 1749: 1746: 1745: 1744: 1742: 1736: 1733: 1731: 1728: 1727: 1722: 1720: 1717: 1715: 1696: 1692: 1688: 1682: 1677: 1673: 1664: 1659: 1657: 1653: 1649: 1644: 1642: 1637: 1635: 1631: 1623: 1618: 1614: 1610: 1603: 1594: 1592: 1589: 1580: 1578: 1574: 1562: 1560: 1558: 1554: 1550: 1542: 1521: 1517: 1513: 1510: 1505: 1502: 1497: 1494: 1491: 1487: 1479: 1464: 1461: 1456: 1452: 1448: 1445: 1440: 1435: 1431: 1427: 1422: 1419: 1416: 1412: 1404: 1387: 1382: 1378: 1374: 1371: 1368: 1363: 1360: 1357: 1353: 1345: 1327: 1324: 1319: 1315: 1307: 1303: 1300: 1295: 1292: 1289: 1285: 1277: 1262: 1259: 1251: 1247: 1242: 1238: 1232: 1227: 1224: 1221: 1217: 1209: 1208: 1207: 1193: 1190: 1187: 1184: 1179: 1175: 1171: 1165: 1159: 1136: 1130: 1127: 1124: 1104: 1101: 1095: 1089: 1080: 1066: 1063: 1052: 1049: 1046: 1043: 1036: 1033: 1005: 1001: 975: 971: 964: 961: 956: 953: 950: 946: 925: 922: 916: 910: 887: 881: 858: 852: 849: 846: 826: 823: 817: 811: 791: 771: 768: 762: 756: 733: 727: 719: 711: 709: 707: 697: 695: 691: 687: 686:secant method 684:, we get the 683: 676:Secant method 675: 673: 671: 667: 663: 659: 655: 646: 644: 640: 635: 631: 623: 621: 619: 615: 613: 609: 605: 601: 600:secant method 596: 593: 589: 588:interpolation 582:Interpolation 581: 579: 577: 576: 570: 565: 557: 555: 549: 543: 539: 534: 533:secant method 515: 506: 500: 497: 491: 485: 477: 471: 468: 465: 459: 453: 450: 444: 441: 434: 433: 432: 430: 427: 421: 417: 409: 405: 403: 387: 383: 380: 377: 371: 366: 362: 353: 349: 343: 339: 332: 328: 321: 317: 310: 306: 299: 295: 291: 284: 280: 273: 269: 264: 259: 254: 246: 244: 242: 238: 234: 230: 226: 222: 214: 212: 210: 206: 202: 198: 194: 190: 186: 181: 179: 174: 170: 166: 162: 157: 154: 148: 144: 140: 136: 132: 128: 121: 117: 113: 109: 105: 101: 99: 95: 91: 87: 81: 77: 71: 66: 62: 57: 53: 49: 45: 41: 37: 33: 19: 2604:Root-finding 2529:Backtracking 2493:Segment tree 2463:Fenwick tree 2258:Quasi-Newton 2220:Regula falsi 2164: 2115: 2111: 2101: 2068: 2064: 2018: 2014: 2004: 1974:(1): 23–38. 1971: 1967: 1957: 1946:. Retrieved 1942: 1933: 1898: 1888: 1861: 1857: 1825: 1815: 1784: 1739: 1718: 1713: 1662: 1660: 1655: 1651: 1645: 1638: 1633: 1627: 1586: 1571: 1552: 1546: 1081: 715: 703: 690:golden ratio 679: 657: 652: 627: 618:Regula falsi 617: 616: 597: 585: 575:regula falsi 574: 561: 541: 537: 530: 425: 420:regula falsi 419: 413: 408:regula falsi 407: 351: 341: 337: 330: 326: 319: 315: 308: 304: 297: 293: 289: 282: 278: 271: 267: 257: 250: 218: 182: 172: 158: 146: 142: 138: 134: 130: 126: 119: 115: 111: 107: 102: 79: 75: 69: 61:real numbers 55: 42:for finding 35: 29: 2483:Linked list 2235:Householder 1943:Guide books 639:fixed point 225:polynomials 201:polynomials 178:fixed point 86:closed form 59:, from the 2619:Sweep line 2594:Randomized 2522:Algorithms 2473:Hash table 2434:algorithms 2225:ITP method 2118:: 107036. 