Knowledge (XXG)

Gaussian elimination

Source 📝

471: 6548: 4666: 111: 4351: 6812: 984: 466:{\displaystyle {\begin{bmatrix}1&3&1&9\\1&1&-1&1\\3&11&5&35\end{bmatrix}}\to {\begin{bmatrix}1&3&1&9\\0&-2&-2&-8\\0&2&2&8\end{bmatrix}}\to {\begin{bmatrix}1&3&1&9\\0&-2&-2&-8\\0&0&0&0\end{bmatrix}}\to {\begin{bmatrix}1&0&-2&-3\\0&1&1&4\\0&0&0&0\end{bmatrix}}} 1564: 1979: 108:. This final form is unique; in other words, it is independent of the sequence of row operations used. For example, in the following sequence of row operations (where two elementary operations on different rows are done at the first and third steps), the third and fourth matrices are the ones in row echelon form, and the final matrix is the unique reduced row echelon form. 1254: 5508:, caused by the possibility of dividing by very small numbers. If, for example, the leading coefficient of one of the rows is very close to zero, then to row-reduce the matrix, one would need to divide by that number. This means that any error which existed for the number that was close to zero would be amplified. Gaussian elimination is numerically stable for 2991: 713: 4661:{\displaystyle T={\begin{bmatrix}a&*&*&*&*&*&*&*&*\\0&0&b&*&*&*&*&*&*\\0&0&0&c&*&*&*&*&*\\0&0&0&0&0&0&d&*&*\\0&0&0&0&0&0&0&0&e\\0&0&0&0&0&0&0&0&0\end{bmatrix}},} 2679: 2310: 1378: 1807: 693: 701:
A matrix is said to be in reduced row echelon form if furthermore all of the leading coefficients are equal to 1 (which can be achieved by using the elementary row operation of type 2), and in every column containing a leading coefficient, all of the other entries in that column are zero (which can
579:
echelon form. So the lower left part of the matrix contains only zeros, and all of the zero rows are below the non-zero rows. The word "echelon" is used here because one can roughly think of the rows being ranked by their size, with the largest being at the top and the smallest being at the bottom.
1043: 578:
could be used to make one of those coefficients zero. Then by using the row swapping operation, one can always order the rows so that for every non-zero row, the leading coefficient is to the right of the leading coefficient of the row above. If this is the case, then matrix is said to be in row
3418:
is also eliminated from the third row, the result is a system of linear equations in triangular form, and so the first part of the algorithm is complete. From a computational point of view, it is faster to solve the variables in reverse order, a process known as back-substitution. One sees the
2876: 31: 2553: 2168: 500:, and can be divided into two parts. The first part (sometimes called forward elimination) reduces a given system to row echelon form, from which one can tell whether there are no solutions, a unique solution, or infinitely many solutions. The second part (sometimes called 979:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&{}-{}&z&{}={}&8&\qquad (L_{1})\\-3x&{}-{}&y&{}+{}&2z&{}={}&-11&\qquad (L_{2})\\-2x&{}+{}&y&{}+{}&2z&{}={}&-3&\qquad (L_{3})\end{alignedat}}} 3410: 487:
refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes preferable to stop row operations before the matrix is completely reduced.
2432: 1686: 3500:
to refer only to the procedure until the matrix is in echelon form, and use the term Gauss–Jordan elimination to refer to the procedure which ends in reduced echelon form. The name is used because it is a variation of Gaussian elimination as described by
3100: 992:. In practice, one does not usually deal with the systems in terms of equations, but instead makes use of the augmented matrix, which is more suitable for computer manipulations. The row reduction procedure may be summarized as follows: eliminate 585: 549:
If the matrix is associated to a system of linear equations, then these operations do not change the solution set. Therefore, if one's goal is to solve a system of linear equations, then using these row operations could make the problem easier.
4893:
Gaussian elimination and its variants can be used on computers for systems with thousands of equations and unknowns. However, the cost becomes prohibitive for systems with millions of equations. These large systems are generally solved using
3914: 1559:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&{}-{}&z&{}={}&8&\\&&{\tfrac {1}{2}}y&{}+{}&{\tfrac {1}{2}}z&{}={}&1&\\&&2y&{}+{}&z&{}={}&5&\end{alignedat}}} 3469:. Its use is illustrated in eighteen problems, with two to five equations. The first reference to the book by this title is dated to 179 AD, but parts of it were written as early as approximately 150 BC. It was commented on by 1974:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&{}-{}&z&{}={}&8&\\&&{\tfrac {1}{2}}y&{}+{}&{\tfrac {1}{2}}z&{}={}&1&\\&&&&-z&{}={}&1&\end{alignedat}}} 2769: 1249:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&{}-{}&z&{}={}&8&\\-3x&{}-{}&y&{}+{}&2z&{}={}&-11&\\-2x&{}+{}&y&{}+{}&2z&{}={}&-3&\end{alignedat}}} 2986:{\displaystyle {\begin{alignedat}{4}x&\quad &&\quad &&{}={}&2&\\&\quad &y&\quad &&{}={}&3&\\&\quad &&\quad &z&{}={}&-1&\end{alignedat}}} 3447:
row echelon form, as it is done in the table. The process of row reducing until the matrix is reduced is sometimes referred to as Gauss–Jordan elimination, to distinguish it from stopping after reaching echelon form.
697:
It is in echelon form because the zero row is at the bottom, and the leading coefficient of the second row (in the third column), is to the right of the leading coefficient of the first row (in the second column).
3619: 2674:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&\quad &&{}={}&7&\\&&y&\quad &&{}={}&3&\\&&&\quad &z&{}={}&-1&\end{alignedat}}} 2305:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&&&{}={}7&\\&&{\tfrac {1}{2}}y&&&{}={}{\tfrac {3}{2}}&\\&&&{}-{}&z&{}={}1&\end{alignedat}}} 4845:
This complexity is a good measure of the time needed for the whole computation when the time for each arithmetic operation is approximately constant. This is the case when the coefficients are represented by
5333:
In particular, if one starts with integer entries, the divisions occurring in the algorithm are exact divisions resulting in integers. So, all intermediate entries and final entries are integers. Moreover,
3484:
in 1707 long after Newton had left academic life. The notes were widely imitated, which made (what is now called) Gaussian elimination a standard lesson in algebra textbooks by the end of the 18th century.
5325: 3288: 3493:
to solve the normal equations of least-squares problems. The algorithm that is taught in high school was named for Gauss only in the 1950s as a result of confusion over the history of the subject.
3480:. In 1670, he wrote that all the algebra books known to him lacked a lesson for solving simultaneous equations, which Newton then supplied. Cambridge University eventually published the notes as 3293: 3002: 2690: 2321: 1575: 4924:
in 1967. Independently, and almost simultaneously, Erwin Bareiss discovered another algorithm, based on the following remark, which applies to a division-free variant of Gaussian elimination.
104:. Once all of the leading coefficients (the leftmost nonzero entry in each row) are 1, and every column containing a leading coefficient has zeros elsewhere, the matrix is said to be in 2316: 1570: 3818: 2039: 5384: 5436: 2997: 5546:. The choice of an ordering on the variables is already implicit in Gaussian elimination, manifesting as the choice to work from left to right when selecting pivot positions. 5063: 3521:
To explain how Gaussian elimination allows the computation of the determinant of a square matrix, we have to recall how the elementary row operations change the determinant:
3505:
in 1888. However, the method also appears in an article by Clasen published in the same year. Jordan and Clasen probably discovered Gauss–Jordan elimination independently.
3513:
Historically, the first application of the row reduction method is for solving systems of linear equations. Below are some other important applications of the algorithm.
5129: 5096: 4282: 4076: 3678: 5186: 5216: 5156: 5006: 4979: 4952: 3199: 2868: 2545: 2155: 1799: 1370: 523:, while the second part writes the original matrix as the product of a uniquely determined invertible matrix and a uniquely determined reduced row echelon matrix. 82:
to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations:
6257: 2881: 2558: 2173: 1812: 1383: 1048: 718: 688:{\displaystyle {\begin{bmatrix}0&\color {red}{\mathbf {2} }&1&-1\\0&0&\color {red}{\mathbf {3} }&1\\0&0&0&0\end{bmatrix}}.} 2685: 5697:
may be required if, at the pivot place, the entry of the matrix is zero. In any case, choosing the largest possible absolute value of the pivot improves the
3562: 3950: 3465: 6306: 6406: 4112: 6797: 4775:
unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires
6352: 6330: 6288: 6265: 6181: 6146: 6127: 6104: 5976: 5786: 4870:
is a variant of Gaussian elimination that avoids this exponential growth of the intermediate entries; with the same arithmetic complexity of
3918:
To find the inverse of this matrix, one takes the following matrix augmented by the identity and row-reduces it as a 3 × 6 matrix:
5704:
Upon completion of this procedure the matrix will be in row echelon form and the corresponding system may be solved by back substitution.
6081: 4763:
required to perform row reduction is one way of measuring the algorithm's computational efficiency. For example, to solve a system of
3698:(number of operations in a linear combination times the number of sub-determinants to compute, which are determined by their columns) 6836: 5927: 3720:
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If
5330:
Bareiss' main remark is that each matrix entry generated by this variant is the determinant of a submatrix of the original matrix.
5221: 6787: 3644: 504:) continues to use row operations until the solution is found; in other words, it puts the matrix into reduced row echelon form. 511:
of the original matrix. The elementary row operations may be viewed as the multiplication on the left of the original matrix by
6749: 6685: 5539: 6340: 3547:
be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of
5852: 4348:. In this way, for example, some 6 × 9 matrices can be transformed to a matrix that has a row echelon form like 3115: 2784: 2447: 2054: 1701: 1271: 6841: 6527: 6399: 6632: 6482: 4326:, which we know is the inverse desired. This procedure for finding the inverse works for square matrices of any size. 515:. Alternatively, a sequence of elementary operations that reduces a single row may be viewed as multiplication by a 507:
Another point of view, which turns out to be very useful to analyze the algorithm, is that row reduction produces a
6537: 6431: 5338:
provides an upper bound on the absolute values of the intermediate and final entries, and thus a bit complexity of
4899: 3502: 3405:{\displaystyle {\begin{aligned}L_{2}+{\tfrac {3}{2}}L_{1}&\to L_{2},\\L_{3}+L_{1}&\to L_{3}.\end{aligned}}} 564:
For each row in a matrix, if the row does not consist of only zeros, then the leftmost nonzero entry is called the
51: 988:
The table below is the row reduction process applied simultaneously to the system of equations and its associated
6777: 6426: 5535: 5443: 4847: 2427:{\displaystyle {\begin{aligned}L_{1}-L_{3}&\to L_{1}\\L_{2}+{\tfrac {1}{2}}L_{3}&\to L_{2}\end{aligned}}} 1681:{\displaystyle {\begin{aligned}L_{2}+{\tfrac {3}{2}}L_{1}&\to L_{2}\\L_{3}+L_{1}&\to L_{3}\end{aligned}}} 497: 79: 6652: 5718: 6769: 5513: 5453:
As a corollary, the following problems can be solved in strongly polynomial time with the same bit complexity:
4917: 4887: 105: 4083: 3921: 6815: 6522: 6392: 5713: 1985: 6093:
Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications
5327:
This produces a row echelon form that has the same zero entries as with the standard Gaussian elimination.
