Knowledge (XXG)

Orientation (vector space)

Source ๐Ÿ“

38: 1525: 1465: 752:
therefore chooses an orientation of every basis of every zero-dimensional vector space. If all zero-dimensional vector spaces are assigned this orientation, then, because all isomorphisms among zero-dimensional vector spaces preserve the ordered basis, they also preserve the orientation. This is
451: 110:. Thus, in three dimensions, it is impossible to make the left hand of a human figure into the right hand of the figure by applying a displacement alone, but it is possible to do so by reflecting the figure in a mirror. As a result, in the three-dimensional 1294: 553: 334: 562:
The concept of orientation degenerates in the zero-dimensional case. A zero-dimensional vector space has only a single point, the zero vector. Consequently, the only basis of a zero-dimensional vector space is the empty set
1421: 460: 657: 750: 715: 1354: 1188: 1494:
has an attitude given by a straight line parallel to it, an orientation given by its sense (often indicated by an arrowhead) and a magnitude given by its length. Similarly, a
899: 607: 680: 581: 1454: 1712: 1673: 1060: 1563:-dimensional real vector space. Each of these vector spaces can be assigned an orientation. Some orientations "vary smoothly" from point to point. Due to certain 1322: 1138:, which is the trivial group and thus has a single connected component; this corresponds to the canonical orientation on a zero-dimensional vector space). The 1506:
common to these planes ), an orientation (sometimes denoted by a curved arrow in the plane) indicating a choice of sense of traversal of its boundary (its
61:, right-handed bases are typically declared to be positively oriented, but the choice is arbitrary, as they may also be assigned a negative orientation. A 446:{\displaystyle \mathbf {A} _{1}={\begin{pmatrix}\cos \alpha &-\sin \alpha &0\\\sin \alpha &\cos \alpha &0\\0&0&1\end{pmatrix}}} 753:
unlike the case of higher-dimensional vector spaces where there is no way to choose an orientation so that it is preserved under all isomorphisms.
1615: 1170:
does not have a distinguished element (i.e. a privileged basis) there is no natural choice of which component is positive. Contrast this with GL(
1737: 1567:
restrictions, this is not always possible. A manifold that admits a smooth choice of orientations for its tangent spaces is said to be
612: 1824: 1773: 756:
However, there are situations where it is desirable to give different orientations to different points. For example, consider the
1503: 1744:
The algebraic bivector is not specific on shape; geometrically it is an amount of oriented area in a specific plane, that's all.
1881: 757: 1757: 1603: 800:
The one-dimensional case deals with a line which may be traversed in one of two directions. There are two orientations to a
1854: 1363: 1849: 1582: 1528:
The orientation of a volume may be determined by the orientation on its boundary, indicated by the circulating arrows.
266: 94:
goes around clockwise or counterclockwise, and in three dimensions when a figure is left-handed or right-handed. In
1174:) which does have a privileged component: the component of the identity. A specific choice of homeomorphism between 1876: 1087: 1468:
Parallel plane segments with the same attitude, magnitude and orientation, all corresponding to the same bivector
1594: 242:
Every ordered basis lives in one equivalence class or another. Thus any choice of a privileged ordered basis for
945:) > 0. To connect with the basis point of view we say that the positively-oriented bases are those on which 103: 102:, the notion of orientation makes sense in arbitrary finite dimension, and is a kind of asymmetry that makes a 720: 685: 682:, a zero-dimensional vector space is the same as a zero-dimensional vector space with ordered basis. Choosing 1289:{\displaystyle \pi _{0}(\operatorname {GL} (V))=(\operatorname {GL} (V)/\operatorname {GL} ^{+}(V)=\{\pm 1\}} 609:
whose sole member is the empty set. This means that an orientation of a zero-dimensional space is a function
1871: 1588: 1327: 293: 37: 548:{\displaystyle \mathbf {A} _{2}={\begin{pmatrix}1&0&0\\0&1&0\\0&0&-1\end{pmatrix}}} 765: 31: 810: 288:
The ordering of elements in a basis is crucial. Two bases with a different ordering will differ by some
157: 918:
choice of which direction on this line is positive. An orientation is just such a choice. Any nonzero
863: 246:
determines an orientation: the orientation class of the privileged basis is declared to be positive.
