Knowledge (XXG)

Cosmic distance ladder

Source 📝

430: 701:, that is the determination of exactly what the absolute magnitude of the candle is. This includes defining the class well enough that members can be recognized, and finding enough members of that class with well-known distances to allow their true absolute magnitude to be determined with enough accuracy. The second problem lies in recognizing members of the class, and not mistakenly using a standard candle calibration on an object which does not belong to the class. At extreme distances, which is where one most wishes to use a distance indicator, this recognition problem can be quite serious. 2872: 85: 410: 286: 2694: 2485: 1529:. By measuring these properties from a star's spectrum, the position of a main sequence star on the H–R diagram can be determined, and thereby the star's absolute magnitude estimated. A comparison of this value with the apparent magnitude allows the approximate distance to be determined, after correcting for interstellar extinction of the luminosity because of gas and dust. 162: 278: 43: 3055: 2022: 713:. If indeed the properties of Type Ia supernovae are different at large distances, i.e. if the extrapolation of their calibration to arbitrary distances is not valid, ignoring this variation can dangerously bias the reconstruction of the cosmological parameters, in particular the reconstruction of the matter 2762:(PNLF) was first proposed in the late 1970s by Holland Cole and David Jenner. They suggested that all planetary nebulae might all have similar maximum intrinsic brightness, now calculated to be M = −4.53. This would therefore make them potential standard candles for determining extragalactic distances. 145:) to Earth. The techniques for determining distances to more distant objects are all based on various measured correlations between methods that work at close distances and methods that work at larger distances. Several methods rely on a standard candle, which is an astronomical object that has a known 3002:
usually have long ceased to have large-scale star formation, they will not have Cepheids. Instead, distance indicators whose origins are in an older stellar population (like novae and RR Lyrae variables) must be used. RR Lyrae variables are less luminous than Cepheids, and novae are unpredictable and
2012:
As detected thus far, NGC 3370, a spiral galaxy in the constellation Leo, contains the farthest Cepheids yet found at a distance of 29 Mpc. Cepheid variable stars are in no way perfect distance markers: at nearby galaxies they have an error of about 7% and up to a 15% error for the most distant.
1347:
With few exceptions, distances based on direct measurements are available only out to about a thousand parsecs, which is a modest portion of our own Galaxy. For distances beyond that, measures depend upon physical assumptions, that is, the assertion that one recognizes the object in question, and the
449:
per year, while for halo stars the baseline is 40 AU per year. After several decades, the baseline can be orders of magnitude greater than the Earth–Sun baseline used for traditional parallax. However, secular parallax introduces a higher level of uncertainty because the relative velocity of observed
3038:
observed that fainter galaxies are more redshifted. Finding the value of the Hubble constant was the result of decades of work by many astronomers, both in amassing the measurements of galaxy redshifts and in calibrating the steps of the distance ladder. Hubble's Law is the primary means we have for
2556:
US astronomer William Alvin Baum first attempted to use globular clusters to measure distant elliptical galaxies. He compared the brightest globular clusters in Virgo A galaxy with those in Andromeda, assuming the luminosities of the clusters were the same in both. Knowing the distance to Andromeda,
2344:
Using Type Ia supernovae is one of the most accurate methods, particularly since supernova explosions can be visible at great distances (their luminosities rival that of the galaxy in which they are situated), much farther than Cepheid Variables (500 times farther). Much time has been devoted to the
708:
that are of known distance have the same brightness, corrected by the shape of the light curve. The basis for this closeness in brightness is discussed below; however, the possibility exists that the distant Type Ia supernovae have different properties than nearby Type Ia supernovae. The use of Type
3101:
If the signal were to depend on the individual masses separately, there would not be enough observable information in the signal at the lowest order to infer its intrinsic loudness. This degeneracy between the masses therefore is crucial for the loudness measurement, but it is no accident: It has a
2255:
Once reached, the star becomes unstable and undergoes a runaway nuclear fusion reaction. Because all Type Ia supernovae explode at about the same mass, their absolute magnitudes are all the same. This makes them very useful as standard candles. All Type Ia supernovae have a standard blue and visual
2001:
These unresolved matters have resulted in cited values for the Hubble constant ranging between 60 km/s/Mpc and 80 km/s/Mpc. Resolving this discrepancy is one of the foremost problems in astronomy since some cosmological parameters of the Universe may be constrained significantly better by
1322:
The total distance that these sound waves can travel before recombination determines a fixed scale, which simply expands with the universe after recombination. BAO therefore provide a standard ruler that can be measured in galaxy surveys from the effect of baryons on the clustering of galaxies. The
289:
Parallax is an angle subtended by a line on a point. In the upper diagram, the Earth in its orbit sweeps the parallax angle subtended on the Sun. The lower diagram shows an equal angle swept by the Sun in a geostatic model. A similar diagram can be drawn for a star except that the angle of parallax
232:
is used to measure the distance between the orbits of the Earth and of a second body. From that measurement and the ratio of the two orbit sizes, the size of Earth's orbit is calculated. The Earth's orbit is known with an absolute precision of a few meters and a relative precision of a few parts in
4447:
We conclude that most of the knots are in fact likely to lie in front of the plane of the sky, thus invalidating the Kervella et al. result. Although the Kervella et al. distance result is invalidated, we show that high-resolution polarimetric imaging has the potential to yield a valid geometric
2981:
This method has the potential to become one of the strongest methods of galactic distance calculators, perhaps exceeding the range of even the Tully–Fisher method. As of today, however, elliptical galaxies are not bright enough to provide a calibration for this method through the use of techniques
152:
The ladder analogy arises because no single technique can measure distances at all ranges encountered in astronomy. Instead, one method can be used to measure nearby distances, a second can be used to measure nearby to intermediate distances, and so on. Each rung of the ladder provides information
3026:
of stars and galaxies, and is thus also subject to uncertainties in those aspects. For the most luminous of distance indicators, the Type Ia supernovae, this homogeneity is known to be poor. However, no other class of object is bright enough to be detected at such large distances, so the class is
1997:
Several problems complicate the use of Cepheids as standard candles and are actively debated, chief among them are: the nature and linearity of the period-luminosity relation in various passbands and the impact of metallicity on both the zero-point and slope of those relations, and the effects of
1226:
greater than 1. It is difficult for detector networks to measure the polarization of a signal accurately if the binary system is observed nearly face-on. Such signals suffer significantly larger errors in the distance measurement. Unfortunately, binaries radiate most strongly perpendicular to the
1190:
Just as with standard candles, given the emitted and received amplitudes, the inverse-square law determines the distance to the source. There are some differences with standard candles, however. Gravitational waves are not emitted isotropically, but measuring the polarisation of the wave provides
2891:
cameras on telescopes. Because of spatial fluctuations in a galaxy's surface brightness, some pixels on these cameras will pick up more stars than others. As distance increases, the picture will become increasingly smoother. Analysis of this describes a magnitude of the pixel-to-pixel variation,
2990:
A succession of distance indicators, which is the distance ladder, is needed for determining distances to other galaxies. The reason is that objects bright enough to be recognized and measured at such distances are so rare that few or none are present nearby, so there are too few examples close
2916:
level of 20.75 B-mag arcsec. This surface brightness is independent of the galaxy's actual distance from us. Instead, D is inversely proportional to the galaxy's distance, represented as d. Thus, this relation does not employ standard candles. Rather, D provides a standard ruler. This relation
2329:), the shape of the light curve (taken at any reasonable time after the initial explosion) is compared to a family of parameterized curves that will determine the absolute magnitude at the maximum brightness. This method also takes into effect interstellar extinction/dimming from dust and gas. 2205:
This method works only if the supernova is close enough to be able to measure accurately the photosphere. Similarly, the expanding shell of gas is in fact not perfectly spherical nor a perfect blackbody. Also interstellar extinction can hinder the accurate measurements of the photosphere. This
1194:
Generally, if a wave is detected by a network of three detectors at different locations, the network will measure enough information to make these corrections and obtain the distance. Also unlike standard candles, gravitational waves need no calibration against other distance measures. The
749:
have been proposed as another type of standard candle. "Since kilonovae explosions are spherical, astronomers could compare the apparent size of a supernova explosion with its actual size as seen by the gas motion, and thus measure the rate of cosmic expansion at different distances."
511:
which can measure very small angular motions. These combine to provide fundamental distance estimates to supernovae in other galaxies. Though valuable, such cases are quite rare, so they serve as important consistency checks on the distance ladder rather than workhorse steps by
1319:) the baryons and photons scatter off each other, and form a tightly coupled fluid that can support sound waves. The waves are sourced by primordial density perturbations, and travel at speed that can be predicted from the baryon density and other cosmological parameters. 1675:
The extragalactic distance scale is a series of techniques used today by astronomers to determine the distance of cosmological bodies beyond our own galaxy, which are not easily obtained with traditional methods. Some procedures use properties of these objects, such as
2995:, cannot yet be satisfactorily calibrated by parallax alone, though the Gaia space mission can now weigh in on that specific problem. The situation is further complicated by the fact that different stellar populations generally do not have all types of stars in them. 1372:— In the last decade, measurement of eclipsing binaries' fundamental parameters has become possible with 8-meter class telescopes. This makes it feasible to use them as indicators of distance. Recently, they have been used to give direct distance estimates to the 2336:
fits the particular supernovae magnitude light curves to a template light curve. This template, as opposed to being several light curves at different wavelengths (MLCS) is just a single light curve that has been stretched (or compressed) in time. By using this
4604:
Ferrarese, L; et al. (2000). "A Database of Cepheid Distance Moduli and Tip of the Red Giant Branch, Globular Cluster Luminosity Function, Planetary Nebula Luminosity Function, and Surface Brightness Fluctuation Data Useful for Distance Determinations".
932: 4289: 4822:; Wyrzykowski, L.; Pietrzynski, G.; Szewczyk, O.; Szymanski, M.; Kubiak, M.; Soszynski, I.; Zebrun, K. (2001). "The Optical Gravitational Lensing Experiment. Cepheids in the Galaxy IC1613: No Dependence of the Period-Luminosity Relation on Metallicity". 3017:
Another concern, especially for the very brightest standard candles, is their "standardness": how homogeneous the objects are in their true absolute magnitude. For some of these different standard candles, the homogeneity is based on theories about the
495:
binaries also can have their distance estimated by similar means, and do not suffer from the above geometric uncertainty. The common characteristic to these methods is that a measurement of angular motion is combined with a measurement of the absolute
320:(the distance between the extreme positions of Earth's orbit around the Sun) making the base leg of the triangle and the distance to the star being the long equal-length legs. The amount of shift is quite small, even for the nearest stars, measuring 1 741:
stars. As a result, the population II stars were actually much brighter than believed, and when corrected, this had the effect of doubling the estimates of distances to the globular clusters, the nearby galaxies, and the diameter of the Milky Way.