3095:{\displaystyle {\begin{aligned}L_{1}-L_{2}&\to L_{1}\\{\tfrac {1}{2}}L_{1}&\to L_{1}\end{aligned}}} 710:
Suppose the goal is to find and describe the set of solutions to the following system of linear equations:
6579: 6512: 6502: 6299: 5341: 4080:
By performing row operations, one can check that the reduced row echelon form of this augmented matrix is
3489:
in 1810 devised a notation for symmetric elimination that was adopted in the 19th century by professional
5950: 5396: 582:
For example, the following matrix is in row echelon form, and its leading coefficients are shown in red:
6739: 6594: 6589: 6584: 6517: 6462: 5492: 59: 34:
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order.
5011: 3208:
The second column describes which row operations have just been performed. So for the first step, the
6569: 6556: 6447: 6073: 5739: 5564: 5462: 3486: 3456:
The method of Gaussian elimination appears – albeit without proof – in the Chinese mathematical text
539: 508: 75: 55: 5516:
matrices. For general matrices, Gaussian elimination is usually considered to be stable, when using
4751:
All of this applies also to the reduced row echelon form, which is a particular row echelon format.
6782: 6662: 6637: 6487: 6169: 5954: 5946: 5698: 5529: 5509: 5505: 5335: 4834:, where each arithmetic operation take a unit of time, independently of the size of the inputs) of 566: 531:
There are three types of elementary row operations which may be performed on the rows of a matrix:
5620:, meaning that the original matrix is lost for being eventually replaced by its row-echelon form. 3443:
Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in
6492: 6218: 6200: 6096: 6016: 5877: 5689:
This algorithm differs slightly from the one discussed earlier, by choosing a pivot with largest
5439: 6379: 3909:{\displaystyle A={\begin{bmatrix}2&-1&0\\-1&2&-1\\0&-1&2\end{bmatrix}}.} 30: 3700:. Even on the fastest computers, these two methods are impractical or almost impracticable for 6690: 6647: 6574: 6467: 6348: 6326: 6284: 6261: 6177: 6142: 6123: 6100: 6077: 5972: 5958: 5923: 5907: 5869: 5782: 4911: 4867: 4287: 3772:. Now through application of elementary row operations, find the reduced echelon form of this 3737: 3715: 3685: 574:) of that row. So if two leading coefficients are in the same column, then a row operation of 512: 501: 97: 71: 5101: 5068: 3650: 6695: 6599: 6452: 6210: 6045: 5964: 5915: 5861: 5590: 5161: 4895: 4699: 989: 559: 520: 516: 101: 5986: 5194: 5134: 4984: 4957: 4930: 3106: 2775: 2438: 2045: 1692: 1262: 475:
Using row operations to convert a matrix into reduced row echelon form is sometimes called
6754: 6547: 6507: 6497: 6249: 5982: 5850:
Althoen, Steven C.; McLaughlin, Renate (1987), "Gauss–Jordan reduction: a brief history",
5387: 4859: 4831: 3750: 1019: 2764:{\displaystyle {\begin{aligned}2L_{2}&\to L_{2}\\-L_{3}&\to L_{3}\end{aligned}}} 6759: 6744: 6680: 6415: 6280: 6230: 5690: 5543: 5485: 5447: 4863: 3682:(number of summands in the formula times the number of multiplications in each summand) 3490: 5776: 4898:. Specific methods exist for systems whose coefficients follow a regular pattern (see 6830: 6792: 6715: 6675: 6642: 6622: 6165: 6119: 5963:, Algorithms and Combinatorics, vol. 2 (2nd ed.), Springer-Verlag, Berlin, 5912:
Proceedings of the 1997 international symposium on Symbolic and algebraic computation
5517: 67: 6222: 5559:, there cannot be a polynomial time analog of Gaussian elimination for higher-order 6725: 6614: 6564: 6457: 6012: 4921: 4862:
exactly represented, the intermediate entries can grow exponentially large, so the
4851: 4711: 3769: 3528:
Multiplying a row by a nonzero scalar multiplies the determinant by the same scalar
3477: 3457: 6358: 6191:
Grcar, Joseph F. (2011a), "How ordinary elimination became Gaussian elimination",
3788:
is invertible if and only if the left block can be reduced to the identity matrix
54:. It consists of a sequence of row-wise operations performed on the corresponding 6705: 6670: 6627: 6472: 6322: 5468: 5393:
Moreover, as an upper bound on the size of final entries is known, a complexity
63: 3531:
Adding to one row a scalar multiple of another does not change the determinant.
6734: 6477: 6049: 5968: 5597: 5520:, even though there are examples of stable matrices for which it is unstable. 4760: 3696:
operations if the sub-determinants are memorized for being computed only once
3635: 17: 6214: 6091:
Bolch, Gunter; Greiner, Stefan; de Meer, Hermann; Trivedi, Kishor S. (2006),
5873: 5740:"DOCUMENTA MATHEMATICA, Vol. Extra Volume: Optimization Stories (2012), 9-14" 6532: 6037: 47: 5919: 78:(1777–1855). To perform row reduction on a matrix, one uses a sequence of 6700: 6300:"Numerical Methods with Applications: Chapter 04.06 Gaussian Elimination" 4718:
has a basis consisting of its columns 1, 3, 4, 7 and 9 (the columns with
5701:
of the algorithm, when floating point is used for representing numbers.
5881: 5616:
with the indices starting from 1. The transformation is performed
5560: 5550: 4855: 4296:
the product of these elementary matrices, we showed, on the left, that
3470: 5914:. ISSAC '97. Kihei, Maui, Hawaii, United States: ACM. pp. 28–31. 6710: 5644: 3440:. So there is a unique solution to the original system of equations. 6158:
Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker
5865: 3614:{\displaystyle \det(A)={\frac {\prod \operatorname {diag} (B)}{d}}.} 5775:
Timothy Gowers; June Barrow-Green; Imre Leader (8 September 2008).
5555: 96:
Using these operations, a matrix can always be transformed into an
6205: 6021: 29: 6384: 5721:- another process for bringing a matrix into some canonical form. 1022:. Then, using back-substitution, each unknown can be solved for. 5682:
j = k + 1 ... n: A := A - A * f /*
2161:
The matrix is now in echelon form (also called triangular form)
6388: 6339:
Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007),
5908:"On the worst-case complexity of integer Gaussian elimination" 5320:{\textstyle {\frac {r_{k,k}R_{i}-r_{i,k}R_{k}}{r_{k-1,k-1}}}.} 4927:
In standard Gaussian elimination, one subtracts from each row
4286:
One can think of each row operation as the left product by an
3736:
square matrix, then one can use row reduction to compute its
58:
of coefficients. This method can also be used to compute the
5670:
i = h + 1 ... m: f := A / A /*
5575:
As explained above, Gaussian elimination transforms a given
4748:
can be written as linear combinations of the basis columns.
702:
be achieved by using elementary row operations of type 3).
5549:
Computing the rank of a tensor of order greater than 2 is
6319:
Schaum's outline of theory and problems of linear algebra
5542:. This generalization depends heavily on the notion of a 4334:
The Gaussian elimination algorithm can be applied to any
3800:. If the algorithm is unable to reduce the left block to 6141:, STATISTICS: Textbooks and Monographs, Marcel Dekker, 6347:(3rd ed.), New York: Cambridge University Press, 5224: 4366: 3833: 3794:; in this case the right block of the final matrix is 3310: 3050: 2382: 2250: 2222: 1905: 1877: 1592: 1476: 1448: 594: 384: 294: 204: 120: 5399: 5344: 5197: 5164: 5137: 5104: 5071: 5014: 4987: 4960: 4933: 4354: 4086: 3924: 3821: 3653: 3565: 3291: 3109: 3000: 2879: 2778: 2688: 2556: 2441: 2319: 2171: 2048: 1988: 1810: 1695: 1573: 1381: 1265: 1046: 716: 588: 114: 4920:
algorithm for Gaussian elimination was published by
3285:. These row operations are labelled in the table as 6768: 6724: 6661: 6613: 6555: 6440: 5960:
Geometric algorithms and combinatorial optimization