1079: 860: 216: 107: 586: 54: 1844: 1139: 1134:
according to whether the determinant of the transformation is positive or negative (except for GL
297: 131: 761: 665: 566: 1430: 1820: 1796: 1769: 1733: 1706: 1667: 1483: 1033: 228: 1814: 1727: 1499: 1491: 1297: 1688: 1649: 1182:) is equivalent to a choice of a privileged basis and therefore determines an orientation. 780:. In order to get the correct statement of the fundamental theorem of calculus, the point 1627: 1621: 1131: 1127: 801: 115: 111: 91: 58: 659:
It is therefore possible to orient a point in two different ways, positive and negative.
1766:
Clifford (geometric) algebras with applications to physics, mathematics, and engineering
57:
are "positively" oriented and which are "negatively" oriented. In the three-dimensional
1810: 1307: 848: 819: 250: 153: 95: 1510:), and a magnitude given by the area of the parallelogram defined by its two vectors. 1865: 1569: 1545: 1519: 815: 583:. Therefore, there is a single equivalence class of ordered bases, namely, the class 86: 1790: 1150:) and consists of those transformations with positive determinant. The action of GL( 1027:
The connection of this with the determinant point of view is: the determinant of an
41:
The left-handed orientation is shown on the left, and the right-handed on the right.
17: 1609: 1524: 1115: 1028: 805: 62: 265:(in turn, the orientation of the standard basis depends on the orientation of the 1162:
transitive: there are two orbits which correspond to the connected components of
919: 289: 270: 208: 99: 81: 1729:
Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry
1166:. These orbits are precisely the equivalence classes referred to above. Since 996: 1630: โ€“ Agreed-upon meaning of a physical quantity being positive or negative 1464: 239:
is an assignment of +1 to one equivalence class and −1 to the other.
1564: 1541: 1495: 1107: 818:
sometimes has the selected orientation indicated by the orientation of a
292:. They will have the same/opposite orientations according to whether the 1816:
New foundations for classical mechanics: Fundamental Theories of Physics
808:(a connected subset of a line), the two possible orientations result in 1591: โ€“ Property of an object that is not congruent to its mirror image 90:
is a broader notion that, in two dimensions, allows one to say when a
1624: โ€“ Mnemonic for understanding orientation of vectors in 3D space 1456:, i.e., its 2 points, and a choice of one of them is an orientation. 1424: 1357: 1103: 27:
Choice of reference for distinguishing an object and its mirror image
1062:
can be interpreted as the induced action on the top exterior power.
1789:
William Anthony Granville (1904). "ยง178 Normal line to a surface".
1612: โ€“ Physical quantity that changes sign with improper rotation 1523: 1463: 36: 804:
just as there are two orientations to a circle. In the case of a
296:
of this permutation is ยฑ1. This is because the determinant of a
999:, then the orientation form giving the standard orientation is 1498:
in three dimensions has an attitude given by the family of
1606: โ€“ Generalization of an orientation of a vector space 69:, while one not having an orientation selected, is called 300:
is equal to the signature of the associated permutation.