2470:
After novae fade, they are about as bright as the most luminous Cepheid variable stars, therefore both these techniques have about the same max distance: ~ 20 Mpc. The error in this method produces an uncertainty in magnitude of about Â±0.4
2320:
Therefore, when observing a Type Ia supernova, if it is possible to determine what its peak magnitude was, then its distance can be calculated. It is not intrinsically necessary to capture the supernova directly at its peak magnitude; using the
506:
Expansion parallaxes in particular can give fundamental distance estimates for objects that are very far, because supernova ejecta have large expansion velocities and large sizes (compared to stars). Further, they can be observed with radio
5379:
Tonry, John L.; Dressler, Alan; Blakeslee, John P.; Ajhar, Edward A.; Fletcher, Andre B.; Luppino, Gerard A.; Metzger, Mark R.; Moore, Christopher B. (2001), "The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances",
1191:
enough information to determine the angle of emission. Gravitational wave detectors also have anisotropic antenna patterns, so the position of the source on the sky relative to the detectors is needed to determine the angle of reception.
2356:
can be used in much the same way as supernovae to derive extragalactic distances. There is a direct relation between a nova's max magnitude and the time for its visible light to decline by two magnitudes. This relation is shown to be:
2879:
The following method deals with the overall inherent properties of galaxies. These methods, though with varying error percentages, have the ability to make distance estimates beyond 100 Mpc, though it is usually applied more locally.
4772:
Majaess, Daniel; Turner, David; Moni Bidin, Christian; Mauro, Francesco; Geisler, Douglas; Gieren, Wolfgang; Minniti, Dante; Chené, André-Nicolas; Lucas, Philip; Borissova, Jura; Kurtev, Radostn; Dékåny, Istvan; Saito, Roberto K.
1327:). The scale does depend on cosmological parameters like the baryon and matter densities, and the number of neutrinos, so distances based on BAO are more dependent on cosmological model than those based on local measurements. 1177: 4965:
Bono, G.; Caputo, F.; Fiorentino, G.; Marconi, M.; Musella, I. (2008). "Cepheids in External Galaxies. I. The Maser–Host Galaxy NGC 4258 and the Metallicity Dependence of Period–Luminosity and Period–Wesenheit Relations".
4460:
Kervella, Pierre; Bond, Howard E.; Cracraft, Misty; Szabados, Låszló; Breitfelder, Joanne; Mérand2, Antoine; Sparks, William B.; Gallenne, Alexandre; Bersier, David; Fouqué, Pascal; Anderson, Richard I. (December 2014).
2217:
are some of the best ways to determine extragalactic distances. Ia's occur when a binary white dwarf star begins to accrete matter from its companion star. As the white dwarf gains matter, eventually it reaches its
1993: 1881: 1195:
measurement of distance does of course require the calibration of the gravitational wave detectors, but then the distance is fundamentally given as a multiple of the wavelength of the laser light being used in the
193:
distance measurements, in which distances are determined directly, with no physical assumptions about the nature of the object in question. The precise measurement of stellar positions is part of the discipline of
685:, which also makes objects appear fainter and more red, is needed, especially if the object lies within a dusty or gaseous region. The difference between an object's absolute and apparent magnitudes is called its 4247: 2436: 1388:. Eclipsing binaries offer a direct method to gauge the distance to galaxies to a new improved 5% level of accuracy which is feasible with current technology to a distance of around 3 Mpc (3 million parsecs). 2861: 2115: 2657: 1272:, which was used to make the first such measurement. Even if no electromagnetic counterpart can be identified for an ensemble of signals, it is possible to use a statistical method to infer the value of 680:
the absolute magnitude. For this to be accurate, both magnitudes must be in the same frequency band and there can be no relative motion in the radial direction. Some means of correcting for interstellar
2318: 728:
discovered that the nearby Cepheid variables used to calibrate the standard candle were of a different type than the ones used to measure distances to nearby galaxies. The nearby Cepheid variables were
808: 3014:
means that distances in astronomy are rarely known to the same level of precision as measurements in the other sciences, and that the precision necessarily is poorer for more distant types of object.
4798:
Stanek, K. Z.; Udalski, A. (1999). "The Optical Gravitational Lensing Experiment. Investigating the Influence of Blending on the Cepheid Distance Scale with Cepheids in the Large Magellanic Cloud".
1749:. Though in theory this method has the ability to provide reliable distance calculations to stars up to 7 megaparsecs (Mpc), it is generally only used for stars at hundreds of kiloparsecs (kpc). 1525:, evolutionary patterns are found that relate to the mass, age and composition of the star. In particular, during their hydrogen burning period, stars lie along a curve in the diagram called the 3275:
Riess, A. G.; Casertano, S.; Anderson, J.; MacKenty, J.; Filippenko, A. V. (2014). "Parallax Beyond a Kiloparsec from Spatially Scanning the Wide Field Camera 3 on the Hubble Space Telescope".
5693: 2179: 1444:) are used as standard candles. Observations of X-ray burst sometimes show X-ray spectra indicating radius expansion. Therefore, the X-ray flux at the peak of the burst should correspond to 3790:
Cutler, Curt; Flanagan, Éanna E. (15 March 1994). "Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform?".
2976: 3253: 4912:
Macri, L. M.; Stanek, K. Z.; Bersier, D.; Greenhill, L. J.; Reid, M. J. (2006). "A New Cepheid Distance to the Maser–Host Galaxy NGC 4258 and Its Implications for the Hubble Constant".
2009:(Andromeda) was an external galaxy, as opposed to a smaller nebula within the Milky Way. He was able to calculate the distance of M31 to 285 kpc, today's value being 770 kpc. 4704: 611: 386:
of the star's spectrum caused by motion along the line of sight. For a group of stars with the same spectral class and a similar magnitude range, a mean parallax can be derived from
337:
Because parallax becomes smaller for a greater stellar distance, useful distances can be measured only for stars which are near enough to have a parallax larger than a few times the
3592: 1540:, the stars formed at approximately the same age and lie at the same distance. This allows relatively accurate main sequence fitting, providing both age and distance determination. 1218:, then it might be received as multiple events, separated in time, the analogue of multiple images of a quasar, for example. Less easy to discern and control for is the effect of 5874: 1448:, which can be calculated once the mass of the neutron star is known (1.5 solar masses is a commonly used assumption). This method allows distance determination of some low-mass 2564:
assumed the use of the globular cluster luminosity function (GCLF) would lead to a better approximation. The number of globular clusters as a function of magnitude is given by:
198:. Early fundamental distances—such as the radii of the earth, moon and sun, and the distances between them—were well estimated with very low technology by the ancient Greeks. 4108:
Nissanke, Samaya; Holz, Daniel E.; Hughes, Scott A.; Dalal, Neal; Sievers, Jonathan L. (2010-12-10). "Exploring Short Gamma-Ray Bursts as Gravitational-Wave Standard Sirens".
1745:
There are major limitations to this method for finding stellar distances. The calibration of the spectral line strengths has limited accuracy and it requires a correction for
670: 1238:
explosion that may allow the position to be accurately identified by electromagnetic telescopes. In such cases, the redshift of the host galaxy allows a determination of the
1004: 2250: 1054: 1222:, where the signal's path through space is affected by many small magnification and demagnification events. This will be important for signals originating at cosmological 5115: 4698:
George H. Jacoby; David Branch; Robin Ciardullo; Roger L. Davies; William E. Harris; Michael J. Pierce; Christopher J. Pritchet; John L. Tonry; Douglas L. Welch (1992).
2465: 382:(motion toward or away from the Sun). The former is determined by plotting the changing position of the stars over many years, while the latter comes from measuring the 2998:
Cepheids in particular are massive stars, with short lifetimes, so they will only be found in places where stars have very recently been formed. Consequently, because
1059: 3034:
relationship between distance and the speed with which a galaxy is moving away from us, usually referred to as redshift, is a product of the cosmic distance ladder.
5686: 4525: 1311:. In 2008, galaxy diameters have been proposed as a possible standard ruler for cosmological parameter determination. More recently the physical scale imprinted by 1297: 1266: 976: 952: 803: 256:
measurements of distances to Venus and other nearby planets and asteroids, and by tracking interplanetary spacecraft in their orbits around the Sun through the
4859:
Ngeow, C.; Kanbur, S. M. (2006). "The Hubble Constant from Type Ia Supernovae Calibrated with the Linear and Nonlinear Cepheid Period-Luminosity Relations".
3125: 2912:. It is important to describe exactly what D represents, in order to understand this method. It is, more precisely, the galaxy's angular diameter out to the 312:. As the Earth orbits the Sun, the position of nearby stars will appear to shift slightly against the more distant background. These shifts are angles in an 450:
stars is an additional unknown. When applied to samples of multiple stars, the uncertainty can be reduced; the uncertainty is inversely proportional to the
4607: 1202:
There are other considerations that limit the accuracy of this distance, besides detector calibration. Fortunately, gravitational waves are not subject to
5679: 504:). The distance estimate comes from computing how far the object must be to make its observed absolute velocity appear with the observed angular motion. 2056:
We can assume that a supernova expands in a spherically symmetric manner. If the supernova is close enough such that we can measure the angular extent,
777:
of the pair, and the resultant shrinking of their orbits is directly observable as an increase in the frequency of the emitted gravitational waves. To
2362: 4084: 64: 51: 3776: 471:
Other individual objects can have fundamental distance estimates made for them under special circumstances. If the expansion of a gas cloud, like a
2770: 2073: 5864: 2715: 2569: 2506: 704:
A significant issue with standard candles is the recurring question of how standard they are. For example, all observations seem to indicate that
3003:
an intensive monitoring program—and luck during that program—is needed to gather enough novae in the target galaxy for a good distance estimate.
2261: 2991:
enough with reliable trigonometric parallax to calibrate the indicator. For example, Cepheid variables, one of the best indicators for nearby
1887: 1775: 483:
distance to that cloud can be estimated. Those measurements however suffer from uncertainties in the deviation of the object from sphericity.
5621: 5594: 5560: 3401: 3245: 3703:
Sneppen, Albert; Watson, Darach; Bauswein, Andreas; Just, Oliver; Kotak, Rubina; Nakar, Ehud; Poznanski, Dovi; Sim, Stuart (February 2023).
521:
Almost all astronomical objects used as physical distance indicators belong to a class that has a known brightness. By comparing this known
2759: 1416: 109: 3588: 221: 3647:
Linden, S.; Virey, J.-M.; Tilquin, A. (2009). "Cosmological parameter extraction and biases from type Ia supernova magnitude evolution".
3006:
Because the more distant steps of the cosmic distance ladder depend upon the nearer ones, the more distant steps include the effects of
2545:
Based on the method of comparing the luminosities of globular clusters (located in galactic halos) from distant galaxies to that of the
1323:
method requires an extensive galaxy survey in order to make this scale visible, but has been measured with percent-level precision (see
429: 2134: 169:
shows the use of parallax to measure distance. It is made from parts of the Yale–Columbia Refractor telescope (1924) damaged when the
5481:
Gilfanov, Marat; Bogdån, Ákos (2010). "An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate".