5860:(2), Mathematical Association of America: 130–142, 5686:*/ h := h + 1 k := k + 1 5474:Computing a solution of a rational equation system 3535:If Gaussian elimination applied to a square matrix 519:. Then the first part of the algorithm computes an 6345:Numerical Recipes: The Art of Scientific Computing 6015:(2009-11-07). "Most tensor problems are NP-hard". 5430: 5378: 5319: 5210: 5180: 5150: 5123: 5090: 5057: 5000: 4973: 4946: 4660: 4276: 4070: 3908: 3672: 3613: 3555:of the product of the elements of the diagonal of 3525:Swapping two rows multiplies the determinant by −1 3404: 3193: 3094: 2985: 2862: 2763: 2673: 2539: 2426: 2304: 2149: 2033: 1973: 1793: 1680: 1558: 1364: 1248: 978: 687: 465: 27:Algorithm for solving systems of linear equations 5191:Bareiss variant consists, instead, of replacing 3566: 5672:Fill with zeros the lower part of pivot column: 5538:is a generalization of Gaussian elimination to 5528:Gaussian elimination can be performed over any 4744:), and the stars show how the other columns of 545:Adding a scalar multiple of one row to another. 6254:Accuracy and Stability of Numerical Algorithms 6400: 6305:(1st ed.). University of South Florida. 5998: 5676:Do for all remaining elements in current row: 3476:The method in Europe stems from the notes of 8: 6238:Notices of the American Mathematical Society 5653:No pivot in this column, pass to next column 3815:For example, consider the following matrix: 92:Adding a multiple of one row to another row. 6036:Kurgalin, Sergei; Borzunov, Sergei (2021). 5893: 5781:. Princeton University Press. p. 607. 4818:subtractions, for a total of approximately 4668:where the stars are arbitrary entries, and 6407: 6393: 6385: 5674:*/ A := 0 /* 496:The process of row reduction makes use of 6317:Lipson, Marc; Lipschutz, Seymour (2001), 6204: 6020: 5419: 5401: 5400: 5398: 5364: 5346: 5345: 5343: 5288: 5277: 5261: 5248: 5232: 5225: 5223: 5202: 5196: 5169: 5163: 5142: 5136: 5109: 5103: 5076: 5070: 5040: 5031: 5019: 5013: 4992: 4986: 4965: 4959: 4938: 4932: 4690:are nonzero entries. This echelon matrix 4361: 4353: 4253: 4241: 4229: 4200: 4183: 4154: 4142: 4130: 4111: 4093: 4085: 3949: 3931: 3923: 3828: 3820: 3660: 3652: 3581: 3564: 3466:The Nine Chapters on the Mathematical Art 3389: 3372: 3359: 3342: 3325: 3309: 3300: 3292: 3290: 3114: 3108: 3082: 3065: 3049: 3039: 3022: 3009: 3001: 2999: 2968: 2963: 2936: 2931: 2904: 2899: 2880: 2878: 2783: 2777: 2751: 2734: 2717: 2700: 2689: 2687: 2656: 2651: 2626: 2621: 2596: 2591: 2576: 2571: 2557: 2555: 2494: 2477: 2446: 2440: 2414: 2397: 2381: 2372: 2358: 2341: 2328: 2320: 2318: 2292: 2287: 2276: 2271: 2249: 2247: 2242: 2221: 2209: 2204: 2191: 2186: 2172: 2170: 2099: 2087: 2053: 2047: 2025: 2012: 1993: 1987: 1959: 1954: 1928: 1923: 1904: 1900: 1895: 1876: 1862: 1857: 1846: 1841: 1830: 1825: 1811: 1809: 1746: 1734: 1700: 1694: 1668: 1651: 1638: 1624: 1607: 1591: 1582: 1574: 1572: 1544: 1539: 1528: 1523: 1499: 1494: 1475: 1471: 1466: 1447: 1433: 1428: 1417: 1412: 1401: 1396: 1382: 1380: 1270: 1264: 1231: 1226: 1212: 1207: 1196: 1191: 1163: 1158: 1144: 1139: 1128: 1123: 1098: 1093: 1082: 1077: 1066: 1061: 1047: 1045: 963: 941: 936: 922: 917: 906: 901: 875: 853: 848: 834: 829: 818: 813: 787: 768: 763: 752: 747: 736: 731: 717: 715: 640: 639: 604: 603: 589: 587: 379: 289: 199: 115: 113: 6231:"Mathematicians of Gaussian elimination" 5762: 4706:is 5, since there are 5 nonzero rows in 2160: 1026: 6277:A History of Mathematics, Brief Version 5731: 5131:are the entries in the pivot column of 4694:contains a wealth of information about 6798:Comparison of linear algebra libraries 5837: 5813: 5801: 5778:The Princeton Companion to Mathematics 2034:{\displaystyle L_{3}+-4L_{2}\to L_{3}} 89:Multiplying a row by a nonzero number, 6070:An Introduction to Numerical Analysis 5941: 5939: 5906:Fang, Xin Gui; Havas, George (1997). 5825: 5567:representations of order-2 tensors). 7: 5379:{\displaystyle {\tilde {O}}(n^{5}),} 4316:. On the right, we kept a record of 492:Definitions and example of algorithm 6116:A Contextual History of Mathematics 5431:{\displaystyle {\tilde {O}}(n^{4})} 3643:arithmetic operations, while using 575: 6038:"Algebra and Geometry with Python" 5629:Initialization of the pivot column 25: 6139:Linear Least Squares Computations 5853:The American Mathematical Monthly 638: 602: 6811: 6810: 6788:Basic Linear Algebra Subprograms 6546: 6312:from the original on 2012-09-07. 5604:denotes the entry of the matrix 5488:of a nonsingular rational matrix 5058:{\displaystyle r_{i,k}/r_{k,k},} 3645:Leibniz formula for determinants 1018:. This will put the system into 641: 605: 538:Multiplying a row by a non-zero 6686:Seven-dimensional cross product 6298:Kaw, Autar; Kalu, Egwu (2010). 6176:(3rd ed.), Johns Hopkins, 5655:*/ k := k + 1 5625:Initialization of the pivot row 5540:systems of polynomial equations 3710:Finding the inverse of a matrix 3633:matrix, this method needs only 2953: 2949: 2925: 2917: 2893: 2889: 2641: 2615: 2585: 955: 867: 779: 5425: 5412: 5406: 5370: 5357: 5351: 4101: 4094: 4087: 3939: 3932: 3925: 3667: 3654: 3599: 3593: 3575: 3569: 3539:produces a row echelon matrix 3382: 3335: 3075: 3032: 2744: 2710: 2407: 2351: 2018: 1661: 1617: 969: 956: 881: 868: 793: 780: 376: 286: 196: 1: 6068:Atkinson, Kendall A. (1989), 5684:Increase pivot row and column 5532:, not just the real numbers. 4878:, it has a bit complexity of 3753:is augmented to the right of 100:, and in fact one that is in 6528:Eigenvalues and eigenvectors 5664:Do for all rows below pivot: 2872: 2549: 2164: 1803: 1374: 1039: 74:. The method is named after 5461:given rational vectors are 3740:, if it exists. First, the 52:systems of linear equations 6858: 6229:Grcar, Joseph F. (2011b), 6137:Farebrother, R.W. (1988), 6072:(2nd ed.), New York: 5647:(i = h ... m, abs(A)) 4909: 4900:system of linear equations 4854:. If the coefficients are 4826:operations. Thus it has a 4714:spanned by the columns of 3713: 3496:Some authors use the term 557: 6806: 6544: 6422: 6380:Interactive didactic tool 6114:Calinger, Ronald (1999), 6050:10.1007/978-3-030-61541-3 5999:Golub & Van Loan 1996 5969:10.1007/978-3-642-78240-4 4866:is exponential. However, 4850:or when they belong to a 4330:Computing ranks and bases 1009:from all equations below 996:from all equations below 498:elementary row operations 483:. In this case, the term 80:elementary row operations 6837:Numerical linear algebra 6275:Katz, Victor J. (2004), 6215:10.1016/j.hm.2010.06.003 5504:One possible problem is 4918:strongly-polynomial time 4888:strongly-polynomial time 4755:Computational efficiency 3623:Computationally, for an 706:Example of the algorithm 479:Gauss–Jordan elimination 106:reduced row echelon form 70:, and the inverse of an 5714:Fangcheng (mathematics) 5124:{\displaystyle r_{k,k}} 5091:{\displaystyle r_{i,k}} 4277:{\displaystyle =\left.} 4071:{\displaystyle =\left.} 3673:{\displaystyle (n\,n!)} 3482:Arithmetica Universalis 535:Interchanging two rows. 98:upper triangular matrix 6513:Row and column vectors 5662:(h, i_max) /* 5536:Buchberger's algorithm 5432: 5380: 5321: 5212: 5182: 5181:{\displaystyle R_{k},} 5152: 5125: 5092: 5059: 5002: 4975: 4948: 4886:, and has therefore a 4848:floating-point numbers 4662: 4278: 4072: 3910: 3674: 3615: 3517:Computing determinants 3406: 3195: 3096: 2987: 2864: 2765: 2675: 2541: 2428: 2306: 2151: 2035: 1975: 1795: 1682: 1560: 1366: 1250: 980: 689: 467: 35: 6518:Row and column spaces 6463:Scalar multiplication 6074:John Wiley & Sons 6011:Hillar, Christopher; 5920:10.1145/258726.258740 5643:*/ i_max := 5506:numerical instability 5438:can be obtained with 5433: 5381: 5322: 5213: 5211:{\displaystyle R_{i}} 5183: 5153: 5151:{\displaystyle R_{i}} 5126: 5093: 5060: 5003: 5001:{\displaystyle R_{k}} 4976: 4974:{\displaystyle R_{k}} 4949: 4947:{\displaystyle R_{i}} 4828:arithmetic complexity 4802:multiplications, and 4761:arithmetic operations 4663: 4279: 4073: 3911: 3675: 3616: 3407: 3196: 3194:{\displaystyle \left} 3097: 2988: 2865: 2863:{\displaystyle \left} 2766: 2676: 2542: 2540:{\displaystyle \left} 2429: 2307: 2152: 2150:{\displaystyle \left} 2036: 1976: 1796: 1794:{\displaystyle \left} 1683: 1561: 1367: 1365:{\displaystyle \left} 1251: 1005:, and then eliminate 981: 690: 468: 33: 6653:Gram–Schmidt process 6605:Gaussian elimination 6193:Historia Mathematica 6170:Van Loan, Charles F. 5955:Schrijver, Alexander 5719:Gram–Schmidt process 5641:Find the k-th pivot: 5495:of a rational matrix 5471:of a rational matrix 5463:linearly independent 5444:Chinese remaindering 5397: 5342: 5222: 5195: 5162: 5135: 5102: 5069: 5012: 4985: 4958: 4954:below the pivot row 4931: 4352: 4084: 3922: 3819: 3651: 3563: 3498:Gaussian elimination 3487:Carl Friedrich Gauss 3473:in the 3rd century. 