215:. The property of having the same orientation defines an 1599:
Pages displaying short descriptions of redirect targets
1490:: attitude, orientation, and magnitude. For example, a 868: 484: 358: 1433: 1366: 1330: 1310: 1191: 1036: 866: 723: 688: 668: 615: 589: 569: 463: 337: 1416:{\displaystyle V_{n}(V)/\operatorname {GL} ^{+}(V)} 118:and left-handed (or right-chiral and left-chiral). 1792:Elements of the differential and integral calculus 1448: 1415: 1348: 1316: 1288: 1054: 893: 744: 709: 674: 651: 601: 575: 547: 445: 1726:Leo Dorst; Daniel Fontijne; Stephen Mann (2009). 319:if its determinant is positive. For instance, in 114:, the two possible basis orientations are called 1585: โ€“ Most common coordinate system (geometry) 652:{\displaystyle \{\{\emptyset \}\}\to \{\pm 1\}.} 307:be a nonsingular linear mapping of vector space 786:should be oriented positively, while the point 457:Cartesian plane is not orientation-preserving: 1502:associated with it (possibly specified by the 957:-form we can evaluate it on an ordered set of 269:on which it is built). Any choice of a linear 1732:(2nd ed.). Morgan Kaufmann. p. 32. 884: 871: 662:Because there is only a single ordered basis 106:impossible to replicate by means of a simple 8: 1711:: CS1 maint: multiple names: authors list ( 1672:: CS1 maint: multiple names: authors list ( 1443: 1434: 1283: 1274: 730: 724: 695: 689: 643: 634: 628: 625: 619: 616: 596: 590: 859:. This is a real vector space of dimension 764:. A closed interval is a one-dimensional 65:with an orientation selected is called an 1758:"Tables 28.1 & 28.2 in section 28.3: 1432: 1395: 1386: 1371: 1365: 1329: 1309: 1253: 1244: 1196: 1190: 1035: 883: 870: 867: 865: 722: 687: 667: 614: 588: 568: 479: 470: 465: 462: 353: 344: 339: 336: 53:is the arbitrary choice of which ordered 745:{\displaystyle \{\emptyset \}\mapsto -1} 710:{\displaystyle \{\emptyset \}\mapsto +1} 1640: 1616:Rotation formalisms in three dimensions 910:) therefore has dimension 1. That is, ฮ› 1819:(2nd ed.). Springer. p. 21. 1704: 1665: 1618: โ€“ Ways to represent 3D rotations 1349:{\displaystyle \operatorname {GL} (V)} 949:evaluates to a positive number (since 1486:are charged with three attributes or 227:is non-zero, there are precisely two 7: 1074:be the set of all ordered bases for 281:will then provide an orientation on 219:on the set of all ordered bases for 937:is in the positive direction when 875: 727: 692: 669: 622: 593: 570: 47:orientation of a real vector space 25: 914:is just a real line. There is no 203:(or be consistently oriented) if 1764:. In William Eric Baylis (ed.). 1597: โ€“ Property in group theory 894:{\displaystyle {\tbinom {n}{k}}} 466: 340: 231:determined by this relation. An 839:-dimensional real vector space 792:should be oriented negatively. 