2741: 2532: 460:
is a technique where the motions of individual stars in a nearby star cluster can be used to find the distance to the cluster. Only
4339:
Kervella, Pierre; Mérand, Antoine; Szabados, Låszló; Fouqué, Pascal; Bersier, David; Pompei, Emanuela; Perrin, Guy (2 March 2008).
141:
distance measurement of an astronomical object is possible only for those objects that are "close enough" (within about a thousand
2922: 437:
The motion of the Sun through space provides a longer baseline that will increase the accuracy of parallax measurements, known as
5311: 1522: 4777: 4752: 2863:
Where N(M) is number of planetary nebula, having absolute magnitude M. M* is equal to the nebula with the brightest magnitude.
2345:
refining of this method. The current uncertainty approaches a mere 5%, corresponding to an uncertainty of just 0.1 magnitudes.
2206:
problem is further exacerbated by core-collapse supernova. All of these factors contribute to the distance error of up to 25%.
559: 5879: 2884: 2719: 2510: 1428: 1196: 92: 3451: 328:), and thereafter decreasing in angular amount as the distance increases. Astronomers usually express distances in units of 3421: 4314: 4178: 3031: 2550: 1422: 212:
Direct distance measurements are based upon the astronomical unit (AU), which is defined as the mean distance between the
31: 4463:"The long-period Galactic Cepheid RS Puppis. III. A geometric distance from HST polarimetric imaging of its light echoes" 2560:
Baum used just a single globular cluster, but individual formations are often poor standard candles. Canadian astronomer
1363: 361:
arcseconds, enabling reliable distance measurements up to 5,000 parsecs (16,000 ly) for small numbers of stars. The
5833: 5717: 4750:"Hubble Space Telescope Fine Guidance Sensor Parallaxes of Galactic Cepheid Variable Stars: Period-Luminosity Relations" 3078: 2125:
is angular extent. In order to get an accurate measurement, it is necessary to make two observations separated by time Δ
1324: 1312: 1215: 3625: 1769:
stars. The following relation can be used to calculate the distance to Galactic and extragalactic classical Cepheids:
1410: 616: 4318: 3343: 2704: 2495: 1688:, and galaxies as a whole. Other methods are based more on the statistics and probabilities of things such as entire 1477: 228:
of the orbit sizes of objects orbiting the Sun, but provide no measurement of the overall scale of the orbit system.
3494:
Bartel, N.; et al. (1994). "The shape, expansion rate and distance of supernova 1993J from VLBI measurements".
2871: 433:
Hubble Space Telescope precision stellar distance measurement has been extended 10 times further into the Milky Way.
4467: 4409: 4345: 4252: 3649: 3217: 3011: 1762: 1219: 927:{\displaystyle {\frac {df}{dt}}={\frac {96\pi ^{8/3}(G{\mathcal {M}})^{\frac {5}{3}}f^{\frac {11}{3}}}{5\,c^{5}}},} 4541: 3121: 2723: 2708: 2514: 2499: 1471: 56: 5869: 5552: 4248:"Geometrical tests of cosmological models. I. Probing dark energy using the kinematics of high redshift galaxies" 3330: 3277: 1723: 1452:. Low-mass X-ray binaries are very faint in the optical, making their distances extremely difficult to determine. 1316: 413:
Parallax measurements may be an important clue to understanding three of the universe's most elusive components:
174: 5056:
Madore, Barry F.; Freedman, Wendy L. (2009). "Concerning the Slope of the Cepheid Period–Luminosity Relation".
3178: 321: 2467:
is the time derivative of the nova's mag, describing the average rate of decline over the first 2 magnitudes.
1758: 1715: 1701: 1998:
photometric contamination (blending) and a changing (typically unknown) extinction law on Cepheid distances.
4035: 1746: 457: 308: 170: 1348:
class of objects is homogeneous enough that its members can be used for meaningful estimation of distance.
544:. This quantity is derived from the logarithm of its luminosity as seen from a distance of 10 parsecs. The 4568: 4058: 3148: 1719: 1518: 1512: 1377: 1373: 1333:
can be also used as standard rulers, although it is challenging to correctly measure the source geometry.
1203: 955: 720:
That this is not merely a philosophical issue can be seen from the history of distance measurements using
682: 534: 350: 338: 4662: 4519: 2888: 1537: 465: 270: 5434:"The Dn-sigma relation for bulges of disk galaxies - A new, independent measure of the Hubble constant" 3910:; Berman, David (12 June 1967). "Gravitational-Radiation Detection Range for Binary Stellar Systems". 1489:
and are useful in determining extragalactic distances up to a few hundred Mpc. A notable exception is
5502: 5445: 5399: 5345: 5271: 5218: 5181: 5134: 5075: 5038: 4985: 4931: 4878: 4841: 4713: 4671: 4626: 4560: 4539:
Bonanos, A. Z. (2006). "Eclipsing Binaries: Tools for Calibrating the Extragalactic Distance Scale".
4486: 4428: 4364: 4271: 4210: 4182: 4127: 4050: 3984: 3919: 3871: 3809: 3726: 3668: 3552: 3505: 3362: 3296: 3226: 3187: 1707: 1445: 773:, have the useful property that energy emitted as gravitational radiation comes exclusively from the 391: 387: 295: 4573: 4063: 3473:
Popowski, P.; Gould, A. (1998). "Mathematics of Statistical Parallax and the Local Distance Scale".
1458:
can be used to derive distances to galactic and some extragalactic objects that have maser emission.
985: 137:) is the succession of methods by which astronomers determine the distances to celestial objects. A 84: 5859: 5838: 5730: 2909: 2225: 2219: 1455: 1013: 714: 354: 2765:
Astronomer George Howard Jacoby and his colleagues later proposed that the PNLF function equaled:
1183:(rate of energy emission) of the gravitational waves. Thus, such a gravitational wave source is a 689:, and astronomical distances, especially intergalactic ones, are sometimes tabulated in this way. 5526: 5492: 5415: 5389: 5361: 5335: 5287: 5261: 5234: 5208: 5171: 5124: 5091: 5065: 5028: 5001: 4975: 4947: 4921: 4894: 4868: 4831: 4799: 4731: 4642: 4616: 4586: 4550: 4476: 4418: 4354: 4261: 4200: 4159: 4117: 4076: 4016: 3974: 3833: 3799: 3758: 3716: 3684: 3658: 3521: 3474: 3352: 3312: 3286: 2913: 2214: 1735: 1731: 1355: 1211: 758: 738: 730: 710: 545: 541: 526: 367:
space mission provided similarly accurate distances to most stars brighter than 15th magnitude.
313: 113: 5019:
Majaess, D.; Turner, D.; Lane, D. (2009). "Type II Cepheids as Extragalactic Distance Candles".
3962: 2441: 1485:
that have a very well-determined maximum absolute magnitude as a function of the shape of their
285: 5775: 5617: 5590: 5580: 5556: 5518: 5463: 4228: 4151: 4008: 3958: 3935: 3907: 3889: 3855: 3825: 3750: 3742: 3570: 3397: 3174:"Astronomical constants and planetary ephemerides deduced from radar and optical observations" 3068: 3023: 2999: 2905: 1482: 1393: 1385: 705: 472: 446: 403: 394:
method is useful for measuring the distances of bright stars beyond 50 parsecs and giant
363: 317: 207: 1227:
orbital plane, so face-on signals are intrinsically stronger and the most commonly observed.
464:
are near enough for this technique to be useful. In particular the distance obtained for the
5510: 5483: 5453: 5407: 5353: 5306: 5279: 5275: 5226: 5222: 5142: 5083: 4993: 4939: 4886: 4721: 4679: 4634: 4578: 4494: 4490: 4436: 4432: 4372: 4368: 4279: 4275: 4218: 4191: 4143: 4135: 4068: 4054: 4000: 3992: 3927: 3879: 3817: 3734: 3676: 3672: 3621: 3560: 3513: 3496: 3372: 3367: 3304: 3230: 3195: 3073: 2901: 2755: 2006: 1766: 1739: 1727: 1681: 1461: 1407:
The following four indicators all use stars in the old stellar populations (Population II):
1401: 1381: 1342: 721: 686: 476: 438: 399: 245: 2680:. There is no universal globular cluster luminosity function that applies to all galaxies. 1275: 1244: 248:
were crucial in determining the AU; in the first half of the 20th century, observations of
4819: 4781: 4756: 4341:"The long-period Galactic Cepheid RS Puppis I. A geometric distance from its light echoes" 4004: 1180: 782: 379: 371: 345:
mission obtained parallaxes for over a hundred thousand stars with a precision of about a
252:
were also important. Presently the orbit of Earth is determined with high precision using
5199:
Tammann, G. A.; Sandage, A.; Reindl, B. (2008). "The expansion field: The value of H 0".
1500: 1239: 1230:
If the binary consists of a pair of neutron stars, their merger will be accompanied by a
552:
is used), can be measured and used with the absolute magnitude to calculate the distance
525:
to an object's observed brightness, the distance to the object can be computed using the
5506: 5449: 5403: 5357: 5349: 5283: 5185: 5138: 5079: 5042: 4989: 4935: 4882: 4845: 4717: 4675: 4630: 4564: 4214: 4131: 3988: 3923: 3875: 3813: 3730: 3556: 3509: 3300: 3191: 3102:
fundamental origin in the scale-free nature of gravity in Einstein's general relativity.
2673:
is the magnitude of the Virgo cluster, and sigma is the dispersion ~ 1.4 mag.
281:
Stellar parallax motion from annual parallax. Half the apex angle is the parallax angle.
5702: 5087: 4775:"New Evidence Supporting Membership for TW Nor in LyngÄ 6 and the Centaurus Spiral Arm" 3083: 3019: 2676:
It is assumed that globular clusters all have roughly the same luminosities within the
2561: 1689: 1308: 979: 961: 937: 788: 774: 508: 501: 409: 374:, about 30,000 light years away. Stars have a velocity relative to the Sun that causes 27:
Succession of methods by which astronomers determine the distances to celestial objects
5162:
Majaess, D. (2010). "The Cepheids of Centaurus A (NGC 5128) and Implications for H0".
4139: 3308: 2005:
Cepheid variable stars were the key instrument in Edwin Hubble's 1923 conclusion that
5853: 5639: 5576: 5365: 5291: 5147: 5110: 4646: 4072: 3762: 3704: 2992: 2546: 1561: 1526: 1437: 1359: 1351:
Physical distance indicators, used on progressively larger distance scales, include:
778: 762: 395: 383: 375: 346: 99: 5671: 5419: 5238: 5095: 4951: 4898: 4774: 4749: 4590: 4405:"On geometric distance determination to the Cepheid RS Puppis from its light echoes" 4163: 3688: 3316: 5756: 5750: 5608:
The Globular Cluster Luminosity Function as a Distance Indicator: Dynamical Effects
5530: 5005: 4080: 4020: 3837: 3525: 3060: 3035: 1533: 1449: 1441: 766: 725: 461: 257: 4499: 4462: 4441: 4404: 3680: 3377: 3334: 5634: 5584: 4377: 4340: 4284: 3443: 1172:{\displaystyle {\mathcal {M}}={\frac {(m_{1}m_{2})^{3/5}}{(m_{1}+m_{2})^{1/5}}}.} 4700:"A critical review of selected techniques for measuring extragalactic distances" 3931: 2693: 2484: 2065: 1711: 1486: 1369: 734: 698: 492: 488: 484: 451: 418: 414: 3738: 3417: 3010:
in the nearer steps, both systematic and statistical ones. The result of these
17: 5811: 5805: 5799: 5787: 5230: 4582: 3050: 1330: 1007: 770: 522: 325: 195: 146: 5650: 5467: 4155: 4012: 3939: 3893: 3821: 3746: 3574: 3043:
and distant galaxies in which individual distance indicators cannot be seen.