3289: 3107: 2998: 2877: 2776: 2686: 2554: 2439: 2317: 2169: 2046: 1986: 1808: 1693: 1571: 1379: 1263: 1044: 714: 586: 509:matrix decomposition 485:Gaussian elimination 112: 76:Carl Friedrich Gauss 40:Gaussian elimination 6842:Exchange algorithms 6783:Numerical stability 6663:Multilinear algebra 6638:Inner product space 6488:Linear independence 6174:Matrix Computations 5699:numerical stability 5510:diagonally dominant 5500:Numeric instability 5442:followed either by 5440:modular computation 5336:Hadamard inequality 3812:is not invertible. 3782:matrix. The matrix 3551:is the quotient by 3258:is eliminated from 3212:is eliminated from 1030:System of equations 567:leading coefficient 513:elementary matrices 6493:Linear combination 6325:, pp. 69–80, 6156:Lauritzen, Niels, 6097:Wiley-Interscience 5816:, pp. 783–785 5804:, pp. 169–172 5765:, pp. 234–236 5627:*/ k := 1 /* 5428: 5376: 5317: 5208: 5178: 5148: 5121: 5088: 5055: 4998: 4971: 4944: 4868:Bareiss' algorithm 4658: 4649: 4274: 4265: 4068: 4059: 3906: 3897: 3670: 3611: 3460:Rectangular Arrays 3402: 3400: 3319: 3191: 3185: 3092: 3090: 3059: 2983: 2981: 2860: 2854: 2761: 2759: 2671: 2669: 2537: 2531: 2424: 2422: 2391: 2302: 2300: 2259: 2231: 2147: 2141: 2031: 1971: 1969: 1914: 1886: 1791: 1785: 1678: 1676: 1601: 1556: 1554: 1485: 1457: 1362: 1356: 1246: 1244: 976: 974: 685: 676: 646: 610: 463: 457: 370: 280: 190: 86:Swapping two rows, 36: 6824: 6823: 6691:Geometric algebra 6648:Kronecker product 6483:Linear projection 6468:Vector projection 6354:978-0-521-88068-8 6332:978-0-07-136200-9 6290:978-0-321-16193-2 6267:978-0-89871-521-7 6183:978-0-8018-5414-9 6148:978-0-8247-7661-9 6129:978-0-02-318285-3 6106:978-0-471-79156-0 5978:978-3-642-78242-8 5947:Grötschel, Martin 5788:978-0-691-11880-2 5651:A = 0 /* 5596:In the following 5589:into a matrix in 5514:positive-definite 5409: 5354: 5312: 4912:Bareiss algorithm 4906:Bareiss algorithm 4896:iterative methods 4306:, and therefore, 4288:elementary matrix 4261: 4249: 4237: 4208: 4191: 4162: 4150: 4138: 3716:Invertible matrix 3699: 3686:Laplace expansion 3683: 3606: 3318: 3204: 3203: 3058: 2502: 2485: 2390: 2258: 2230: 2107: 2095: 1913: 1885: 1754: 1742: 1600: 1484: 1456: 1036:Augmented matrix 502:back substitution 72:invertible matrix 62:of a matrix, the 16:(Redirected from 6849: 6814: 6813: 6696:Exterior algebra 6633:Hadamard product 6550: 6538:Linear equations 6409: 6402: 6395: 6386: 6368: 6367: 6366: 6357:, archived from 6335: 6313: 6311: 6304: 6293: 6270: 6256:(2nd ed.), 6250:Higham, Nicholas 6245: 6235: 6225: 6208: 6186: 6160: 6151: 6132: 6109: 6095:(2nd ed.), 6086: 6054: 6053: 6033: 6027: 6026: 6024: 6008: 6002: 5996: 5990: 5989: 5943: 5934: 5933: 5903: 5897: 5894:Farebrother 1988 5891: 5885: 5884: 5847: 5841: 5835: 5829: 5823: 5817: 5811: 5805: 5799: 5793: 5792: 5772: 5766: 5760: 5754: 5753: 5751: 5750: 5736: 5695:partial pivoting 5615: 5611: 5607: 5603: 5591:row-echelon form 5588: 5584: 5558: 5553:. Therefore, if 5518:partial pivoting 5457:Testing whether 5437: 5435: 5434: 5429: 5424: 5423: 5411: 5410: 5402: 5385: 5383: 5382: 5377: 5369: 5368: 5356: 5355: 5347: 5326: 5324: 5323: 5318: 5313: 5311: 5310: 5283: 5282: 5281: 5272: 5271: 5253: 5252: 5243: 5242: 5226: 5217: 5215: 5214: 5209: 5207: 5206: 5187: 5185: 5184: 5179: 5174: 5173: 5157: 5155: 5154: 5149: 5147: 5146: 5130: 5128: 5127: 5122: 5120: 5119: 5097: 5095: 5094: 5089: 5087: 5086: 5064: 5062: 5061: 5056: 5051: 5050: 5035: 5030: 5029: 5007: 5005: 5004: 4999: 4997: 4996: 4980: 4978: 4977: 4972: 4970: 4969: 4953: 4951: 4950: 4945: 4943: 4942: 4885: 4877: 4860:rational numbers 4841: 4825: 4817: 4801: 4785: 4774: 4768: 4747: 4743: 4739: 4717: 4709: 4705: 4697: 4693: 4689: 4667: 4665: 4664: 4659: 4654: 4653: 4347: 4343: 4325: 4315: 4305: 4295: 4283: 4281: 4280: 4275: 4270: 4266: 4262: 4254: 4250: 4242: 4238: 4230: 4209: 4201: 4192: 4184: 4163: 4155: 4151: 4143: 4139: 4131: 4097: 4077: 4075: 4074: 4069: 4064: 4060: 3935: 3915: 3913: 3912: 3907: 3902: 3901: 3811: 3805: 3799: 3793: 3787: 3781: 3768: 3758: 3749: 3735: 3725: 3705: 3697: 3695: 3684:, and recursive 3681: 3679: 3677: 3676: 3671: 3642: 3632: 3620: 3618: 3617: 3612: 3607: 3602: 3582: 3558: 3554: 3550: 3546: 3542: 3538: 3439: 3432: 3425: 3417: 3411: 3409: 3408: 3403: 3401: 3394: 3393: 3377: 3376: 3364: 3363: 3347: 3346: 3330: 3329: 3320: 3311: 3305: 3304: 3284: 3275: 3266: 3257: 3253: 3244: 3237: 3235: 3234: 3231: 3228: 3220: 3211: 3200: 3198: 3197: 3192: 3190: 3186: 3101: 3099: 3098: 3093: 3091: 3087: 3086: 3070: 3069: 3060: 3051: 3044: 3043: 3027: 3026: 3014: 3013: 2992: 2990: 2989: 2984: 2982: 2979: 2969: 2964: 2951: 2947: 2944: 2937: 2932: 2927: 2915: 2912: 2905: 2900: 2895: 2891: 2869: 2867: 2866: 2861: 2859: 2855: 2770: 2768: 2767: 2762: 2760: 2756: 2755: 2739: 2738: 2722: 2721: 2705: 2704: 2680: 2678: 2677: 2672: 2670: 2667: 2657: 2652: 2639: 2638: 2637: 2634: 2627: 2622: 2617: 2608: 2607: 2604: 2597: 2592: 2587: 2577: 2572: 2546: 2544: 2543: 2538: 2536: 2532: 2503: 2495: 2486: 2478: 2433: 2431: 2430: 2425: 2423: 2419: 2418: 2402: 2401: 2392: 2383: 2377: 2376: 2363: 2362: 2346: 2345: 2333: 2332: 2311: 2309: 2308: 2303: 2301: 2298: 2293: 2288: 2277: 2272: 2267: 2266: 2265: 2262: 2260: 2251: 2248: 2243: 2238: 2237: 2232: 2223: 2219: 2218: 2215: 2210: 2205: 2200: 2199: 2192: 2187: 2156: 2154: 2153: 2148: 2146: 2142: 2108: 2100: 2096: 2088: 2040: 2038: 2037: 2032: 2030: 2029: 2017: 2016: 1998: 1997: 1980: 1978: 1977: 1972: 1970: 1967: 1960: 1955: 1942: 1941: 1940: 1939: 1936: 1929: 1924: 1915: 1906: 1901: 1896: 1887: 1878: 1874: 1873: 1870: 1863: 1858: 1847: 1842: 1831: 1826: 1800: 1798: 1797: 1792: 1790: 1786: 1755: 1747: 1743: 1735: 1687: 1685: 1684: 1679: 1677: 1673: 1672: 1656: 1655: 1643: 1642: 1629: 1628: 1612: 1611: 1602: 1593: 1587: 1586: 1565: 1563: 1562: 1557: 1555: 1552: 1545: 1540: 1529: 1524: 1511: 1510: 1507: 1500: 1495: 1486: 1477: 1472: 1467: 1458: 1449: 1445: 1444: 1441: 1434: 1429: 1418: 1413: 1402: 1397: 1371: 1369: 1368: 1363: 1361: 1357: 1255: 1253: 1252: 1247: 1245: 1242: 1232: 1227: 1213: 1208: 1197: 1192: 1174: 1164: 1159: 1145: 1140: 1129: 1124: 1106: 1099: 1094: 1083: 1078: 1067: 1062: 1027: 1017: 1008: 1004: 995: 990:augmented matrix 985: 983: 982: 977: 975: 968: 967: 942: 937: 923: 918: 907: 902: 880: 879: 854: 849: 835: 830: 819: 814: 792: 791: 769: 764: 753: 748: 737: 732: 694: 692: 691: 686: 681: 680: 645: 644: 609: 608: 560:Row echelon form 521:LU decomposition 517:Frobenius matrix 481: 480: 472: 470: 469: 464: 462: 461: 375: 374: 285: 284: 195: 194: 102:row echelon form 42:, also known as 38:In mathematics, 21: 6857: 6856: 6852: 6851: 6850: 6848: 6847: 6846: 6827: 6826: 6825: 6820: 6802: 6764: 6720: 6657: 6609: 6551: 6542: 6508:Change of basis 6498:Multilinear map 6436: 6418: 6413: 6376: 6371: 6364: 6362: 6355: 6338: 6333: 6316: 6309: 6302: 6297: 6291: 6274: 6268: 6248: 6233: 6228: 6190: 6184: 6164: 6155: 6149: 6136: 6130: 6113: 6107: 6090: 6084: 6067: 6063: 6058: 6057: 6035: 6034: 6030: 6010: 6009: 6005: 5997: 5993: 5979: 5945: 5944: 5937: 5930: 5905: 5904: 5900: 5892: 5888: 