758:fundamental theorem of calculus 1795:. Ginn & Company. p.  1604:Orientation of a vector bundle 1410: 1404: 1383: 1377: 1343: 1337: 1268: 1262: 1241: 1235: 1226: 1220: 1217: 1211: 1202: 1046: 961:vectors, giving an element of 768:, and its boundary is the set 733: 698: 631: 602:{\displaystyle \{\emptyset \}} 1: 929:determines an orientation of 152:. It is a standard result in 51:orientation of a vector space 1540:-dimensional differentiable 982:} is a privileged basis for 1850:Encyclopedia of Mathematics 1583:Cartesian coordinate system 1090:freely and transitively on 331:is orientation-preserving: 327:Cartesian axis by an angle 267:Cartesian coordinate system 156:that there exists a unique 1898: 1650:"Vector Space Orientation" 1517: 1122:). Note that the group GL( 675:{\displaystyle \emptyset } 576:{\displaystyle \emptyset } 453:while a reflection by the 134:real vector space and let 29: 1768:. Springer. p. 397. 1595:Even and odd permutations 1449:{\displaystyle \{\pm 1\}} 148:be two ordered bases for 1689:"Orientation-Preserving" 1514:Orientation on manifolds 1106:). This means that as a 1055:{\displaystyle T:V\to V} 30:Not to be confused with 1589:Chirality (mathematics) 1482:The various objects of 1882:Orientation (geometry) 1529: 1479: 1450: 1417: 1350: 1318: 1290: 1094:. (In fancy language, 1056: 895: 811:directed line segments 766:manifold with boundary 746: 711: 676: 653: 603: 577: 549: 447: 323:a rotation around the 317:orientation-preserving 211:; otherwise they have 42: 32:Orientation (geometry) 1760:Forms and pseudoforms 1693:mathworld.wolfram.com 1687:W., Weisstein, Eric. 1654:mathworld.wolfram.com 1648:W., Weisstein, Eric. 1527: 1467: 1451: 1418: 1351: 1319: 1291: 1130:, but rather has two 1057: 896: 747: 712: 677: 654: 604: 578: 558:Zero-dimensional case 550: 448: 213:opposite orientations 199:are said to have the 158:linear transformation 67:oriented vector space 40: 1756:B Jancewicz (1996). 1431: 1364: 1328: 1308: 1189: 1132:connected components 1114:is (noncanonically) 1080:general linear group 1034: 902:. The vector space ฮ› 864: 826:Alternate viewpoints 721: 686: 666: 613: 587: 567: 461: 335: 259:standard orientation 217:equivalence relation 18:Standard orientation 831:Multilinear algebra 229:equivalence classes 1530: 1480: 1446: 1413: 1346: 1314: 1286: 1140:identity component 1052: 933:by declaring that 908:top exterior power 891: 889: 816:orientable surface 760:as an instance of 742: 707: 672: 649: 599: 573: 545: 539: 443: 437: 315:. This mapping is 298:permutation matrix 132:finite-dimensional 43: 1877:Analytic geometry 1739:978-0-12-374942-0 1484:geometric algebra 1460:Geometric algebra 1317:{\displaystyle V} 882: 249:For example, the 16:(Redirected from 1889: 1858: 1831: 1830: 1807: 1801: 1800: 1786: 1780: 1779: 1753: 1747: 1746: 1723: 1717: 1716: 1710: 1702: 1700: 1699: 1684: 1678: 1677: 1671: 1663: 1661: 1660: 1645: 1600: 1477: 1455: 1453: 1452: 1447: 1422: 1420: 1419: 1414: 1400: 1399: 1390: 1376: 1375: 1355: 1353: 1352: 1347: 1323: 1321: 1320: 1315: 1298:Stiefel manifold 1295: 1293: 1292: 1287: 1258: 1257: 1248: 1201: 1200: 1146:) is denoted GL( 1066:Lie group theory 1061: 1059: 1058: 1053: 1023: 971:orientation