5781: 5769: 5706: 5661: 5656: 2978:
where C is a constant which depends on the distance to the galaxy clusters.
2045: 1490: 1397: 1235: 549: 442: 342: 299: 249: 178: 161: 5522: 4232: 3829: 3754: 3613: 42: 5646:
The Hubble Space Telescope Key Project on the Extragalactic Distance Scale
4310: 2553:
carries an uncertainty of distance of about 20% (or 0.4 magnitudes).
1315:(BAO) in the early universe has been used. In the early universe (before 697:
Two problems exist for any class of standard candle. The principal one is
5394: 5326:
Coelho, R.; et al. (2015). "Standardization of type Ia supernovae".
5111:"The effect of metallicity on Cepheid magnitudes and the distance to M33" 4926: 4873: 4836: 4804: 4621: 4555: 3479: 2982:
such as Cepheids. Instead, calibration is done using more crude methods.
2677: 2029: 2025: 1496: 1269: 1231: 1223: 1179:
By observing the waveform, the chirp mass can be computed and thence the
746: 497: 422: 349:, providing useful distances for stars out to a few hundred parsecs. The 303: 182: 5514: 4735: 4660:
Colgate, S. A. (1979). "Supernovae as a standard candle for cosmology".
4223: 4187:"A gravitational-wave standard siren measurement of the Hubble constant" 4186: 4147: 3246:"NASA's Hubble Extends Stellar Tape Measure 10 Times Farther Into Space" 2557:
Baum has assumed a direct correlation and estimated Virgo A's distance.
1988:{\displaystyle 5\log _{10}{d}=V+(3.37)\log _{10}{P}-(2.55)(V-I)+7.48\,.} 1876:{\displaystyle 5\log _{10}{d}=V+(3.34)\log _{10}{P}-(2.45)(V-I)+7.52\,.} 1517:
When the absolute magnitude for a group of stars is plotted against the
330: 277: 5666: 3963:"Determining the Hubble constant from gravitational wave observations" 3884: 3859: 3804: 5793: 3996: 3517: 3040: 1685: 1565: 153:
that can be used to determine the distances at the next higher rung.
142: 5645: 5252:
Freedman, Wendy L.; Madore, Barry F. (2010). "The Hubble Constant".
2188:
is the supernova's ejecta's radial velocity (it can be assumed that
5458: 5433: 5411: 4997: 4943: 4890: 4726: 4699: 4683: 4638: 4205: 3721: 3565: 3540: 3357: 3215:
Perryman, M. A. C.; et al. (1999). "The HIPPARCOS Catalogue".
3200: 3173: 2754:
Like the GCLF method, a similar numerical analysis can be used for
2040:, The Hubble Key Project Team, and The High-Z Supernova Search Team 2021: 1493:, the "Champagne Supernova", a Type Ia supernova of unusual nature. 5497: 5340: 5266: 5213: 5176: 5129: 5070: 5033: 4980: 4481: 4423: 4359: 4266: 4122: 3979: 3777:"When Neutron Stars Collide, the Explosion is Perfectly Spherical" 3663: 3291: 3007: 2870: 2020: 428: 408: 284: 276: 253: 229: 225: 213: 160: 2431:{\displaystyle \ M_{V}^{\max }=-9.96-2.31\log _{10}{\dot {x}}\,.} 3249: 2353: 2033: 1677: 1465: 548:, the magnitude as seen by the observer (an instrument called a 468:
has historically been an important step in the distance ladder.
390:
of the proper motions relative to their radial velocities. This
5675: 5109:
Scowcroft, V.; Bersier, D.; Mould, J. R.; Wood, P. R. (2009).
3339:
Data Release 2: Summary of the contents and survey properties"
2687: 2478: 2037: 334:(parallax arcseconds); light-years are used in popular media. 217: 36: 5616:, Richard de Grijs, Chichester: John Wiley & Sons, 2011, 3444:"Hubble stretches the stellar tape measure ten times further" 3418:"Hubble finds Universe may be expanding faster than expected" 2856:{\displaystyle \ N(M)\propto e^{0.307M}(1-e^{3(M^{*}-M)})\,.} 2110:{\displaystyle \omega ={\frac {\Delta \theta }{\Delta t}}\,,} 540:
The brightness of an object can be expressed in terms of its
2652:{\displaystyle \ \Phi (m)=Ae^{(m-m_{0})^{2}/2\sigma ^{2}}\,} 1065: 991: 867: 2313:{\displaystyle \ M_{B}\approx M_{V}\approx -19.3\pm 0.3\,.} 1734:. The distance to the star can then be calculated from its 2908:, relates the angular diameter (D) of the galaxy to its 5589:(4th ed.). Cambridge: Cambridge University Press. 5570:
Measuring the Universe The Cosmological Distance Ladder
4705:
Publications of the Astronomical Society of the Pacific
3705:"Spherical symmetry in the kilonova AT2017gfo/GW170817" 3545:
Publications of the Astronomical Society of the Pacific
122:
Dashed black lines: Uncertain calibration ladder step.
30:
For various definitions of distance in cosmology, see
3541:"The Period-Luminosity Relation: A Historical Review" 2925: 2773: 2572: 2444: 2365: 2264: 2228: 2137: 2076: 1890: 1778: 1362:
to measure the mass of the system, and hence use the
1278: 1247: 1062: 1016: 1006:
is a single (therefore computable) number called the
988: 964: 940: 811: 791: 619: 562: 357:
has the potential to provide a precision of 20 to 40
5614:
An Introduction to Distance Measurement in Astronomy
4403:
Bond, Howard E.; Sparks, William B. (4 March 2009).
3027:
useful simply because there is no real alternative.
1307:
Another class of physical distance indicator is the
709:
Ia supernovae is crucial in determining the correct
370:Distances can be measured within 10% as far as the 341:of the measurement. In the 1990s, for example, the 3589:"Finding the Distance to Stars - Distance Modulus" 3333:; et al. (Gaia collaboration) (August 2018). 2970: 2892:which is directly related to a galaxy's distance. 2855: 2651: 2459: 2430: 2312: 2244: 2173: 2109: 2002:supplying a precise value of the Hubble constant. 1987: 1875: 1291: 1260: 1171: 1048: 998: 970: 946: 926: 797: 664: 605: 112:technique is applicable to all populations of the 5116:Monthly Notices of the Royal Astronomical Society 3860:"Measuring cosmic distances with standard sirens" 3172:Ash, M. E.; Shapiro, I. I.; Smith, W. B. (1967). 1206:due to an intervening absorbing medium. But they 105:Light Purple boxes: Geometric distance technique. 3244:Harrington, J. D.; Villard, R. (10 April 2014). 2379: 2174:{\displaystyle \ d={\frac {V_{ej}}{\omega }}\,,} 2048:can be used to measure extragalactic distances. 324:for an object at 1 parsec's distance (3.26 529:. These objects of known brightness are termed 445:disk, this corresponds to a mean baseline of 4 119:Solid black lines: Well calibrated ladder step. 4034:Hendry, Martin; Woan, Graham (February 2007). 3030:The observational result of Hubble's Law, the 2044:There are several different methods for which 5687: 5547:Carroll, Bradley W.; Ostlie, Dale A. (2014). 4311:"Light echoes whisper the distance to a star" 8: 5875:Length, distance, or range measuring devices 4788:, Volume 741, Issue 2, article id. L2 (2011) 2971:{\displaystyle \log(D)=1.333\log(\Sigma )+C} 5586:The Cosmos: Astronomy in the New Millennium 5254:Annual Review of Astronomy and Astrophysics 5201:Annual Review of Astronomy and Astrophysics 4763:, Volume 133, Issue 4, pp. 1810–1827 (2007) 4608:The Astrophysical Journal Supplement Series 4524:: CS1 maint: numeric names: authors list ( 3953: 3951: 3949: 3849: 3847: 2887:(SBF) method takes advantage of the use of 2722:. Unsourced material may be challenged and 2513:. Unsourced material may be challenged and 1440:(thermonuclear flashes on the surface of a 1214:, in the same way as light. If a signal is 1010:of the system, a combination of the masses 91:Light green boxes: Technique applicable to 5694: 5680: 5672: 2181:where d is the distance to the supernova, 1396:— used for measuring distances within the 98:Light blue boxes: Technique applicable to 5496: 5457: 5393: 5339: 5265: 5212: 5175: 5146: 5128: 5069: 5032: 4979: 4925: 4872: 4835: 4803: 4725: 4620: 4572: 4554: 4498: 4480: 4440: 4422: 4376: 4358: 4283: 4265: 4222: 4204: 4121: 4062: 3978: 3883: 3803: 3720: 3662: 3591:. Australia Telescope National Facility. 