5866:10.2307/2322413 5849: 5848: 5844: 5836: 5832: 5824: 5820: 5812: 5808: 5800: 5796: 5789: 5774: 5773: 5769: 5761: 5757: 5748: 5746: 5738: 5737: 5733: 5728: 5710: 5687: 5678:*/ 5623:h := 1 /* 5613: 5609: 5605: 5601: 5586: 5576: 5573: 5554: 5526: 5524:Generalizations 5502: 5415: 5395: 5394: 5388:soft O notation 5360: 5340: 5339: 5284: 5273: 5257: 5244: 5228: 5227: 5220: 5219: 5198: 5193: 5192: 5165: 5160: 5159: 5138: 5133: 5132: 5105: 5100: 5099: 5072: 5067: 5066: 5036: 5015: 5010: 5009: 4988: 4983: 4982: 4961: 4956: 4955: 4934: 4929: 4928: 4914: 4908: 4879: 4871: 4835: 4832:time complexity 4819: 4803: 4787: 4776: 4770: 4764: 4757: 4745: 4741: 4719: 4715: 4707: 4703: 4695: 4691: 4669: 4648: 4647: 4642: 4637: 4632: 4627: 4622: 4617: 4612: 4607: 4601: 4600: 4595: 4590: 4585: 4580: 4575: 4570: 4565: 4560: 4554: 4553: 4548: 4543: 4538: 4533: 4528: 4523: 4518: 4513: 4507: 4506: 4501: 4496: 4491: 4486: 4481: 4476: 4471: 4466: 4460: 4459: 4454: 4449: 4444: 4439: 4434: 4429: 4424: 4419: 4413: 4412: 4407: 4402: 4397: 4392: 4387: 4382: 4377: 4372: 4362: 4350: 4349: 4345: 4335: 4332: 4317: 4307: 4297: 4291: 4264: 4263: 4251: 4239: 4227: 4222: 4217: 4211: 4210: 4198: 4193: 4181: 4176: 4171: 4165: 4164: 4152: 4140: 4128: 4123: 4118: 4107: 4082: 4081: 4058: 4057: 4052: 4047: 4042: 4037: 4029: 4023: 4022: 4017: 4012: 4007: 3999: 3994: 3985: 3984: 3979: 3974: 3969: 3964: 3956: 3945: 3920: 3919: 3896: 3895: 3890: 3882: 3876: 3875: 3867: 3862: 3853: 3852: 3847: 3839: 3829: 3817: 3816: 3807: 3801: 3795: 3789: 3783: 3773: 3760: 3754: 3751:identity matrix 3741: 3727: 3721: 3718: 3712: 3701: 3689: 3649: 3648: 3634: 3624: 3583: 3561: 3560: 3556: 3552: 3548: 3544: 3540: 3536: 3519: 3511: 3458:Chapter Eight: 3454: 3434: 3427: 3420: 3415: 3399: 3398: 3385: 3378: 3368: 3355: 3352: 3351: 3338: 3331: 3321: 3296: 3287: 3286: 3283: 3277: 3274: 3268: 3265: 3259: 3255: 3252: 3246: 3243: 3232: 3229: 3226: 3225: 3223: 3222: 3219: 3213: 3209: 3184: 3183: 3175: 3170: 3165: 3159: 3158: 3153: 3148: 3143: 3137: 3136: 3131: 3126: 3121: 3110: 3105: 3104: 3089: 3088: 3078: 3071: 3061: 3046: 3045: 3035: 3028: 3018: 3005: 2996: 2995: 2980: 2978: 2970: 2959: 2954: 2950: 2945: 2943: 2938: 2926: 2923: 2918: 2913: 2911: 2906: 2894: 2890: 2887: 2875: 2874: 2853: 2852: 2844: 2839: 2834: 2828: 2827: 2822: 2817: 2812: 2806: 2805: 2800: 2795: 2790: 2779: 2774: 2773: 2758: 2757: 2747: 2740: 2730: 2724: 2723: 2713: 2706: 2696: 2684: 2683: 2668: 2666: 2658: 2647: 2642: 2635: 2633: 2628: 2616: 2613: 2605: 2603: 2598: 2586: 2583: 2578: 2567: 2552: 2551: 2530: 2529: 2524: 2516: 2511: 2505: 2504: 2492: 2487: 2475: 2469: 2468: 2463: 2458: 2453: 2442: 2437: 2436: 2421: 2420: 2410: 2403: 2393: 2368: 2365: 2364: 2354: 2347: 2337: 2324: 2315: 2314: 2299: 2297: 2283: 2278: 2263: 2261: 2236: 2216: 2214: 2198: 2193: 2182: 2167: 2166: 2140: 2139: 2134: 2126: 2121: 2115: 2114: 2109: 2097: 2085: 2079: 2078: 2073: 2065: 2060: 2049: 2044: 2043: 2021: 2008: 1989: 1984: 1983: 1968: 1966: 1961: 1950: 1937: 1935: 1930: 1919: 1902: 1891: 1871: 1869: 1864: 1853: 1848: 1837: 1832: 1821: 1806: 1805: 1784: 1783: 1778: 1773: 1768: 1762: 1761: 1756: 1744: 1732: 1726: 1725: 1720: 1712: 1707: 1696: 1691: 1690: 1675: 1674: 1664: 1657: 1647: 1634: 1631: 1630: 1620: 1613: 1603: 1578: 1569: 1568: 1553: 1551: 1546: 1535: 1530: 1519: 1508: 1506: 1501: 1490: 1473: 1462: 1442: 1440: 1435: 1424: 1419: 1408: 1403: 1392: 1377: 1376: 1355: 1354: 1346: 1341: 1336: 1327: 1326: 1318: 1313: 1305: 1296: 1295: 1290: 1282: 1277: 1266: 1261: 1260: 1243: 1241: 1233: 1222: 1214: 1203: 1198: 1187: 1175: 1173: 1165: 1154: 1146: 1135: 1130: 1119: 1107: 1105: 1100: 1089: 1084: 1073: 1068: 1057: 1042: 1041: 1020:triangular form 1016: 1010: 1006: 1003: 997: 993: 973: 972: 959: 951: 943: 932: 924: 913: 908: 897: 885: 884: 871: 863: 855: 844: 836: 825: 820: 809: 797: 796: 783: 775: 770: 759: 754: 743: 738: 727: 712: 711: 708: 675: 674: 669: 664: 659: 653: 652: 647: 636: 631: 625: 624: 616: 611: 600: 590: 584: 583: 562: 556: 529: 494: 478: 477: 456: 455: 450: 445: 440: 434: 433: 428: 423: 418: 412: 411: 403: 395: 390: 380: 369: 368: 363: 358: 353: 347: 346: 338: 330: 322: 316: 315: 310: 305: 300: 290: 279: 278: 273: 268: 263: 257: 256: 248: 240: 232: 226: 225: 220: 215: 210: 200: 189: 188: 183: 178: 173: 167: 166: 161: 153: 148: 142: 141: 136: 131: 126: 116: 110: 109: 28: 23: 22: 15: 12: 11: 5: 6855: 6853: 6845: 6844: 6839: 6829: 6828: 6822: 6821: 6819: 6818: 6807: 6804: 6803: 6801: 6800: 6795: 6790: 6785: 6780: 6778:Floating-point 6774: 6772: 6766: 6765: 6763: 6762: 6760:Tensor product 6757: 6752: 6747: 6745:Function space 6742: 6737: 6731: 6729: 6722: 6721: 6719: 6718: 6713: 6708: 6703: 6698: 6693: 6688: 6683: 6681:Triple product 6678: 6673: 6667: 6665: 6659: 6658: 6656: 6655: 6650: 6645: 6640: 6635: 6630: 6625: 6619: 6617: 6611: 6610: 6608: 6607: 6602: 6597: 6595:Transformation 6592: 6587: 6585:Multiplication 6582: 6577: 6572: 6567: 6561: 6559: 6553: 6552: 6545: 6543: 6541: 6540: 6535: 6530: 6525: 6520: 6515: 6510: 6505: 6500: 6495: 6490: 6485: 6480: 6475: 6470: 6465: 6460: 6455: 6450: 6444: 6442: 6441:Basic concepts 6438: 6437: 6435: 6434: 6429: 6423: 6420: 6419: 6416:Linear algebra 6414: 6412: 6411: 6404: 6397: 6389: 6383: 6382: 6375: 6374:External links 6372: 6370: 6369: 6353: 6336: 6331: 6314: 6295: 6289: 6281:Addison-Wesley 6272: 6266: 6246: 6226: 6199:(2): 163–218, 6188: 6182: 6166:Golub, Gene H. 6162: 6153: 6147: 6134: 6128: 6111: 6105: 6088: 6083:978-0471624899 6082: 6064: 6062: 6059: 6056: 6055: 6028: 6003: 5991: 5977: 5951:Lovász, László 5935: 5928: 5898: 5886: 5842: 5830: 5818: 5806: 5794: 5787: 5767: 5755: 5730: 5729: 5727: 5724: 5723: 5722: 5716: 5709: 5706: 5691:absolute value 5622: 5572: 5569: 5563:(matrices are 5544:monomial order 5525: 5522: 5501: 5498: 5497: 5496: 5491:Computing the 5489: 5486:inverse matrix 5484:Computing the 5482: 5472: 5467:Computing the 5465: 5448:Hensel lifting 5427: 5422: 5418: 5414: 5408: 5405: 5375: 5372: 5367: 5363: 5359: 5353: 5350: 5316: 5309: 5306: 5303: 5300: 5297: 5294: 5291: 5287: 5280: 5276: 5270: 5267: 5264: 5260: 5256: 5251: 5247: 5241: 5238: 5235: 5231: 5205: 5201: 5188:respectively. 5177: 5172: 5168: 5145: 5141: 5118: 5115: 5112: 5108: 5085: 5082: 5079: 5075: 5054: 5049: 5046: 5043: 5039: 5034: 5028: 5025: 5022: 5018: 4995: 4991: 4981:a multiple of 4968: 4964: 4941: 4937: 4910:Main article: 4907: 4904: 4864:bit complexity 4769:equations for 4759:The number of 4756: 4753: 4657: 4652: 4646: 4643: 4641: 4638: 4636: 4633: 4631: 4628: 4626: 4623: 4621: 4618: 4616: 4613: 4611: 4608: 4606: 4603: 4602: 4599: 4596: 4594: 4591: 4589: 4586: 4584: 4581: 4579: 4576: 4574: 4571: 4569: 4566: 4564: 4561: 4559: 4556: 4555: 4552: 4549: 4547: 4544: 4542: 4539: 4537: 4534: 4532: 4529: 4527: 4524: 4522: 4519: 4517: 4514: 4512: 4509: 4508: 4505: 4502: 4500: 4497: 4495: 4492: 4490: 4487: 4485: 4482: 4480: 4477: 4475: 4472: 4470: 4467: 4465: 4462: 4461: 4458: 4455: 4453: 4450: 4448: 4445: 4443: 4440: 4438: 4435: 4433: 4430: 4428: 4425: 4423: 4420: 4418: 4415: 4414: 4411: 4408: 4406: 4403: 4401: 4398: 4396: 4393: 4391: 4388: 4386: 4383: 4381: 4378: 4376: 4373: 4371: 4368: 4367: 4365: 4360: 4357: 4331: 4328: 4290:. Denoting by 4273: 4269: 4260: 4257: 4252: 4248: 4245: 4240: 4236: 4233: 4228: 4226: 4223: 4221: 4218: 4216: 4213: 4212: 4207: 4204: 4199: 4197: 4194: 4190: 4187: 4182: 4180: 4177: 4175: 4172: 4170: 4167: 4166: 4161: 4158: 4153: 4149: 4146: 4141: 4137: 4134: 4129: 4127: 4124: 4122: 4119: 4117: 4114: 4113: 4110: 4106: 4103: 4100: 4096: 4092: 4089: 4067: 4063: 4056: 4053: 4051: 4048: 4046: 4043: 4041: 4038: 4036: 4033: 4030: 4028: 4025: 4024: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4000: 3998: 3995: 3993: 3990: 3987: 3986: 3983: 3980: 3978: 3975: 3973: 3970: 3968: 3965: 3963: 3960: 3957: 3955: 3952: 3951: 