form 900: 898: 897: 892: 890: 888: 887: 874: 843:we can form the 791: 785: 779: 751: 749: 748: 743: 716: 714: 713: 708: 681: 679: 678: 673: 658: 656: 655: 650: 608: 606: 605: 600: 582: 580: 579: 574: 554: 552: 551: 546: 544: 543: 475: 474: 469: 452: 450: 449: 444: 442: 441: 349: 348: 343: 201:same orientation 75: 74: 21: 1897: 1896: 1892: 1891: 1890: 1888: 1887: 1886: 1862: 1861: 1843: 1840: 1835: 1834: 1827: 1809: 1808: 1804: 1788: 1787: 1783: 1776: 1755: 1754: 1750: 1740: 1725: 1724: 1720: 1703: 1697: 1695: 1686: 1685: 1681: 1664: 1658: 1656: 1647: 1646: 1642: 1637: 1628:Sign convention 1622:Right-hand rule 1598: 1579: 1555: 1522: 1516: 1469: 1462: 1429: 1428: 1391: 1367: 1362: 1361: 1326: 1325: 1306: 1305: 1249: 1192: 1187: 1186: 1185:More formally: 1137: 1068: 1032: 1031: 1022: 1013: 1006: 1000: 994: 981: 869: 862: 861: 833: 828: 798: 787: 781: 769: 762:Stokes' theorem 719: 718: 684: 683: 664: 663: 611: 610: 585: 584: 565: 564: 560: 538: 537: 529: 524: 518: 517: 512: 507: 501: 500: 495: 490: 480: 464: 459: 458: 436: 435: 430: 425: 419: 418: 413: 402: 390: 389: 384: 370: 354: 338: 333: 332: 303:Similarly, let 198: 191: 184: 177: 147: 140: 124: 112:Euclidean space 72: 71: 59:Euclidean space 35: 28: 23: 22: 15: 12: 11: 5: 1895: 1893: 1885: 1884: 1879: 1874: 1872:Linear algebra 1864: 1863: 1860: 1859: 1839: 1838:External links 1836: 1833: 1832: 1825: 1811:David Hestenes 1802: 1781: 1774: 1748: 1738: 1718: 1679: 1639: 1638: 1636: 1633: 1632: 1631: 1625: 1619: 1613: 1607: 1601: 1592: 1586: 1578: 1575: 1551: 1518:Main article: 1515: 1512: 1461: 1458: 1445: 1442: 1439: 1436: 1412: 1409: 1406: 1403: 1398: 1394: 1389: 1385: 1382: 1379: 1374: 1370: 1345: 1342: 1339: 1336: 1333: 1313: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1261: 1256: 1252: 1247: 1243: 1240: 1237: 1234: 1231: 1228: 1225: 1222: 1219: 1216: 1213: 1210: 1207: 1204: 1199: 1195: 1135: 1067: 1064: 1051: 1048: 1045: 1042: 1039: 1018: 1011: 1004: 990: 977: 886: 881: 878: 873: 849:exterior power 832: 829: 827: 824: 820:surface normal 797: 794: 741: 738: 735: 732: 729: 726: 706: 703: 700: 697: 694: 691: 671: 648: 645: 642: 639: 636: 633: 630: 627: 624: 621: 618: 598: 595: 592: 572: 559: 556: 542: 536: 533: 530: 528: 525: 523: 520: 519: 516: 513: 511: 508: 506: 503: 502: 499: 496: 494: 491: 489: 486: 485: 483: 478: 473: 468: 440: 434: 431: 429: 426: 424: 421: 420: 417: 414: 412: 409: 406: 403: 401: 398: 395: 392: 391: 388: 385: 383: 380: 377: 374: 371: 369: 366: 363: 360: 359: 357: 352: 347: 342: 251:standard basis 196: 189: 182: 175: 154:linear algebra 145: 138: 123: 120: 96:linear algebra 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1894: 1883: 1880: 1878: 1875: 1873: 1870: 1869: 1867: 1856: 1852: 1851: 1846: 1845:"Orientation" 1842: 1841: 1837: 1828: 1826:0-7923-5302-1 1822: 1818: 1817: 1812: 1806: 1803: 1798: 1794: 1793: 1785: 1782: 1777: 1775:0-8176-3868-7 1771: 1767: 1763: 1761: 1752: 1749: 1745: 1741: 1735: 1731: 1730: 1722: 1719: 1714: 1708: 1694: 1690: 1683: 1680: 