3564: 3478: 3376: 3366: 3356: 3290: 3199: 3079:Orders of magnitude (length)#Astronomical 2924: 2849: 2829: 2818: 2796: 2772: 2742:Learn how and when to remove this message 2648: 2640: 2628: 2622: 2612: 2598: 2571: 2533:Learn how and when to remove this message 2446: 2445: 2443: 2424: 2413: 2412: 2403: 2378: 2373: 2364: 2306: 2285: 2272: 2263: 2236: 2227: 2167: 2153: 2147: 2136: 2103: 2083: 2075: 1981: 1943: 1934: 1907: 1898: 1889: 1869: 1831: 1822: 1795: 1786: 1777: 1283: 1277: 1252: 1246: 1153: 1149: 1139: 1126: 1107: 1103: 1093: 1083: 1073: 1064: 1063: 1061: 1037: 1024: 1015: 990: 989: 987: 963: 939: 912: 907: 891: 876: 866: 865: 849: 845: 835: 812: 810: 790: 652: 630: 618: 573: 561: 2341:, the peak magnitude can be determined. 1547: 606:{\displaystyle 5\cdot \log _{10}d=m-M+5} 83: 67:of all important aspects of the article. 3113: 3094: 2028:(bright spot on the lower left) in the 5549:An Introduction to Modern Astrophysics 4517: 3424:from the original on 11 September 2018 63:Please consider expanding the lead to 3628:from the original on 29 February 2012 3454:from the original on October 30, 2017 3256:from the original on 17 February 2019 2867:Surface brightness fluctuation method 1618:Globular Cluster Luminosity Function 1604:Planetary Nebula Luminosity Function 556:to the object in parsecs as follows: 479:, can be observed over time, then an 7: 2760:planetary nebula luminosity function 2720:adding citations to reliable sources 2684:Planetary nebula luminosity function 2551:globular cluster luminosity function 2511:adding citations to reliable sources 2475:Globular cluster luminosity function 1722:. Many stars have features in their 1557:Uncertainty for Single Galaxy (mag) 1423:Globular cluster luminosity function 1417:Planetary nebula luminosity function 110:planetary nebula luminosity function 5610:, Ostriker and Gnedin, May 5, 1997. 5284:10.1146/annurev-astro-082708-101829 4448:distance to this important Cepheid. 3854:Holz, Daniel E.; Hughes, Scott A.; 2052:Measuring a supernova's photosphere 765:of compact binary systems, such as 4383:we derive a geometric distance of 4246:Marinoni, C.; et al. (2008). 2956: 2576: 2094: 2086: 1549:Extragalactic distance indicators 25: 1197:gravitational wave interferometer 5640:The Extragalactic Distance Scale 5312:NASA/IPAC Extragalactic Database 5148:10.1111/j.1365-2966.2009.14822.x 4073:10.1111/j.1468-4004.2007.48110.x 3396:. PHI Learning Private Limited. 3053: 2692: 2483: 2349:Novae in distance determinations 1761:, the next method relies on the 1632:Surface Brightness Fluctuations 665:{\displaystyle d=10^{(m-M+5)/5}} 378:(transverse across the sky) and 269:This section is an excerpt from 41: 5572:, Stephen Webb, copyright 2001. 5307:"Calibration and Uncertainties" 4321:from the original on 2015-09-24 4292:from the original on 2022-01-26 4090:from the original on 2012-12-22 3595:from the original on 2020-11-07 3539:Fernie, J. D. (December 1969). 3394:An Introduction to Astrophysics 3128:from the original on 9 May 2021 676:is the apparent magnitude, and 294:The most important fundamental 55:may be too short to adequately 5865:Physical cosmological concepts 4005:11858/00-001M-0000-0013-73C1-2 2959: 2953: 2938: 2932: 2885:surface brightness fluctuation 2846: 2841: 2822: 2805: 2786: 2780: 2619: 2599: 2585: 2579: 1972: 1960: 1957: 1951: 1927: 1921: 1860: 1848: 1845: 1839: 1815: 1809: 1429:Surface brightness fluctuation 1146: 1119: 1100: 1076: 1043: 1017: 999:{\displaystyle {\mathcal {M}}} 873: 859: 649: 631: 244:Historically, observations of 189:At the base of the ladder are 65:provide an accessible overview 1: 5635:The ABC's of distances (UCLA) 5358:10.1088/0143-0807/36/1/015007 4315:European Southern Observatory 4179:LIGO Scientific Collaboration 2758:within far off galaxies. The 2245:{\displaystyle 1.4M_{\odot }} 1358:, uses orbital parameters of 1049:{\displaystyle (m_{1},m_{2})} 32:Distance measures (cosmology) 5834:Orders of magnitude (length) 5718:Astronomical system of units 5088:10.1088/0004-637X/696/2/1498 4542:Proceedings of IAU Symposium 4177:Abbott, B. P.; et al. ( 4036:"Gravitational astrophysics" 3344:Astronomy & Astrophysics 3039:estimating the distances of 2323:multicolor light curve shape 1544:Extragalactic distance scale 1366:to determine the luminosity 1337:Galactic distance indicators 1325:baryon acoustic oscillations 1313:baryon acoustic oscillations 135:extragalactic distance scale 5328:European Journal of Physics 4500:10.1051/0004-6361/201424395 4442:10.1051/0004-6361:200810280 4140:10.1088/0004-637X/725/1/496 3932:10.1103/PhysRevLett.18.1071 3681:10.1051/0004-6361/200912811 3378:10.1051/0004-6361/201833051 3309:10.1088/0004-637X/785/2/161 2904:(or ÎŁ-D relation), used in 2666:is the turnover magnitude, 2202:if spherically symmetric). 2129:. Subsequently, we can use 2051: 1532:In a gravitationally-bound 1523:Hertzsprung–Russell diagram 1411:Tip of the red-giant branch 5896: 5657:NASA Cosmic Distance Scale 5551:. Harlow, United Kingdom: 4748:Benedict, G. Fritz et al. 4468:Astronomy and Astrophysics 4410:Astronomy and Astrophysics 4378:10.1051/0004-6361:20078961 4346:Astronomy and Astrophysics 4285:10.1051/0004-6361:20077116 4253:Astronomy and Astrophysics 4043:Astronomy & Geophysics 3739:10.1038/s41586-022-05616-x 3650:Astronomy and Astrophysics 3218:Astronomy and Astrophysics 2460:{\displaystyle {\dot {x}}} 2068:, we can use the equation 1763:period-luminosity relation 1699: 1658: 1644: 1630: 1616: 1602: 1588: 1574: 1552: 1510: 1413:(TRGB) distance indicator. 1340: 500:(usually obtained via the 268: 205: 29: 5821: 5726: 5713: 5667:The Astrophysical Journal 5662:PNLF information database 5653:, a historical discussion 5604:The Astrophysical Journal 5553:Pearson Education Limited 5438:The Astrophysical Journal 5231:10.1007/s00159-008-0012-y 5058:The Astrophysical Journal 4968:The Astrophysical Journal 4914:The Astrophysical Journal 4861:The Astrophysical Journal 4583:10.1017/S1743921307003845 4110:The Astrophysical Journal 3693:(And references therein.) 3278:The Astrophysical Journal 1718:uses the effect known as 737:content than the distant 175:Mount Stromlo Observatory 4761:The Astronomical Journal 4505:We obtain a distance of 3822:10.1103/PhysRevD.49.2658 3179:The Astronomical Journal 3149:"Cosmic distance ladder" 1757:Beyond the reach of the 1364:mass–luminosity relation 1268:. This was the case for 302:come from trigonometric 5432:Dressler, Alan (1987). 5276:2010ARA&A..48..673F 5223:2008A&ARv..15..289T 4491:2014A&A...572A...7K 4433:2009A&A...495..371B 4369:2008A&A...480..167K 4276:2008A&A...478...43M 4055:2007A&G....48a..10H 3912:Physical Review Letters 3673:2009A&A...506.1095L 3392:B., Baidyanath (2003). 3368:2018A&A...616A...1G 3231:1997A&A...323L..49P 1747:interstellar extinction 1519:spectral classification 1436:In galactic astronomy, 733:stars with much higher 458:Moving cluster parallax 309:stellar parallax method 171:2003 Canberra bushfires 5829:Cosmic distance ladder 2972: 2876: 2857: 2653: 2461: 2432: 2314: 2246: 2175: 2111: 2041: 1989: 1877: 1730:, that indicate their 1720:spectroscopic parallax 1706:Discovered in 1956 by 1513:Spectroscopic parallax 1478:Faber–Jackson relation 1378:Small Magellanic Cloud 1374:Large Magellanic Cloud 1293: 1262: 1173: 1050: 1000: 972: 956:gravitational constant 948: 928: 799: 666: 607: 535:Henrietta Swan Leavitt 434: 426: 351:Hubble Space Telescope 291: 282: 186: 131:cosmic distance ladder 126: 5880:Concepts in astronomy 5382:Astrophysical Journal 4663:Astrophysical Journal 4185:) (16 October 2017). 3961:(25 September 1986). 2973: 2874: 2858: 2654: 2462: 2433: 2315: 2247: 2176: 2121:is angular velocity, 2112: 2024: 1990: 1878: 1507:Main sequence fitting 1472:Tully–Fisher relation 1294: 1292:{\displaystyle H_{0}} 1263: 1261:{\displaystyle H_{0}} 1212:gravitational lensing 1174: 1051: 1001: 973: 949: 929: 800: 761:originating from the 667: 608: 432: 412: 296:distance measurements 288: 280: 271:Parallax in astronomy 164: 93:star-forming galaxies 87: 4317:. 11 February 2008. 