3948: 3944: 3941: 3938: 3934: 3930: 3927: 3905: 3900: 3894: 3891: 3889: 3886: 3883: 3881: 3878: 3877: 3874: 3871: 3868: 3866: 3863: 3861: 3858: 3855: 3854: 3851: 3848: 3846: 3843: 3840: 3838: 3835: 3834: 3832: 3827: 3824: 3738:inverse matrix 3711: 3708: 3669: 3666: 3663: 3659: 3656: 3610: 3605: 3601: 3598: 3595: 3592: 3589: 3586: 3580: 3577: 3574: 3571: 3568: 3533: 3532: 3529: 3526: 3518: 3515: 3510: 3507: 3503:Wilhelm Jordan 3491:hand computers 3453: 3450: 3397: 3392: 3388: 3384: 3381: 3379: 3375: 3371: 3367: 3362: 3358: 3354: 3353: 3350: 3345: 3341: 3337: 3334: 3332: 3328: 3324: 3317: 3314: 3308: 3303: 3299: 3295: 3294: 3281: 3272: 3263: 3250: 3241: 3217: 3206: 3205: 3202: 3201: 3189: 3182: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3160: 3157: 3154: 3152: 3149: 3147: 3144: 3142: 3139: 3138: 3135: 3132: 3130: 3127: 3125: 3122: 3120: 3117: 3116: 3113: 3102: 3085: 3081: 3077: 3074: 3072: 3068: 3064: 3057: 3054: 3048: 3047: 3042: 3038: 3034: 3031: 3029: 3025: 3021: 3017: 3012: 3008: 3004: 3003: 2993: 2977: 2974: 2971: 2967: 2962: 2960: 2958: 2955: 2952: 2948: 2946: 2942: 2939: 2935: 2930: 2928: 2924: 2922: 2919: 2916: 2914: 2910: 2907: 2903: 2898: 2896: 2892: 2888: 2886: 2883: 2882: 2871: 2870: 2858: 2851: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2830: 2829: 2826: 2823: 2821: 2818: 2816: 2813: 2811: 2808: 2807: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2785: 2782: 2771: 2754: 2750: 2746: 2743: 2741: 2737: 2733: 2729: 2726: 2725: 2720: 2716: 2712: 2709: 2707: 2703: 2699: 2695: 2692: 2691: 2681: 2665: 2662: 2659: 2655: 2650: 2648: 2646: 2643: 2640: 2636: 2632: 2629: 2625: 2620: 2618: 2614: 2612: 2609: 2606: 2602: 2599: 2595: 2590: 2588: 2584: 2582: 2579: 2575: 2570: 2568: 2566: 2563: 2560: 2559: 2548: 2547: 2535: 2528: 2525: 2523: 2520: 2517: 2515: 2512: 2510: 2507: 2506: 2501: 2498: 2493: 2491: 2488: 2484: 2481: 2476: 2474: 2471: 2470: 2467: 2464: 2462: 2459: 2457: 2454: 2452: 2449: 2448: 2445: 2434: 2417: 2413: 2409: 2406: 2404: 2400: 2396: 2389: 2386: 2380: 2375: 2371: 2367: 2366: 2361: 2357: 2353: 2350: 2348: 2344: 2340: 2336: 2331: 2327: 2323: 2322: 2312: 2296: 2291: 2286: 2284: 2282: 2279: 2275: 2270: 2268: 2264: 2257: 2254: 2246: 2241: 2239: 2235: 2229: 2226: 2220: 2217: 2213: 2208: 2203: 2201: 2197: 2194: 2190: 2185: 2183: 2181: 2178: 2175: 2174: 2163: 2162: 2158: 2157: 2145: 2138: 2135: 2133: 2130: 2127: 2125: 2122: 2120: 2117: 2116: 2113: 2110: 2106: 2103: 2098: 2094: 2091: 2086: 2084: 2081: 2080: 2077: 2074: 2072: 2069: 2066: 2064: 2061: 2059: 2056: 2055: 2052: 2041: 2028: 2024: 2020: 2015: 2011: 2007: 2004: 2001: 1996: 1992: 1981: 1965: 1962: 1958: 1953: 1951: 1949: 1946: 1943: 1938: 1934: 1931: 1927: 1922: 1920: 1918: 1912: 1909: 1903: 1899: 1894: 1892: 1890: 1884: 1881: 1875: 1872: 1868: 1865: 1861: 1856: 1854: 1852: 1849: 1845: 1840: 1838: 1836: 1833: 1829: 1824: 1822: 1820: 1817: 1814: 1813: 1802: 1801: 1789: 1782: 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1763: 1760: 1757: 1753: 1750: 1745: 1741: 1738: 1733: 1731: 1728: 1727: 1724: 1721: 1719: 1716: 1713: 1711: 1708: 1706: 1703: 1702: 1699: 1688: 1671: 1667: 1663: 1660: 1658: 1654: 1650: 1646: 1641: 1637: 1633: 1632: 1627: 1623: 1619: 1616: 1614: 1610: 1606: 1599: 1596: 1590: 1585: 1581: 1577: 1576: 1566: 1550: 1547: 1543: 1538: 1536: 1534: 1531: 1527: 1522: 1520: 1518: 1515: 1512: 1509: 1505: 1502: 1498: 1493: 1491: 1489: 1483: 1480: 1474: 1470: 1465: 1463: 1461: 1455: 1452: 1446: 1443: 1439: 1436: 1432: 1427: 1425: 1423: 1420: 1416: 1411: 1409: 1407: 1404: 1400: 1395: 1393: 1391: 1388: 1385: 1384: 1373: 1372: 1360: 1353: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1329: 1328: 1325: 1322: 1319: 1317: 1314: 1312: 1309: 1306: 1304: 1301: 1298: 1297: 1294: 1291: 1289: 1286: 1283: 1281: 1278: 1276: 1273: 1272: 1269: 1258: 1256: 1240: 1237: 1234: 1230: 1225: 1223: 1221: 1218: 1215: 1211: 1206: 1204: 1202: 1199: 1195: 1190: 1188: 1186: 1183: 1180: 1177: 1176: 1172: 1169: 1166: 1162: 1157: 1155: 1153: 1150: 1147: 1143: 1138: 1136: 1134: 1131: 1127: 1122: 1120: 1118: 1115: 1112: 1109: 1108: 1104: 1101: 1097: 1092: 1090: 1088: 1085: 1081: 1076: 1074: 1072: 1069: 1065: 1060: 1058: 1056: 1053: 1050: 1049: 1038: 1037: 1034: 1033:Row operations 1031: 1014: 1001: 971: 966: 962: 958: 954: 952: 950: 947: 944: 940: 935: 933: 931: 928: 925: 921: 916: 914: 912: 909: 905: 900: 898: 896: 893: 890: 887: 886: 883: 878: 874: 870: 866: 864: 862: 859: 856: 852: 847: 845: 843: 840: 837: 833: 828: 826: 824: 821: 817: 812: 810: 808: 805: 802: 799: 798: 795: 790: 786: 782: 778: 776: 774: 771: 767: 762: 760: 758: 755: 751: 746: 744: 742: 739: 735: 730: 728: 726: 723: 720: 719: 707: 704: 684: 679: 673: 670: 668: 665: 663: 660: 658: 655: 654: 651: 648: 643: 637: 635: 632: 630: 627: 626: 623: 620: 617: 615: 612: 607: 601: 599: 596: 595: 593: 558:Main article: 555: 552: 547: 546: 543: 536: 528: 527:Row operations 525: 493: 490: 460: 454: 451: 449: 446: 444: 441: 439: 436: 435: 432: 429: 427: 424: 422: 419: 417: 414: 413: 410: 407: 404: 402: 399: 396: 394: 391: 389: 386: 385: 383: 378: 373: 367: 364: 362: 359: 357: 354: 352: 349: 348: 345: 342: 339: 337: 334: 331: 329: 326: 323: 321: 318: 317: 314: 311: 309: 306: 304: 301: 299: 296: 295: 293: 288: 283: 277: 274: 272: 269: 267: 264: 262: 259: 258: 255: 252: 249: 247: 244: 241: 239: 236: 233: 231: 228: 227: 224: 221: 219: 216: 214: 211: 209: 206: 205: 203: 198: 193: 187: 184: 182: 179: 177: 174: 172: 169: 168: 165: 162: 160: 157: 154: 152: 149: 147: 144: 143: 140: 137: 135: 132: 130: 127: 125: 122: 121: 119: 94: 93: 90: 87: 26: 24: 18:Row reductions 14: 13: 10: 9: 6: 4: 3: 2: 6854: 6843: 6840: 6838: 6835: 6834: 6832: 6817: 6809: 6808: 6805: 6799: 6796: 6794: 6793:Sparse matrix 6791: 6789: 6786: 6784: 6781: 6779: 6776: 6775: 6773: 6771: 6767: 6761: 6758: 6756: 6753: 6751: 6748: 6746: 6743: 6741: 6738: 6736: 6733: 6732: 6730: 6728:constructions 6727: 6723: 6717: 6716:Outermorphism 6714: 6712: 6709: 6707: 6704: 6702: 6699: 6697: 6694: 6692: 6689: 6687: 6684: 6682: 6679: 6677: 6676:Cross product 6674: 6672: 6669: 6668: 6666: 6664: 6660: 6654: 6651: 6649: 6646: 6644: 6643:Outer product 6641: 6639: 6636: 6634: 6631: 6629: 6626: 6624: 6623:Orthogonality 6621: 6620: 6618: 6616: 6612: 6606: 6603: 6601: 6600:Cramer's rule 6598: 6596: 6593: 6591: 6588: 6586: 6583: 6581: 6578: 6576: 6573: 6571: 6570:Decomposition 6568: 6566: 6563: 6562: 6560: 6558: 6554: 6549: 6539: 6536: 6534: 6531: 6529: 6526: 6524: 6521: 6519: 6516: 6514: 6511: 6509: 6506: 6504: 6501: 6499: 6496: 6494: 6491: 6489: 6486: 6484: 6481: 6479: 6476: 6474: 6471: 6469: 6466: 6464: 6461: 6459: 6456: 6454: 6451: 6449: 6446: 6445: 6443: 6439: 6433: 6430: 6428: 6425: 6424: 6421: 6417: 6410: 6405: 6403: 6398: 6396: 6391: 6390: 6387: 6381: 6378: 6377: 6373: 6361:on 2012-03-19 6360: 6356: 6350: 6346: 6342: 6341:"Section 2.2" 6337: 6334: 6328: 6324: 6320: 6315: 6308: 6301: 6296: 6292: 6286: 6282: 6278: 6273: 6269: 6263: 6259: 6255: 6251: 6247: 6243: 6239: 6232: 6227: 6224: 6220: 6216: 6212: 6207: 6202: 6198: 6194: 6189: 6185: 6179: 6175: 6171: 6167: 6163: 6159: 6154: 6150: 6144: 6140: 6135: 6131: 6125: 6121: 6120:Prentice Hall 6117: 6112: 6108: 6102: 6098: 6094: 6089: 6085: 6079: 6075: 6071: 6066: 6065: 6060: 6051: 6047: 6043: 6039: 6032: 6029: 6023: 6018: 6014: 6013:Lim, Lek-Heng 6007: 6004: 6000: 5995: 5992: 5988: 5984: 5980: 5974: 5970: 5966: 5962: 5961: 5956: 5952: 5948: 5942: 5940: 5936: 5931: 5929:0-89791-875-4 5925: 5921: 5917: 5913: 5909: 5902: 5899: 5895: 5890: 5887: 5883: 5879: 5875: 5871: 5867: 5863: 5859: 5855: 5854: 5846: 5843: 5840:, p. 789 5839: 5834: 5831: 5827: 5822: 5819: 5815: 5810: 5807: 5803: 5798: 5795: 5790: 5784: 5780: 5779: 5771: 5768: 5764: 5763:Calinger 1999 5759: 5756: 5745: 5741: 5735: 5732: 5725: 5720: 5717: 5715: 5712: 5711: 5707: 5705: 5702: 