1675: 1669: 1655: 1651: 1644: 1641: 1634: 1629: 1626: 1623: 1620: 1617: 1614: 1611: 1608: 1605: 1602: 1596: 1593: 1590: 1587: 1584: 1581: 1580: 1576: 1574: 1572: 1571: 1566: 1562: 1558: 1554: 1550: 1547: 1546:tangent space 1543: 1539: 1535: 1526: 1521: 1520:Orientability 1513: 1511: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1476: 1472: 1466: 1459: 1457: 1440: 1437: 1426: 1407: 1401: 1396: 1392: 1387: 1380: 1372: 1368: 1359: 1340: 1334: 1331: 1311: 1303: 1299: 1280: 1277: 1271: 1265: 1259: 1254: 1250: 1245: 1238: 1232: 1229: 1223: 1214: 1208: 1205: 1197: 1193: 1183: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1065: 1063: 1049: 1043: 1040: 1037: 1030: 1025: 1021: 1017: 1010: 1003: 998: 993: 989: 985: 980: 976: 972: 969:is called an 968: 964: 960: 956: 952: 948: 944: 940: 936: 932: 928: 924: 921: 917: 913: 909: 905: 901: 879: 876: 858: 854: 850: 846: 842: 838: 830: 825: 823: 821: 817: 813: 812: 807: 803: 795: 793: 790: 784: 777: 773: 767: 763: 759: 754: 739: 736: 704: 701: 660: 646: 640: 637: 557: 555: 540: 534: 531: 526: 521: 514: 509: 504: 497: 492: 487: 481: 476: 471: 456: 438: 432: 427: 422: 415: 410: 407: 404: 399: 396: 393: 386: 381: 378: 375: 372: 367: 364: 361: 355: 350: 345: 330: 326: 322: 318: 314: 310: 306: 301: 299: 295: 291: 286: 284: 280: 276: 272: 268: 264: 260: 256: 252: 247: 245: 240: 238: 234: 230: 226: 222: 218: 214: 210: 207:has positive 206: 202: 195: 188: 181: 174: 170: 166: 162: 159: 155: 151: 144: 137: 133: 129: 121: 119: 117: 113: 109: 105: 101: 97: 93: 89: 88: 87:orientability 83: 78: 76: 68: 64: 60: 56: 52: 48: 39: 33: 19: 1848: 1815: 1805: 1791: 1784: 1765: 1759: 1751: 1743: 1728: 1721: 1696:. Retrieved 1692: 1682: 1657:. Retrieved 1653: 1643: 1610:Pseudovector 1568: 1560: 1559:which is an 1556: 1552: 1548: 1537: 1533: 1531: 1507: 1487: 1481: 1474: 1470: 1301: 1184: 1179: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1123: 1119: 1116:homeomorphic 1111: 1099: 1095: 1091: 1083: 1075: 1071: 1069: 1029:endomorphism 1026: 1019: 1015: 1008: 1001: 991: 987: 983: 978: 974: 970: 966: 965:). The form 962: 958: 954: 950: 946: 942: 938: 934: 930: 926: 922: 915: 911: 907: 906:(called the 903: 856: 852: 844: 840: 836: 834: 809: 806:line segment 799: 788: 782: 775: 771: 755: 661: 561: 454: 328: 324: 320: 316: 312: 308: 304: 302: 287: 282: 278: 274: 262: 258: 254: 248: 243: 241: 236: 232: 224: 220: 212: 204: 200: 193: 186: 185:. The bases 179: 172: 168: 164: 160: 149: 142: 135: 127: 125: 116:right-handed 108:displacement 100:real numbers 85: 79: 70: 66: 63:vector space 50: 46: 44: 1565:topological 1532:Each point 1508:circulation 1504:normal line 1304:-frames in 1078:. Then the 920:linear form 855:, denoted ฮ› 290:permutation 271:isomorphism 257:provides a 233:orientation 209:determinant 171:that takes 82:mathematics 1866:Categories 1698:2017-12-08 1659:2017-12-08 1635:References 1570:orientable 1296:, and the 997:dual basis 122:Definition 104:reflection 73:unoriented 49:or simply 1855:EMS Press 1438:± 1402:⁡ 1335:⁡ 1278:± 1260:⁡ 1233:⁡ 1209:⁡ 1194:π 1128:connected 1126:) is not 1047:→ 995:} is the 796:On a line 737:− 734:↦ 728:∅ 699:↦ 693:∅ 670:∅ 638:± 632:→ 623:∅ 594:∅ 571:∅ 532:− 411:α 408:⁡ 400:α 397:⁡ 382:α 379:⁡ 373:− 368:α 365:⁡ 294:signature 98:over the 1813:(1999). 