2923: 2771: 2716:improve this section 2570: 2507:improve this section 2442: 2363: 2262: 2226: 2210:Type Ia light curves 2135: 2074: 1888: 1884:      1776: 1772:      1446:Eddington luminosity 1276: 1245: 1060: 1014: 986: 962: 938: 809: 789: 617: 560: 454:of the sample size. 392:statistical parallax 388:statistical analysis 306:, as applied in the 5839:Conversion of units 5651:The Hubble Constant 5515:10.1038/nature08685 5507:2010Natur.463..924G 5450:1987ApJ...317....1D 5404:2001ApJ...546..681T 5350:2015EJPh...36a5007C 5186:2010AcA....60..121M 5139:2009MNRAS.396.1287S 5080:2009ApJ...696.1498M 5043:2009AcA....59..403M 4990:2008ApJ...684..102B 4936:2006ApJ...652.1133M 4883:2006ApJ...642L..29N 4846:2001AcA....51..221U 4718:1992PASP..104..599J 4676:1979ApJ...232..404C 4631:2000ApJS..128..431F 4565:2007IAUS..240...79B 4224:10.1038/nature24471 4215:2017Natur.551...85A 4183:Virgo Collaboration 4132:2010ApJ...725..496N 3989:1986Natur.323..310S 3924:1967PhRvL..18.1071F 3876:2018PhT....71l..34H 3814:1994PhRvD..49.2658C 3779:. 17 February 2023. 3731:2023Natur.614..436S 3614:"Type Ia Supernova" 3557:1969PASP...81..707F 3510:1994Natur.368..610B 3301:2014ApJ...785..161R 3192:1967AJ.....72..338A 3000:elliptical galaxies 2986:Overlap and scaling 2917:between D and ÎŁ is 2910:velocity dispersion 2906:elliptical galaxies 2383: 2220:Chandrasekhar limit 1759:Wilson–Bappu effect 1716:Wilson–Bappu effect 1702:Wilson–Bappu effect 1696:Wilson–Bappu effect 1660:Type Ia Supernovae 1576:Classical Cepheids 1550: 1456:Interstellar masers 1187:of known loudness. 1056:of the two objects 759:Gravitational waves 441:. For stars in the 355:Wide Field Camera 3 290:would be minuscule. 133:(also known as the 108:Light Red box: The 4780:2017-03-10 at the 4755:2016-01-23 at the 3959:Schutz, Bernard F. 3908:Forward, Robert L. 3856:Schutz, Bernard F. 3012:propagating errors 2968: 2914:surface brightness 2877: 2853: 2649: 2457: 2428: 2369: 2310: 2242: 2215:Type Ia supernovae 2171: 2107: 2042: 1985: 1873: 1753:Classical Cepheids 1736:apparent magnitude 1732:absolute magnitude 1548: 1521:of the star, in a 1483:Type Ia supernovae 1394:RR Lyrae variables 1370:Eclipsing binaries 1356:Dynamical parallax 1289: 1258: 1169: 1046: 996: 968: 944: 924: 795: 711:cosmological model 706:Type Ia supernovae 662: 603: 546:apparent magnitude 542:absolute magnitude 527:inverse-square law 481:expansion parallax 435: 427: 404:RR Lyrae variables 314:isosceles triangle 292: 283: 187: 157:Direct measurement 127: 114:Virgo Supercluster 5847: 5846: 5776:Astronomical unit 5622:978-0-470-51180-0 5596:978-1-107-68756-1 5562:978-1-292-02293-2 4313:(Press release). 3973:(6086): 310–311. 3918:(24): 1071–1074. 3885:10.1063/PT.3.4090 3858:(December 2018). 3792:Physical Review D 3715:(7948): 436–439. 3504:(6472): 610–613. 3448:ESA/Hubble Images 3403:978-81-203-1121-3 3124:. 16 April 2013. 3069:Araucaria Project 2776: 2756:planetary nebulae 2752: 2751: 2744: 2575: 2543: 2542: 2535: 2454: 2421: 2368: 2267: 2165: 2140: 2101: 2032:galaxy. Image by 1682:globular clusters 1673: 1672: 1646:Sigma-D relation 1402:globular clusters 1386:Triangulum Galaxy 1164: 971:{\displaystyle c} 947:{\displaystyle G} 919: 899: 884: 830: 798:{\displaystyle f} 722:Cepheid variables 715:density parameter 473:supernova remnant 208:Astronomical unit 202:Astronomical unit 82: 81: 16:(Redirected from 5887: 5870:Standard candles 5696: 5689: 5682: 5673: 5600: 5566: 5535: 5534: 5500: 5478: 5472: 5471: 5461: 5429: 5423: 5422: 5397: 5395:astro-ph/0011223 5376: 5370: 5369: 5343: 5323: 5317: 5316: 5302: 5296: 5295: 5269: 5249: 5243: 5242: 5216: 5196: 5190: 5189: 5179: 5164:Acta Astronomica 5159: 5153: 5152: 5150: 5132: 5106: 5100: 5099: 5073: 5064:(2): 1498–1501. 5053: 5047: 5046: 5036: 5021:Acta Astronomica 5016: 5010: 5009: 4983: 4962: 4956: 4955: 4929: 4927:astro-ph/0608211 4920:(2): 1133–1149. 4909: 4903: 4902: 4876: 4874:astro-ph/0603643 4856: 4850: 4849: 4839: 4837:astro-ph/0109446 4824:Acta Astronomica 4816: 4810: 4809: 4807: 4805:astro-ph/9909346 4795: 4789: 4770: 4764: 4746: 4740: 4739: 4729: 4712:(678): 599–662. 4694: 4688: 4687: 4657: 4651: 4650: 4624: 4622:astro-ph/9910501 4601: 4595: 4594: 4576: 4558: 4556:astro-ph/0610923 4536: 4530: 4529: 4523: 4515: 4512: 4510: 4502: 4484: 4457: 4451: 4450: 4444: 4426: 4400: 4394: 4393: 4390: 4388: 4380: 4362: 4336: 4330: 4329: 4327: 4326: 4307: 4301: 4300: 4298: 4297: 4287: 4269: 4243: 4237: 4236: 4226: 4208: 4174: 4168: 4167: 4125: 4105: 4099: 4098: 4096: 4095: 4089: 4066: 4049:(1): 1.10–1.17. 4040: 4031: 4025: 4024: 3997:10.1038/323310a0 3982: 3955: 3944: 3943: 3904: 3898: 3897: 3887: 3851: 3842: 3841: 3807: 3798:(6): 2658–2697. 3787: 3781: 3780: 3773: 3767: 3766: 3724: 3700: 3694: 3692: 3666: 3657:(3): 1095–1105. 3644: 3638: 3637: 3635: 3633: 3610: 3604: 3603: 3601: 3600: 3585: 3579: 3578: 3568: 3536: 3530: 3529: 3518:10.1038/368610a0 3491: 3485: 3484: 3482: 3480:astro-ph/9703140 3470: 3464: 3463: 3461: 3459: 3440: 3434: 3433: 3431: 3429: 3414: 3408: 3407: 3389: 3383: 3382: 3380: 3370: 3360: 3327: 3321: 3320: 3294: 3272: 3266: 3265: 3263: 3261: 3241: 3235: 3234: 3212: 3206: 3205: 3203: 3169: 3163: 3162: 3160: 3158: 3153: 3144: 3138: 3137: 3135: 3133: 3122:"The Astronomer" 3118: 3103: 3099: 3074:Distance measure 3063: 3058: 3057: 3056: 2977: 2975: 2974: 2969: 2902:Sigma-D relation 2896:Sigma-D relation 2862: 2860: 2859: 2854: 2845: 2844: 2834: 2833: 2804: 2803: 2774: 2747: 2740: 2736: 2733: 2727: 2696: 2688: 2658: 2656: 2655: 2650: 2647: 2646: 2645: 2644: 2632: 2627: 2626: 2617: 2616: 2573: 2538: 2531: 2527: 2524: 2518: 2487: 2479: 2466: 2464: 2463: 2458: 2456: 2455: 2447: 2437: 2435: 2434: 2429: 2423: 2422: 2414: 2408: 2407: 2382: 2377: 2366: 2319: 2317: 2316: 2311: 2290: 2289: 2277: 2276: 2265: 2251: 2249: 2248: 2243: 2241: 2240: 2180: 2178: 2177: 2172: 2166: 2161: 2160: 2148: 2138: 2116: 2114: 2113: 2108: 2102: 2100: 2092: 2084: 1994: 1992: 1991: 1986: 1947: 1939: 1938: 1911: 1903: 1902: 1882: 1880: 1879: 1874: 1835: 1827: 1826: 1799: 1791: 1790: 1767:Cepheid variable 1740:distance modulus 1712:M.K. Vainu Bappu 1551: 1382:Andromeda Galaxy 1343:Distance measure 1298: 1296: 1295: 1290: 1288: 1287: 1267: 1265: 1264: 1259: 1257: 1256: 1178: 1176: 1175: 1170: 1165: 1163: 1162: 1161: 1157: 1144: 1143: 1131: 1130: 1117: 1116: 1115: 1111: 1098: 1097: 1088: 1087: 1074: 1069: 1068: 1055: 1053: 1052: 1047: 1042: 1041: 1029: 1028: 1005: 1003: 1002: 997: 995: 994: 977: 975: 974: 969: 953: 951: 950: 945: 933: 931: 930: 925: 920: 918: 917: 916: 902: 901: 900: 892: 886: 885: 877: 871: 870: 858: 857: 853: 836: 831: 829: 821: 813: 804: 802: 801: 796: 724:. In the 1950s, 687:distance modulus 671: 669: 668: 663: 661: 660: 656: 612: 610: 609: 604: 578: 577: 531:standard candles 517:Standard candles 477:planetary nebula 439:secular parallax 240: 238: 224:provide precise 77: 74: 68: 45: 37: 21: 5895: 5894: 5890: 5889: 5888: 5886: 5885: 5884: 5850: 5849: 5848: 5843: 5817: 5765: 5762: 5745: 5739: 5736: 5722: 5709: 5703:Units of length 5700: 5631: 5597: 5577:Pasachoff, J.M. 5575: 5563: 5546: 5543: 5538: 5480: 5479: 5475: 5431: 5430: 5426: 5378: 5377: 5373: 5325: 5324: 5320: 5304: 5303: 5299: 5251: 5250: 5246: 5198: 5197: 5193: 5161: 5160: 5156: 5108: 5107: 5103: 5055: 5054: 5050: 5018: 5017: 5013: 4964: 4963: 4959: 4911: 4910: 4906: 4858: 4857: 4853: 4818: 4817: 4813: 4797: 4796: 4792: 4782:Wayback Machine 4771: 4767: 4757:Wayback Machine 4747: 4743: 4697: 4695: 4691: 4659: 4658: 4654: 4603: 4602: 4598: 4574:10.1.1.254.2692 4538: 4537: 4533: 4516: 4508: 4506: 4475:: A7 (13 pp.). 4459: 4458: 4454: 4402: 4401: 4397: 4386: 4384: 4338: 4337: 4333: 4324: 4322: 4309: 4308: 4304: 4295: 4293: 4245: 4244: 4240: 4199:(7678): 85–88. 