5700: 5696: 5692: 5685: 5681: 5677: 5673: 5669: 5665: 5661: 5658: 5654: 5650: 5646: 5642: 5639:k ≤ n /* 5638: 5634: 5630: 5626: 5621: 5619: 5599: 5594: 5592: 5583: 5579: 5570: 5568: 5566: 5562: 5557: 5552: 5547: 5545: 5541: 5537: 5533: 5531: 5523: 5521: 5519: 5515: 5511: 5507: 5499: 5494: 5490: 5487: 5483: 5481: 5477: 5473: 5470: 5466: 5464: 5460: 5456: 5455: 5454: 5451: 5449: 5445: 5441: 5420: 5416: 5403: 5391: 5389: 5373: 5365: 5361: 5348: 5337: 5331: 5328: 5314: 5307: 5304: 5301: 5298: 5295: 5292: 5289: 5285: 5278: 5274: 5268: 5265: 5262: 5258: 5254: 5249: 5245: 5239: 5236: 5233: 5229: 5203: 5199: 5189: 5175: 5170: 5166: 5143: 5139: 5116: 5113: 5110: 5106: 5083: 5080: 5077: 5073: 5052: 5047: 5044: 5041: 5037: 5032: 5026: 5023: 5020: 5016: 4993: 4989: 4966: 4962: 4939: 4935: 4925: 4923: 4919: 4913: 4905: 4903: 4901: 4897: 4891: 4889: 4883: 4875: 4869: 4865: 4861: 4857: 4853: 4849: 4843: 4839: 4833: 4829: 4823: 4815: 4811: 4807: 4799: 4795: 4791: 4783: 4779: 4773: 4767: 4762: 4754: 4752: 4749: 4738: 4734: 4730: 4726: 4722: 4713: 4701: 4688: 4684: 4680: 4676: 4672: 4655: 4650: 4644: 4639: 4634: 4629: 4624: 4619: 4614: 4609: 4604: 4597: 4592: 4587: 4582: 4577: 4572: 4567: 4562: 4557: 4550: 4545: 4540: 4535: 4530: 4525: 4520: 4515: 4510: 4503: 4498: 4493: 4488: 4483: 4478: 4473: 4468: 4463: 4456: 4451: 4446: 4441: 4436: 4431: 4426: 4421: 4416: 4409: 4404: 4399: 4394: 4389: 4384: 4379: 4374: 4369: 4363: 4358: 4355: 4342: 4338: 4329: 4327: 4324: 4320: 4314: 4310: 4304: 4300: 4294: 4289: 4284: 4271: 4267: 4258: 4255: 4246: 4243: 4234: 4231: 4224: 4219: 4214: 4205: 4202: 4195: 4188: 4185: 4178: 4173: 4168: 4159: 4156: 4147: 4144: 4135: 4132: 4125: 4120: 4115: 4108: 4104: 4098: 4090: 4078: 4065: 4061: 4054: 4049: 4044: 4039: 4034: 4031: 4026: 4019: 4014: 4009: 4004: 4001: 3996: 3991: 3988: 3981: 3976: 3971: 3966: 3961: 3958: 3953: 3946: 3942: 3936: 3928: 3916: 3903: 3898: 3892: 3887: 3884: 3879: 3872: 3869: 3864: 3859: 3856: 3849: 3844: 3841: 3836: 3830: 3825: 3822: 3813: 3810: 3804: 3798: 3792: 3786: 3780: 3776: 3771: 3767: 3763: 3759:, forming an 3757: 3752: 3748: 3744: 3739: 3734: 3730: 3724: 3717: 3709: 3707: 3704: 3693: 3687: 3664: 3661: 3657: 3646: 3641: 3639: 3631: 3627: 3621: 3608: 3603: 3596: 3590: 3587: 3584: 3578: 3572: 3530: 3527: 3524: 3523: 3522: 3516: 3514: 3508: 3506: 3504: 3499: 3494: 3492: 3488: 3483: 3479: 3474: 3472: 3468: 3467: 3462: 3461: 3451: 3449: 3446: 3441: 3437: 3430: 3423: 3412: 3395: 3390: 3386: 3380: 3373: 3369: 3365: 3360: 3356: 3348: 3343: 3339: 3333: 3326: 3322: 3315: 3312: 3306: 3301: 3297: 3280: 3271: 3262: 3249: 3240: 3216: 3187: 3180: 3177: 3172: 3167: 3162: 3155: 3150: 3145: 3140: 3133: 3128: 3123: 3118: 3111: 3103: 3083: 3079: 3073: 3066: 3062: 3055: 3052: 3040: 3036: 3030: 3023: 3019: 3015: 3010: 3006: 2994: 2975: 2972: 2965: 2961: 2956: 2940: 2933: 2929: 2920: 2908: 2901: 2897: 2884: 2873: 2856: 2849: 2846: 2841: 2836: 2831: 2824: 2819: 2814: 2809: 2802: 2797: 2792: 2787: 2780: 2772: 2752: 2748: 2742: 2735: 2731: 2727: 2718: 2714: 2708: 2701: 2697: 2693: 2682: 2663: 2660: 2653: 2649: 2644: 2630: 2623: 2619: 2610: 2600: 2593: 2589: 2580: 2573: 2569: 2564: 2561: 2550: 2533: 2526: 2521: 2518: 2513: 2508: 2499: 2496: 2489: 2482: 2479: 2472: 2465: 2460: 2455: 2450: 2443: 2435: 2415: 2411: 2405: 2398: 2394: 2387: 2384: 2378: 2373: 2369: 2359: 2355: 2349: 2342: 2338: 2334: 2329: 2325: 2313: 2294: 2289: 2285: 2280: 2273: 2269: 2255: 2252: 2244: 2240: 2233: 2227: 2224: 2211: 2206: 2202: 2195: 2188: 2184: 2179: 2176: 2165: 2159: 2143: 2136: 2131: 2128: 2123: 2118: 2111: 2104: 2101: 2092: 2089: 2082: 2075: 2070: 2067: 2062: 2057: 2050: 2042: 2026: 2022: 2013: 2009: 2005: 2002: 1999: 1994: 1990: 1982: 1963: 1956: 1952: 1947: 1944: 1932: 1925: 1921: 1916: 1910: 1907: 1897: 1893: 1888: 1882: 1879: 1866: 1859: 1855: 1850: 1843: 1839: 1834: 1827: 1823: 1818: 1815: 1804: 1787: 1780: 1775: 1770: 1765: 1758: 1751: 1748: 1739: 1736: 1729: 1722: 1717: 1714: 1709: 1704: 1697: 1689: 1669: 1665: 1659: 1652: 1648: 1644: 1639: 1635: 1625: 1621: 1615: 1608: 1604: 1597: 1594: 1588: 1583: 1579: 1567: 1548: 1541: 1537: 1532: 1525: 1521: 1516: 1513: 1503: 1496: 1492: 1487: 1481: 1478: 1468: 1464: 1459: 1453: 1450: 1437: 1430: 1426: 1421: 1414: 1410: 1405: 1398: 1394: 1389: 1386: 1375: 1358: 1351: 1348: 1343: 1338: 1333: 1330: 1323: 1320: 1315: 1310: 1307: 1302: 1299: 1292: 1287: 1284: 1279: 1274: 1267: 1259: 1257: 1238: 1235: 1228: 1224: 1219: 1216: 1209: 1205: 1200: 1193: 1189: 1184: 1181: 1178: 1170: 1167: 1160: 1156: 1151: 1148: 1141: 1137: 1132: 1125: 1121: 1116: 1113: 1110: 1102: 1095: 1091: 1086: 1079: 1075: 1070: 1063: 1059: 1054: 1051: 1040: 1035: 1032: 1029: 1028: 1025: 1024: 1023: 1021: 1013: 1000: 991: 986: 964: 960: 953: 948: 945: 938: 934: 929: 926: 919: 915: 910: 903: 899: 894: 891: 888: 876: 872: 865: 860: 857: 850: 846: 841: 838: 831: 827: 822: 815: 811: 806: 803: 800: 788: 784: 777: 772: 765: 761: 756: 749: 745: 740: 733: 729: 724: 721: 705: 703: 699: 695: 682: 677: 671: 666: 661: 656: 649: 633: 628: 621: 618: 613: 597: 591: 580: 577: 573: 569: 568: 561: 553: 551: 544: 541: 537: 534: 533: 532: 526: 524: 522: 518: 514: 510: 505: 503: 499: 491: 489: 486: 482: 473: 458: 452: 447: 442: 437: 430: 425: 420: 415: 408: 405: 400: 397: 392: 387: 381: 371: 365: 360: 355: 350: 343: 340: 335: 332: 327: 324: 319: 312: 307: 302: 297: 291: 281: 275: 270: 265: 260: 253: 250: 245: 242: 237: 234: 229: 222: 217: 212: 207: 201: 191: 185: 180: 175: 170: 163: 158: 155: 150: 145: 138: 133: 128: 123: 117: 107: 103: 99: 91: 88: 85: 84: 83: 81: 77: 73: 69: 68:square matrix 65: 61: 57: 53: 49: 45: 44:row reduction 41: 32: 19: 6726:Vector space 6604: 6458:Vector space 6363:, retrieved 6359:the original 6344: 6321:, New York: 6318: 6276: 6253: 6244:(6): 782–792 6241: 6237: 6196: 6192: 6173: 6157: 6138: 6115: 6092: 6069: 6042:SpringerLink 6041: 6031: 6006: 5994: 5959: 5911: 5901: 5896:, p. 12 5889: 5857: 5851: 5845: 5833: 5821: 5809: 5797: 5777: 5770: 5758: 5747:. Retrieved 5743: 5734: 5703: 5694: 5688: 5683: 5679: 5675: 5671: 5667: 5663: 5659: 5656: 5652: 5648: 5640: 5636: 5632: 5628: 5624: 5617: 5595: 5581: 5577: 5574: 5548: 5534: 5527: 5503: 5479: 5475: 5458: 5452: 5392: 5332: 5329: 5190: 4926: 4922:Jack Edmonds 4915: 4892: 4890:complexity. 4881: 4873: 4852:finite field 4844: 4837: 4827: 4821: 4813: 4809: 4805: 4797: 4793: 4789: 4781: 4777: 4771: 4765: 4758: 4750: 4736: 4732: 4728: 4724: 4720: 4712:vector space 4686: 4682: 4678: 4674: 4670: 4340: 4336: 4333: 4322: 4318: 4312: 4308: 4302: 4298: 4292: 4285: 4079: 3917: 3814: 3808: 3802: 3796: 3790: 3784: 3778: 3774: 3770:block matrix 3765: 3761: 3755: 3746: 3742: 3732: 3728: 3722: 3719: 3702: 3691: 3637: 3629: 3625: 3622: 3534: 3520: 3512: 3509:Applications 3497: 3495: 3481: 3478:Isaac Newton 3475: 3464: 3459: 3455: 3444: 3442: 3435: 3428: 3421: 3419:solution is 3413: 3278: 3269: 3260: 3247: 3238: 3214: 3207: 1011: 998: 987: 709: 700: 696: 581: 571: 565: 563: 554:Echelon form 548: 530: 506: 495: 484: 476: 474: 95: 50:for solving 43: 39: 37: 6706:Multivector 6671:Determinant 6628:Dot product 6473:Linear span 6323:McGraw-Hill 6061:Works cited 5838:Grcar 2011b 5828:, p. 3 5814:Grcar 2011b 5802:Grcar 2011a 5744:www.emis.de 5666:*/ 5612:and column 5469:determinant 4786:divisions, 3680:operations 64:determinant 6831:Categories 6740:Direct sum 6575:Invertible 6478:Linear map 6365:2011-08-08 5749:2022-12-02 5726:References 5598:pseudocode 5571:Pseudocode 4916:The first 3714:See also: 3706:above 20. 