1707:cite web 1668:cite web 1577:See also 1542:manifold 1496:bivector 1488:features 1108:manifold 1098:is a GL( 916:a priori 835:For any 273:between 163: : 1857:, 2001 1178:and GL( 1823:  1772:  1736:  1544:has a 1536:on an 1500:planes 1492:vector 1425:torsor 1358:torsor 1142:of GL( 1118:to GL( 1104:torsor 1014:โˆง โ€ฆ โˆง 973:. If { 953:is an 1427:over 1423:is a 1360:, so 1324:is a 1154:) on 986:and { 814:. An 223:. If 130:be a 92:cycle 55:bases 1821:ISBN 1770:ISBN 1734:ISBN 1713:link 1674:link 1088:acts 1070:Let 925:on ฮ› 802:line 277:and 192:and 141:and 126:Let 45:The 1797:275 1300:of 1160:not 1158:is 1082:GL( 851:of 847:th- 717:or 405:cos 394:sin 376:sin 362:cos 311:to 261:on 253:on 235:on 178:to 80:In 1868:: 1853:, 1847:, 1742:. 1709:}} 1705:{{ 1691:. 1670:}} 1666:{{ 1652:. 1573:. 1473:โˆง 1393:GL 1332:GL 1251:GL 1230:GL 1206:GL 1110:, 1102:)- 1086:) 1024:. 1007:โˆง 822:. 774:, 455:XY 285:. 167:โ†’ 84:, 77:. 1829:. 1799:. 1778:. 1762:" 1715:) 1701:. 1676:) 1662:. 1561:n 1557:M 1553:p 1549:T 1538:n 1534:p 1478:. 1475:b 1471:a 1444:} 1441:1 1435:{ 1411:) 1408:V 1405:( 1397:+ 1388:/ 1384:) 1381:V 1378:( 1373:n 1369:V 1356:- 1344:) 1341:V 1338:( 1312:V 1302:n 1284:} 1281:1 1275:{ 1272:= 1269:) 1266:V 1263:( 1255:+ 1246:/ 1242:) 1239:V 1236:( 1227:( 1224:= 1221:) 1218:) 1215:V 1212:( 1203:( 1198:0 1180:V 1176:B 1172:V 1168:B 1164:B 1156:B 1152:V 1148:V 1144:V 1136:0 1124:V 1120:V 1112:B 1100:V 1096:B 1092:B 1084:V 1076:V 1072:B 1050:V 1044:V 1041:: 1038:T 1020:n 1016:e 1012:2 1009:e 1005:1 1002:e 992:i 988:e 984:V 979:i 975:e 967:ฯ‰ 963:R 959:n 955:n 951:ฯ‰ 947:ฯ‰ 943:x 941:( 939:ฯ‰ 935:x 931:V 927:V 923:ฯ‰ 912:V 904:V 885:) 880:k 877:n 872:( 857:V 853:V 845:k 841:V 837:n 789:a 783:b 778:} 776:b 772:a 770:{ 740:1 731:} 725:{ 705:1 702:+ 696:} 690:{ 647:. 644:} 641:1 635:{ 629:} 626:} 620:{ 617:{ 597:} 591:{ 541:) 535:1 527:0 522:0 515:0 510:1 505:0 498:0 493:0 488:1 482:( 477:= 472:2 467:A 439:) 433:1 428:0 423:0 416:0 387:0 356:( 351:= 346:1 341:A 329:ฮฑ 325:Z 321:R 313:R 309:R 305:A 283:V 279:R 275:V 263:R 255:R 244:V 237:V 225:V 221:V 205:A 197:2 194:b 190:1 187:b 183:2 180:b 176:1 173:b 169:V 165:V 161:A 150:V 146:2 143:b 139:1 136:b 128:V 34:. 20:)

Index

Standard orientation
Orientation (geometry)

bases
Euclidean space
vector space
mathematics
orientability
cycle
linear algebra
real numbers
reflection
displacement
Euclidean space
right-handed
finite-dimensional
linear algebra
linear transformation
determinant
equivalence relation
equivalence classes
standard basis
Cartesian coordinate system
isomorphism
permutation
signature
permutation matrix
fundamental theorem of calculus
Stokes' theorem
manifold with boundary

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

โ†‘