4176: 4175: 4171: 4107: 4106: 4102: 4093: 4091: 4087: 4064:10.1.1.163.5500 4038: 4033: 4032: 4028: 3957: 3956: 3947: 3906: 3905: 3901: 3853: 3852: 3845: 3789: 3788: 3784: 3775: 3774: 3770: 3702: 3701: 3697: 3646: 3645: 3641: 3631: 3629: 3612: 3611: 3607: 3598: 3596: 3587: 3586: 3582: 3538: 3537: 3533: 3493: 3492: 3488: 3472: 3471: 3467: 3457: 3455: 3442: 3441: 3437: 3427: 3425: 3416: 3415: 3411: 3404: 3391: 3390: 3386: 3331:Brown, A. G. A. 3329: 3328: 3324: 3274: 3273: 3269: 3259: 3257: 3243: 3242: 3238: 3214: 3213: 3209: 3171: 3170: 3166: 3156: 3154: 3151: 3146: 3145: 3141: 3131: 3129: 3120: 3119: 3115: 3111: 3106: 3100: 3096: 3092: 3059: 3054: 3052: 3049: 2993:spiral galaxies 2988: 2921: 2920: 2898: 2869: 2825: 2814: 2792: 2769: 2768: 2748: 2737: 2731: 2728: 2713: 2697: 2686: 2672: 2665: 2636: 2618: 2608: 2594: 2568: 2567: 2539: 2528: 2522: 2519: 2504: 2488: 2477: 2440: 2439: 2399: 2361: 2360: 2351: 2332:Similarly, the 2281: 2268: 2260: 2259: 2232: 2224: 2223: 2212: 2200: 2193: 2186: 2149: 2133: 2132: 2093: 2085: 2072: 2071: 2054: 2019: 1930: 1894: 1886: 1885: 1883: 1818: 1782: 1774: 1773: 1755: 1704: 1698: 1690:galaxy clusters 1546: 1515: 1509: 1360:visual binaries 1345: 1339: 1305: 1279: 1274: 1273: 1248: 1243: 1242: 1240:Hubble constant 1216:strongly lensed 1145: 1135: 1122: 1118: 1099: 1089: 1079: 1075: 1058: 1057: 1033: 1020: 1012: 1011: 984: 983: 960: 959: 936: 935: 908: 903: 887: 872: 841: 837: 822: 814: 807: 806: 787: 786: 756: 695: 626: 615: 614: 569: 558: 557: 519: 514: 513: 509:interferometers 487:which are both 380:radial velocity 372:Galactic Center 274: 266: 236: 234: 210: 204: 173:burned out the 159: 125: 78: 72: 69: 62: 50:This article's 46: 35: 28: 23: 22: 18:Standard sirens 15: 12: 11: 5: 5893: 5891: 5883: 5882: 5877: 5872: 5867: 5862: 5852: 5851: 5845: 5844: 5842: 5841: 5836: 5831: 5826: 5822: 5819: 5818: 5816: 5815: 5809: 5803: 5797: 5791: 5785: 5779: 5773: 5767: 5763: 5760: 5754: 5748: 5743: 5737: 5734: 5727: 5724: 5723: 5721: 5720: 5714: 5711: 5710: 5701: 5699: 5698: 5691: 5684: 5676: 5670: 5669: 5664: 5659: 5654: 5648: 5643: 5637: 5630: 5629:External links 5627: 5626: 5625: 5611: 5601: 5595: 5581:Filippenko, A. 5573: 5567: 5561: 5542: 5539: 5537: 5536: 5491:(3): 924–925. 5473: 5459:10.1086/165251 5424: 5412:10.1086/318301 5388:(2): 681–693, 5371: 5318: 5297: 5244: 5191: 5154: 5101: 5048: 5011: 4998:10.1086/589965 4957: 4944:10.1086/508530 4904: 4891:10.1086/504478 4851: 4811: 4790: 4765: 4741: 4727:10.1086/133035 4689: 4684:10.1086/157300 4670:(1): 404–408. 4652: 4639:10.1086/313391 4615:(2): 431–459. 4596: 4531: 4452: 4417:(2): 371–377. 4395: 4353:(1): 167–178. 4331: 4302: 4238: 4169: 4116:(1): 496–514. 4100: 4026: 3945: 3899: 3843: 3782: 3768: 3695: 3639: 3605: 3580: 3566:10.1086/128847 3531: 3486: 3465: 3435: 3409: 3402: 3384: 3322: 3267: 3236: 3207: 3201:10.1086/110230 3164: 3139: 3112: 3110: 3107: 3105: 3104: 3093: 3091: 3088: 3087: 3086: 3084:Standard ruler 3081: 3076: 3071: 3065: 3064: 3048: 3045: 2987: 2984: 2967: 2964: 2961: 2958: 2955: 2952: 2949: 2946: 2943: 2940: 2937: 2934: 2931: 2928: 2897: 2894: 2875:Galaxy cluster 2868: 2865: 2852: 2848: 2843: 2840: 2837: 2832: 2828: 2824: 2821: 2817: 2813: 2810: 2807: 2802: 2799: 2795: 2791: 2788: 2785: 2782: 2779: 2750: 2749: 2700: 2698: 2691: 2685: 2682: 2670: 2663: 2643: 2639: 2635: 2631: 2625: 2621: 2615: 2611: 2607: 2604: 2601: 2597: 2593: 2590: 2587: 2584: 2581: 2578: 2541: 2540: 2491: 2489: 2482: 2476: 2473: 2453: 2450: 2427: 2420: 2417: 2411: 2406: 2402: 2398: 2395: 2392: 2389: 2386: 2381: 2376: 2372: 2350: 2347: 2339:Stretch Factor 2334:stretch method 2309: 2305: 2302: 2299: 2296: 2293: 2288: 2284: 2280: 2275: 2271: 2239: 2235: 2231: 2211: 2208: 2198: 2191: 2184: 2170: 2164: 2159: 2156: 2152: 2146: 2143: 2106: 2099: 2096: 2091: 2088: 2082: 2079: 2053: 2050: 2018: 2015: 1984: 1980: 1977: 1974: 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1950: 1946: 1942: 1937: 1933: 1929: 1926: 1923: 1920: 1917: 1914: 1910: 1906: 1901: 1897: 1893: 1872: 1868: 1865: 1862: 1859: 1856: 1853: 1850: 1847: 1844: 1841: 1838: 1834: 1830: 1825: 1821: 1817: 1814: 1811: 1808: 1805: 1802: 1798: 1794: 1789: 1785: 1781: 1754: 1751: 1728:calcium K-line 1726:, such as the 1700:Main article: 1697: 1694: 1671: 1670: 1667: 1664: 1661: 1657: 1656: 1653: 1650: 1647: 1643: 1642: 1639: 1636: 1633: 1629: 1628: 1625: 1622: 1619: 1615: 1614: 1611: 1608: 1605: 1601: 1600: 1597: 1594: 1591: 1587: 1586: 1583: 1580: 1577: 1573: 1572: 1569: 1558: 1555: 1545: 1542: 1511:Main article: 1508: 1505: 1504: 1503: 1494: 1480: 1474: 1468: 1459: 1453: 1450:X-ray binaries 1434: 1433: 1432: 1426: 1420: 1414: 1405: 1400:and in nearby 1391: 1390: 1389: 1338: 1335: 1309:standard ruler 1304: 1303:Standard ruler 1301: 1286: 1282: 1255: 1251: 1185:standard siren 1168: 1160: 1156: 1152: 1148: 1142: 1138: 1134: 1129: 1125: 1121: 1114: 1110: 1106: 1102: 1096: 1092: 1086: 1082: 1078: 1072: 1067: 1045: 1040: 1036: 1032: 1027: 1023: 1019: 993: 980:speed of light 967: 943: 923: 915: 911: 906: 898: 895: 890: 883: 880: 875: 869: 864: 861: 856: 852: 848: 844: 840: 834: 828: 825: 820: 817: 794: 783:rate of change 775:orbital energy 763:inspiral phase 755: 754:Standard siren 752: 745:Most recently 694: 691: 659: 655: 651: 648: 645: 642: 639: 636: 633: 629: 625: 622: 602: 599: 596: 593: 590: 587: 584: 581: 576: 572: 568: 565: 518: 515: 502:Doppler effect 396:variable stars 347:milliarcsecond 275: 267: 265: 262: 246:Venus transits 206:Main article: 203: 200: 167:The Astronomer 165:The sculpture 158: 155: 124: 123: 120: 117: 106: 103: 96: 88: 80: 79: 59:the key points 49: 47: 40: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5892: 5881: 5878: 5876: 5873: 5871: 5868: 5866: 5863: 5861: 5858: 5857: 5855: 5840: 5837: 5835: 5832: 5830: 5827: 5824: 5823: 5820: 5813: 5810: 5807: 5804: 5801: 5798: 5795: 5792: 5789: 5786: 5783: 5780: 5777: 5774: 5771: 5768: 5758: 5755: 5752: 5749: 5746: 5732: 5729: 5728: 5725: 5719: 5716: 5715: 5712: 5708: 5704: 5697: 5692: 5690: 5685: 5683: 5678: 5677: 5674: 5668: 5665: 5663: 5660: 5658: 5655: 5652: 5649: 5647: 5644: 5641: 5638: 5636: 5633: 5632: 5628: 5623: 5619: 5615: 5612: 5609: 5605: 5602: 5598: 5592: 5588: 5587: 5582: 5578: 5574: 5571: 5568: 5564: 5558: 5554: 5550: 5545: 5544: 5540: 5532: 5528: 5524: 5520: 5516: 5512: 5508: 5504: 5499: 5494: 5490: 5486: 5485: 5477: 5474: 5469: 5465: 5460: 5455: 5451: 5447: 5443: 5439: 5435: 5428: 5425: 5421: 5417: 5413: 5409: 5405: 5401: 5396: 5391: 5387: 5383: 5375: 5372: 5367: 5363: 5359: 5355: 5351: 5347: 5342: 5337: 5334:(1): 015007. 5333: 5329: 5322: 5319: 5314: 5313: 5308: 5301: 5298: 5293: 5289: 5285: 5281: 5277: 5273: 5268: 5263: 5259: 5255: 5248: 5245: 5240: 5236: 5232: 5228: 5224: 5220: 5215: 5210: 5206: 5202: 5195: 5192: 5187: 5183: 5178: 5173: 5169: 5165: 5158: 5155: 5149: 5144: 5140: 5136: 5131: 5126: 5122: 5118: 5117: 5112: 5105: 5102: 5097: 5093: 5089: 5085: 5081: 5077: 5072: 5067: 5063: 5059: 5052: 5049: 5044: 5040: 5035: 5030: 5026: 5022: 5015: 5012: 5007: 5003: 4999: 4995: 4991: 4987: 4982: 4977: 4973: 4969: 4961: 4958: 4953: 4949: 4945: 4941: 4937: 4933: 4928: 4923: 4919: 4915: 4908: 4905: 4900: 4896: 4892: 4888: 4884: 4880: 4875: 4870: 4866: 4862: 4855: 4852: 4847: 4843: 4838: 4833: 4829: 4825: 4821: 4815: 4812: 4806: 4801: 4794: 4791: 4787: 4783: 4779: 4776: 4769: 4766: 4762: 4758: 4754: 4751: 4745: 4742: 4737: 4733: 4728: 4723: 4719: 4715: 4711: 4707: 4706: 4701: 4696:Adapted from 4693: 4690: 4685: 4681: 4677: 4673: 4669: 4665: 4664: 4656: 4653: 4648: 4644: 4640: 4636: 4632: 4628: 4623: 4618: 4614: 4610: 4609: 4600: 4597: 4592: 4588: 4584: 4580: 4575: 4570: 4566: 4562: 4557: 4552: 4548: 4544: 4543: 4535: 4532: 4527: 4521: 4514: 4501: 4496: 4492: 4488: 4483: 4478: 4474: 4470: 4469: 4464: 4456: 4453: 4449: 4443: 4438: 4434: 4430: 4425: 4420: 4416: 4412: 4411: 4406: 4399: 4396: 4392: 4379: 4374: 4370: 4366: 4361: 4356: 4352: 4348: 4347: 4342: 4335: 4332: 4320: 4316: 4312: 4306: 4303: 4291: 4286: 4281: 4277: 4273: 4268: 4263: 4259: 4255: 4254: 4249: 4242: 4239: 4234: 4230: 4225: 4220: 4216: 4212: 4207: 4202: 4198: 4194: 4193: 4188: 4184: 4180: 4173: 4170: 4165: 4161: 4157: 4153: 4149: 4145: 4141: 4137: 4133: 4129: 4124: 4119: 4115: 4111: 4104: 4101: 4086: 4082: 4078: 4074: 4070: 4065: 4060: 4056: 4052: 4048: 4044: 4037: 4030: 4027: 4022: 4018: 4014: 4010: 4006: 4002: 3998: 3994: 3990: 3986: 3981: 3976: 3972: 3968: 3964: 3960: 3954: 3952: 3950: 3946: 3941: 3937: 3933: 3929: 3925: 3921: 3917: 3913: 3909: 3903: 3900: 3895: 3891: 3886: 3881: 3877: 3873: 3870:(12): 34–40. 