3267:by adding 3221:by adding 6770:Numerical 6533:Transpose 6206:0907.2397 6022:0911.1393 5874:0002-9890 5826:Lauritzen 5693:. Such a 5660:swap rows 5407:~ 5352:~ 5305:− 5293:− 5255:− 4551:∗ 4546:∗ 4504:∗ 4499:∗ 4494:∗ 4489:∗ 4484:∗ 4457:∗ 4452:∗ 4447:∗ 4442:∗ 4437:∗ 4432:∗ 4410:∗ 4405:∗ 4400:∗ 4395:∗ 4390:∗ 4385:∗ 4380:∗ 4375:∗ 4032:− 4002:− 3989:− 3959:− 3885:− 3870:− 3857:− 3842:− 3688:requires 3647:requires 3591:⁡ 3585:∏ 3383:→ 3336:→ 3178:− 3076:→ 3033:→ 3016:− 2973:− 2847:− 2745:→ 2728:− 2711:→ 2661:− 2519:− 2408:→ 2352:→ 2335:− 2274:− 2129:− 2068:− 2019:→ 2003:− 1945:− 1844:− 1715:− 1662:→ 1618:→ 1415:− 1349:− 1331:− 1321:− 1308:− 1300:− 1285:− 1236:− 1179:− 1168:− 1126:− 1111:− 1080:− 946:− 889:− 858:− 816:− 801:− 750:− 619:− 406:− 398:− 377:→ 341:− 333:− 325:− 287:→ 251:− 243:− 235:− 197:→ 156:− 48:algorithm 6816:Category 6755:Subspace 6750:Quotient 6701:Bivector 6615:Bilinear 6557:Matrices 6432:Glossary 6307:Archived 6252:(2002), 6223:14259511 6172:(1996), 6001:, §3.4.6 5957:(1993), 5708:See also 5618:in place 4856:integers 3254:. Next, 46:, is an 6427:Outline 5987:1261419 5882:2322413 5608:in row 5585:matrix 5561:tensors 5551:NP-hard 4344:matrix 3806:, then 3471:Liu Hui 3452:History 3445:reduced 3236:⁠ 3224:⁠ 6711:Tensor 6523:Kernel 6453:Vector 6448:Scalar 6351:  6329:  6287:  6264:  6221:  6180:  6145:  6126:  6103:  6080:  5985:  5975:  5926:  5880:  5872:  5785:  5645:argmax 5635:h ≤ m 5556:P ≠ NP 5386:using 5065:where 4784:+ 1)/2 4710:; the 4698:: the 3726:is an 3543:, let 3433:, and 576:type 3 540:scalar 56:matrix 6580:Minor 6565:Block 6503:Basis 6310:(PDF) 6303:(PDF) 6234:(PDF) 6219:S2CID 6201:arXiv 6017:arXiv 5878:JSTOR 5633:while 5565:array 5530:field 5218:with 3414:Once 572:pivot 66:of a 6735:Dual 6590:Rank 6349:ISBN 6327:ISBN 6285:ISBN 6262:ISBN 6258:SIAM 6178:ISBN 6143:ISBN 6124:ISBN 6101:ISBN 6078:ISBN 5973:ISBN 5924:ISBN 5870:ISSN 5783:ISBN 5657:else 5493:rank 5158:and 5098:and 4700:rank 3588:diag 3424:= −1 570:(or 60:rank 6211:doi 6046:doi 5965:doi 5916:doi 5862:doi 5680:for 5668:for 5637:and 5631:*/ 5512:or 5446:or 5008:by 4902:). 4858:or 4816:)/6 4812:− 5 4808:+ 3 4800:)/6 4796:− 5 4792:+ 3 4740:in 4702:of 3777:× 2 3764:× 2 3567:det 3463:of 3438:= 2 3431:= 3 3276:to 3245:to 6833:: 6343:, 6283:, 6279:, 6260:, 6242:58 6240:, 6236:, 6217:, 6209:, 6197:38 6195:, 6168:; 6122:, 6118:, 6099:, 6076:, 6044:. 6040:. 5983:MR 5981:, 5971:, 5953:; 5949:; 5938:^ 5922:. 5910:. 5876:, 5868:, 5858:94 5856:, 5742:. 5649:if 5600:, 5593:. 5580:× 5478:= 5476:Ax 5450:. 5390:. 4880:O( 4872:O( 4842:. 4836:O( 4824:/3 4804:(2 4788:(2 4735:, 4731:, 4727:, 4723:, 4685:, 4681:, 4677:, 4673:, 4339:× 4321:= 4319:BI 4311:= 4301:= 4299:BA 3745:× 3731:× 3694:2) 3690:O( 3636:O( 3628:× 3559:: 3426:, 1324:11 1171:11 861:11 186:35 176:11 6408:e 6401:t 6394:v 6294:. 6271:. 6213:: 6203:: 6187:. 6161:. 6152:. 6133:. 6110:. 6087:. 6052:. 6048:: 6025:. 6019:: 5967:: 5932:. 5918:: 5864:: 5791:. 5752:. 5614:j 5610:i 5606:A 5602:A 5587:A 5582:n 5578:m 5480:b 5459:m 5426:) 5421:4 5417:n 5413:( 5404:O 5374:, 5371:) 5366:5 5362:n 5358:( 5349:O 5315:. 5308:1 5302:k 5299:, 5296:1 5290:k 5286:r 5279:k 5275:R 5269:k 5266:, 5263:i 5259:r 5250:i 5246:R 5240:k 5237:, 5234:k 5230:r 5204:i 5200:R 5176:, 5171:k 5167:R 5144:i 5140:R 5117:k 5114:, 5111:k 5107:r 5084:k 5081:, 5078:i 5074:r 5053:, 5048:k 5045:, 5042:k 5038:r 5033:/ 5027:k 5024:, 5021:i 5017:r 4994:k 4990:R 4967:k 4963:R 4940:i 4936:R 4884:) 4882:n 4876:) 4874:n 4840:) 4838:n 4830:( 4822:n 4820:2 4814:n 4810:n 4806:n 4798:n 4794:n 4790:n 4782:n 4780:( 4778:n 4772:n 4766:n 4746:A 4742:T 4737:e 4733:d 4729:c 4725:b 4721:a 4716:A 4708:T 4704:A 4696:A 4692:T 4687:e 4683:d 4679:c 4675:b 4671:a 4656:, 4651:] 4645:0 4640:0 4635:0 4630:0 4625:0 4620:0 4615:0 4610:0 4605:0 4598:e 4593:0 4588:0 4583:0 4578:0 4573:0 4568:0 4563:0 4558:0 4541:d 4536:0 4531:0 4526:0 4521:0 4516:0 4511:0 4479:c 4474:0 4469:0 4464:0 4427:b 4422:0 4417:0 4370:a 4364:[ 4359:= 4356:T 4346:A 4341:n 4337:m 4323:B 4313:A 4309:B 4303:I 4293:B 4272:. 4268:] 4259:4 4256:3 4247:2 4244:1 4235:4 4232:1 4225:1 4220:0 4215:0 4206:2 4203:1 4196:1 4189:2 4186:1 4179:0 4174:1 4169:0 4160:4 4157:1 4148:2 4145:1 4136:4 4133:3 4126:0 4121:0 4116:1 4109:[ 4105:= 4102:] 4099:B 4095:| 4091:I 4088:[ 4066:. 4062:] 4055:1 4050:0 4045:0 4040:2 4035:1 4027:0 4020:0 4015:1 4010:0 4005:1 3997:2 3992:1 3982:0 3977:0 3972:1 3967:0 3962:1 3954:2 3947:[ 3943:= 3940:] 3937:I 3933:| 3929:A 3926:[ 3904:. 3899:] 3893:2 3888:1 3880:0 3873:1 3865:2 3860:1 3850:0 3845:1 3837:2 3831:[ 3826:= 3823:A 3809:A 3803:I 3797:A 3791:I 3785:A 3779:n 3775:n 3766:n 3762:n 3756:A 3747:n 3743:n 3733:n 3729:n 3723:A 3703:n 3692:n 3668:) 3665:! 3662:n 3658:n 3655:( 3640:) 3638:n 3630:n 3626:n 3609:. 3604:d 3600:) 3597:B 3594:( 3579:= 3576:) 3573:A 3570:( 3557:B 3553:d 3549:A 3545:d 3541:B 3537:A 3436:x 3429:y 3422:z 3416:y 3396:. 3391:3 3387:L 3374:1 3370:L 3366:+ 3361:3 3357:L 3349:, 3344:2 3340:L 3327:1 3323:L 3316:2 3313:3 3307:+ 3302:2 3298:L 3282:3 3279:L 3273:1 3270:L 3264:3 3261:L 3256:x 3251:2 3248:L 3242:1 3239:L 3233:2 3230:/ 3227:3 3218:2 3215:L 3210:x 3188:] 3181:1 3173:1 3168:0 3163:0 3156:3 3151:0 3146:1 3141:0 3134:2 3129:0 3124:0 3119:1 3112:[ 3084:1 3080:L 3067:1 3063:L 3056:2 3053:1 3041:1 3037:L 3024:2 3020:L 3011:1 3007:L 2976:1 2966:= 2957:z 2941:3 2934:= 2921:y 2909:2 2902:= 2885:x 2857:] 2850:1 2842:1 2837:0 2832:0 2825:3 2820:0 2815:1 2810:0 2803:7 2798:0 2793:1 2788:2 2781:[ 2753:3 2749:L 2736:3 2732:L 2719:2 2715:L 2702:2 2698:L 2694:2 2664:1 2654:= 2645:z 2631:3 2624:= 2611:y 2601:7 2594:= 2581:y 2574:+ 2565:x 2562:2 2534:] 2527:1 2522:1 2514:0 2509:0 2500:2 2497:3 2490:0 2483:2 2480:1 2473:0 2466:7 2461:0 2456:1 2451:2 2444:[ 2416:2 2412:L 2399:3 2395:L 2388:2 2385:1 2379:+ 2374:2 2370:L 2360:1 2356:L 2343:3 2339:L 2330:1 2326:L 2295:1 2290:= 2281:z 2256:2 2253:3 2245:= 2234:y 2228:2 2225:1 2212:7 2207:= 2196:y 2189:+ 2180:x 2177:2 2144:] 2137:1 2132:1 2124:0 2119:0 2112:1 2105:2 2102:1 2093:2 2090:1 2083:0 2076:8 2071:1 2063:1 2058:2 2051:[ 2027:3 2023:L 2014:2 2010:L 2006:4 2000:+ 1995:3 1991:L 1964:1 1957:= 1948:z 1933:1 1926:= 1917:z 1911:2 1908:1 1898:+ 1889:y 1883:2 1880:1 1867:8 1860:= 1851:z 1835:y 1828:+ 1819:x 1816:2 1788:] 1781:5 1776:1 1771:2 1766:0 1759:1 1752:2 1749:1 1740:2 1737:1 1730:0 1723:8 1718:1 1710:1 1705:2 1698:[ 1670:3 1666:L 1653:1 1649:L 1645:+ 1640:3 1636:L 1626:2 1622:L 1609:1 1605:L 1598:2 1595:3 1589:+ 1584:2 1580:L 1549:5 1542:= 1533:z 1526:+ 1517:y 1514:2 1504:1 1497:= 1488:z 1482:2 1479:1 1469:+ 1460:y 1454:2 1451:1 1438:8 1431:= 1422:z 1406:y 1399:+ 1390:x 1387:2 1359:] 1352:3 1344:2 1339:1 1334:2 1316:2 1311:1 1303:3 1293:8 1288:1 1280:1 1275:2 1268:[ 1239:3 1229:= 1220:z 1217:2 1210:+ 1201:y 1194:+ 1185:x 1182:2 1161:= 1152:z 1149:2 1142:+ 1133:y 1117:x 1114:3 1103:8 1096:= 1087:z 1071:y 1064:+ 1055:x 1052:2 1015:2 1012:L 1007:y 1002:1 999:L 994:x 970:) 965:3 961:L 957:( 949:3 939:= 930:z 927:2 920:+ 911:y 904:+ 895:x 892:2 882:) 877:2 873:L 869:( 851:= 842:z 839:2 832:+ 823:y 807:x 804:3 794:) 789:1 785:L 781:( 773:8 766:= 757:z 741:y 734:+ 725:x 722:2 683:. 678:] 672:0 667:0 662:0 657:0 650:1 642:3 634:0 629:0 622:1 614:1 606:2 598:0 592:[ 542:. 459:] 453:0 448:0 443:0 438:0 431:4 426:1 421:1 416:0 409:3 401:2 393:0 388:1 382:[ 372:] 366:0 361:0 356:0 351:0 344:8 336:2 328:2 320:0 313:9 308:1 303:3 298:1 292:[ 282:] 276:8 271:2 266:2 261:0 254:8 246:2 238:2 230:0 223:9 218:1 213:3 208:1 202:[ 192:] 181:5 171:3 164:1 159:1 151:1 146:1 139:9 134:1 129:3 124:1 118:[ 20:)

Index

Row reductions

algorithm
systems of linear equations
matrix
rank
determinant
square matrix
invertible matrix
Carl Friedrich Gauss
elementary row operations
upper triangular matrix
row echelon form
reduced row echelon form
elementary row operations
back substitution
matrix decomposition
elementary matrices
Frobenius matrix
LU decomposition
scalar
Row echelon form
leading coefficient
type 3
augmented matrix
triangular form
Chapter Eight: Rectangular Arrays
The Nine Chapters on the Mathematical Art
Liu Hui
Isaac Newton

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.