1948:2023-04-16 1807:References 662:derivative 610:. This is 592:polynomial 564:ITP method 558:ITP method 429:-intercept 193:derivative 73:such that 2614:Streaming 2599:Recursion 2142:213249321 2134:0166-8641 2093:121771945 2085:0945-3245 2043:122058552 2035:0029-599X 1996:122196773 1988:0945-3245 1925:211160947 1880:0885-064X 1697:ϵ 1683:⁡ 1514:− 1506:± 1462:− 1375:− 1260:− 1191:− 634:iterative 630:iteration 498:− 466:− 388:ε 381:− 372:⁡ 161:iteration 94:intervals 40:algorithm 2662:Category 1723:See also 1712:, where 1607:Finding 1037:′ 839:becomes 804:so that 608:parabola 165:sequence 153:equation 2609:Sorting 2584:Minimax 1771:MPSolve 1613:algebra 1549:inverse 2589:Online 2574:Greedy 2503:String 2140:  2132:  2091:  2083:  2041:  2033:  1994:  1986:  1923:  1913:  1878:  1832:  255:. Let 96:, or 38:is an 2498:Stack 2488:Queue 2468:Graph 2448:Array 2138:S2CID 2089:S2CID 2039:S2CID 1992:S2CID 1921:S2CID 643:up to 632:, an 324:, or 261:be a 205:disks 169:limit 98:disks 82:) = 0 44:zeros 2569:Fold 2513:Trie 2508:Tree 2478:Heap 2432:and 2130:ISSN 2081:ISSN 2031:ISSN 1984:ISSN 1911:ISBN 1876:ISSN 1830:ISBN 1639:The 1628:The 1477:, or 1064:< 562:The 414:The 335:and 313:and 276:and 235:and 141:) – 133:) = 114:) = 50:. A 34:, a 2120:doi 2116:275 2073:doi 2023:doi 1976:doi 1903:doi 1866:doi 1674:log 1551:of 1117:to 550:of 363:log 348:bit 300:)/2 292:= ( 30:In 2664:: 2136:. 2128:. 2114:. 2110:. 2087:. 2079:. 2069:49 2067:. 2063:. 2051:^ 2037:. 2029:. 2019:32 2017:. 2013:. 1990:. 1982:. 1972:25 1970:. 1966:. 1941:. 1919:. 1909:. 1874:. 1862:18 1860:. 1856:. 1844:^ 1824:. 1079:. 696:. 614:. 231:, 2422:e 2415:t 2408:v 2191:e 2184:t 2177:v 2144:. 2122:: 2095:. 2075:: 2045:. 2025:: 1998:. 1978:: 1951:. 1927:. 1905:: 1882:. 1868:: 1838:. 1785:n 1714:D 1700:) 1693:/ 1689:D 1686:( 1678:2 1656:f 1652:f 1619:. 1604:. 1553:f 1538:. 1522:n 1518:x 1511:1 1503:= 1498:1 1495:+ 1492:n 1488:x 1465:1 1457:n 1453:x 1449:2 1446:+ 1441:2 1436:n 1432:x 1428:= 1423:1 1420:+ 1417:n 1413:x 1402:, 1388:2 1383:n 1379:x 1372:1 1369:= 1364:1 1361:+ 1358:n 1354:x 1343:, 1331:) 1328:1 1325:+ 1320:n 1316:x 1312:( 1308:/ 1304:1 1301:= 1296:1 1293:+ 1290:n 1286:x 1275:, 1263:1 1257:) 1252:n 1248:x 1243:/ 1239:1 1236:( 1233:= 1228:1 1225:+ 1222:n 1218:x 1194:1 1188:x 1185:+ 1180:2 1176:x 1172:= 1169:) 1166:x 1163:( 1160:f 1140:) 1137:x 1134:( 1131:g 1128:= 1125:x 1105:0 1102:= 1099:) 1096:x 1093:( 1090:f 1067:1 1060:| 1056:) 1053:t 1050:o 1047:o 1044:r 1041:( 1034:g 1029:| 1006:1 1002:x 981:) 976:n 972:x 968:( 965:g 962:= 957:1 954:+ 951:n 947:x 926:0 923:= 920:) 917:x 914:( 911:f 891:) 888:x 885:( 882:g 862:) 859:x 856:( 853:g 850:= 847:x 827:0 824:= 821:) 818:x 815:( 812:f 792:x 772:0 769:= 766:) 763:x 760:( 757:f 737:) 734:x 731:( 728:f 658:f 641:( 552:f 544:) 542:c 540:( 538:f 516:. 510:) 507:a 504:( 501:f 495:) 492:b 489:( 486:f 481:) 478:a 475:( 472:f 469:b 463:) 460:b 457:( 454:f 451:a 445:= 442:c 426:x 410:) 384:a 378:b 367:2 352:ε 344:) 342:b 340:( 338:f 333:) 331:c 329:( 327:f 322:) 320:c 318:( 316:f 311:) 309:a 307:( 305:f 298:b 296:+ 294:a 290:c 285:) 283:b 281:( 279:f 274:) 272:a 270:( 268:f 258:f 149:) 147:x 145:( 143:g 139:x 137:( 135:f 131:x 129:( 127:h 122:) 120:x 118:( 116:g 112:x 110:( 108:f 80:x 78:( 76:f 70:x 56:f 20:)

Index

Root-finding of polynomials
numerical analysis
algorithm
zeros
continuous functions
zero of a function
real numbers
complex numbers
closed form
floating-point
intervals
disks
Solving an equation
equation
iteration
sequence
limit
fixed point
numerical analysis
computer algebra
derivative
continuous function
polynomials
disks
Newton's method
intermediate value theorem
polynomials
Descartes' rule of signs
Budan's theorem
Sturm's theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