3869: 3865: 3864:Physics Today 3861: 3857: 3850: 3848: 3844: 3839: 3835: 3831: 3827: 3823: 3819: 3815: 3811: 3806: 3805:gr-qc/9402014 3801: 3797: 3793: 3786: 3783: 3778: 3772: 3769: 3764: 3760: 3756: 3752: 3748: 3744: 3740: 3736: 3732: 3728: 3723: 3718: 3714: 3710: 3706: 3699: 3696: 3690: 3686: 3682: 3678: 3674: 3670: 3665: 3660: 3656: 3652: 3651: 3643: 3640: 3627: 3623: 3619: 3615: 3609: 3606: 3594: 3590: 3584: 3581: 3576: 3572: 3567: 3562: 3558: 3554: 3550: 3546: 3542: 3535: 3532: 3527: 3523: 3519: 3515: 3511: 3507: 3503: 3499: 3498: 3490: 3487: 3481: 3476: 3469: 3466: 3453: 3449: 3445: 3439: 3436: 3423: 3419: 3413: 3410: 3405: 3399: 3395: 3388: 3385: 3379: 3374: 3369: 3364: 3359: 3354: 3350: 3346: 3345: 3340: 3338: 3332: 3326: 3323: 3318: 3314: 3310: 3306: 3302: 3298: 3293: 3288: 3284: 3280: 3279: 3271: 3268: 3255: 3251: 3247: 3240: 3237: 3232: 3228: 3224: 3220: 3219: 3211: 3208: 3202: 3197: 3193: 3189: 3185: 3181: 3180: 3175: 3168: 3165: 3150: 3147:Terence Tao. 3143: 3140: 3127: 3123: 3117: 3114: 3108: 3098: 3095: 3089: 3085: 3082: 3080: 3077: 3075: 3072: 3070: 3067: 3066: 3062: 3051: 3046: 3044: 3042: 3037: 3033: 3028: 3025: 3021: 3015: 3013: 3009: 3004: 3001: 2996: 2994: 2985: 2983: 2979: 2965: 2962: 2950: 2947: 2944: 2941: 2935: 2929: 2926: 2918: 2915: 2911: 2907: 2903: 2895: 2893: 2890: 2886: 2881: 2873: 2866: 2864: 2850: 2838: 2835: 2830: 2826: 2819: 2815: 2811: 2808: 2800: 2797: 2793: 2789: 2783: 2777: 2766: 2763: 2761: 2757: 2746: 2743: 2735: 2725: 2721: 2717: 2711: 2710: 2706: 2701:This section 2699: 2695: 2690: 2689: 2683: 2681: 2679: 2674: 2669: 2662: 2641: 2637: 2633: 2629: 2623: 2613: 2609: 2605: 2602: 2595: 2591: 2588: 2582: 2565: 2563: 2558: 2554: 2552: 2548: 2547:Virgo Cluster 2537: 2534: 2526: 2516: 2512: 2508: 2502: 2501: 2497: 2492:This section 2490: 2486: 2481: 2480: 2474: 2472: 2468: 2451: 2448: 2425: 2418: 2415: 2409: 2404: 2400: 2396: 2393: 2390: 2387: 2384: 2374: 2370: 2358: 2355: 2348: 2346: 2342: 2340: 2335: 2330: 2328: 2324: 2307: 2303: 2300: 2297: 2294: 2291: 2286: 2282: 2278: 2273: 2269: 2257: 2256:magnitude of 2253: 2237: 2233: 2229: 2221: 2216: 2209: 2207: 2203: 2201: 2194: 2187: 2168: 2162: 2157: 2154: 2150: 2144: 2141: 2130: 2128: 2124: 2120: 2104: 2097: 2089: 2080: 2077: 2069: 2067: 2063: 2059: 2049: 2047: 2039: 2035: 2031: 2027: 2023: 2016: 2014: 2010: 2008: 2003: 1999: 1995: 1982: 1978: 1975: 1969: 1966: 1963: 1954: 1948: 1944: 1940: 1935: 1931: 1924: 1918: 1915: 1912: 1908: 1904: 1899: 1895: 1891: 1870: 1866: 1863: 1857: 1854: 1851: 1842: 1836: 1832: 1828: 1823: 1819: 1812: 1806: 1803: 1800: 1796: 1792: 1787: 1783: 1779: 1770: 1768: 1765:of classical 1764: 1760: 1752: 1750: 1748: 1743: 1741: 1737: 1733: 1729: 1725: 1721: 1717: 1713: 1709: 1703: 1695: 1693: 1691: 1687: 1683: 1679: 1668: 1665: 1662: 1659: 1654: 1651: 1648: 1645: 1640: 1637: 1634: 1631: 1626: 1623: 1620: 1617: 1612: 1609: 1606: 1603: 1598: 1595: 1592: 1589: 1584: 1581: 1578: 1575: 1570: 1567: 1563: 1562:Virgo Cluster 1559: 1556: 1553: 1543: 1541: 1539: 1535: 1530: 1528: 1527:main sequence 1524: 1520: 1514: 1506: 1502: 1498: 1495: 1492: 1488: 1484: 1481: 1479: 1475: 1473: 1469: 1467: 1463: 1460: 1457: 1454: 1451: 1447: 1443: 1439: 1435: 1430: 1427: 1424: 1421: 1418: 1415: 1412: 1409: 1408: 1406: 1403: 1399: 1395: 1392: 1387: 1383: 1379: 1375: 1371: 1368: 1367: 1365: 1361: 1357: 1354: 1353: 1352: 1349: 1344: 1336: 1334: 1332: 1328: 1326: 1320: 1318: 1317:recombination 1314: 1310: 1302: 1300: 1284: 1280: 1271: 1253: 1249: 1241: 1237: 1233: 1228: 1225: 1221: 1217: 1213: 1209: 1205: 1200: 1198: 1192: 1188: 1186: 1182: 1166: 1158: 1154: 1150: 1140: 1136: 1132: 1127: 1123: 1112: 1108: 1104: 1094: 1090: 1084: 1080: 1070: 1038: 1034: 1030: 1025: 1021: 1009: 981: 965: 957: 941: 921: 913: 909: 904: 896: 893: 888: 881: 878: 862: 854: 850: 846: 842: 838: 832: 826: 823: 818: 815: 792: 785:of frequency 784: 780: 779:leading order 776: 772: 768: 767:neutron stars 764: 760: 753: 751: 748: 743: 740: 739:population II 736: 732: 727: 723: 718: 716: 712: 707: 702: 700: 692: 690: 688: 684: 679: 675: 657: 653: 646: 643: 640: 637: 634: 627: 623: 620: 600: 597: 594: 591: 588: 585: 582: 579: 574: 570: 566: 563: 555: 551: 547: 543: 538: 536: 532: 528: 524: 516: 510: 505: 503: 499: 494: 493:spectroscopic 490: 486: 482: 478: 474: 469: 467: 463: 462:open clusters 459: 455: 453: 448: 444: 440: 431: 424: 420: 416: 411: 407: 405: 401: 397: 393: 389: 385: 384:Doppler shift 381: 377: 376:proper motion 373: 368: 366: 365: 360: 356: 352: 348: 344: 340: 335: 333: 332: 327: 323: 319: 315: 311: 310: 305: 301: 297: 287: 279: 272: 263: 261: 259: 255: 251: 247: 242: 233:100 billion ( 231: 227: 223: 222:Kepler's laws 219: 215: 209: 201: 199: 197: 192: 184: 180: 176: 172: 168: 163: 156: 154: 150: 148: 144: 140: 136: 132: 121: 118: 115: 111: 107: 104: 101: 100:population II 97: 94: 90: 89: 86: 76: 66: 60: 58: 53: 48: 44: 39: 38: 33: 19: 5828: 5757:Solar radius 5751:Light-second 5741: 5731:Earth radius 5642:by Bill Keel 5613: 5607: 5603: 5585: 5569: 5548: 5541:Bibliography 5488: 5482: 5476: 5441: 5437: 5427: 5385: 5381: 5374: 5331: 5327: 5321: 5310: 5300: 5257: 5253: 5247: 5204: 5200: 5194: 5167: 5163: 5157: 5123:(3): 43–47. 5120: 5114: 5104: 5061: 5057: 5051: 5024: 5020: 5014: 4971: 4967: 4960: 4917: 4913: 4907: 4864: 4860: 4854: 4827: 4823: 4814: 4793: 4785: 4768: 4760: 4744: 4709: 4703: 4692: 4667: 4661: 4655: 4612: 4606: 4599: 4546: 4540: 4534: 4520:cite journal 4504: 4472: 4466: 4455: 4446: 4414: 4408: 4398: 4382: 4350: 4344: 4334: 4323:. Retrieved 4305: 4294:. Retrieved 4260:(1): 43–55. 4257: 4251: 4241: 4196: 4190: 4172: 4148:1721.1/60956 4113: 4109: 4103: 4092:. Retrieved 4046: 4042: 4029: 3970: 3966: 3915: 3911: 3902: 3867: 3863: 3795: 3791: 3785: 3771: 3712: 3708: 3698: 3654: 3648: 3642: 3630:. Retrieved 3618:Weekly Topic 3617: 3608: 3597:. Retrieved 3583: 3551:(483): 707. 3548: 3544: 3534: 3501: 3495: 3489: 3468: 3456:. Retrieved 3447: 3438: 3426:. Retrieved 3412: 3393: 3387: 3348: 3342: 3336: 3325: 3282: 3276: 3270: 3258:. Retrieved 3239: 3222: 3216: 3210: 3183: 3177: 3167: 3155:. Retrieved 3142: 3130:. Retrieved 3116: 3097: 3061:Space portal 3036:Edwin Hubble 3032:proportional 3029: 3016: 3005: 2997: 2989: 2980: 2919: 2899: 2882: 2878: 2767: 2764: 2753: 2738: 2729: 2714:Please help 2702: 2675: 2667: 2660: 2566: 2559: 2555: 2544: 2529: 2520: 2505:Please help 2493: 2469: 2359: 2352: 2343: 2338: 2333: 2331: 2326: 2322: 2258: 2254: 2213: 2204: 2196: 2189: 2182: 2131: 2126: 2122: 2118: 2070: 2061: 2057: 2055: 2043: 2011: 2004: 2000: 1996: 1771: 1756: 1744: 1705: 1674: 1571:Range (Mpc) 1560:Distance to 1536:such as the 1534:star cluster 1531: 1516: 1501:Hubble's law 1442:neutron star 1438:X-ray bursts 1350: 1346: 1329: 1321: 1306: 1229: 1220:weak lensing 1207: 1201: 1193: 1189: 1184: 805:is given by 757: 744: 731:population I 726:Walter Baade 719: 703: 696: 677: 673: 553: 539: 533:, coined by 530: 520: 485:Binary stars 480: 470: 456: 436: 398:, including 369: 362: 358: 336: 329: 307: 293: 258:Solar System 243: 211: 190: 188: 166: 151: 138: 134: 130: 128: 73:January 2023 70: 54: 52:lead section 5260:: 673–710. 4820:Udalski, A. 4786:ApJ Letters 3225:: L49–L52. 2562:RenĂ© Racine 2066:photosphere 1708:Olin Wilson 1666:19.4 ± 5.0 1652:16.8 ± 2.4 1638:15.9 ± 0.9 1624:18.8 ± 3.8 1610:15.4 ± 1.1 1596:21.1 ± 3.9 1487:light curve 1331:Light echos 1210:subject to 771:black holes 699:calibration 512:themselves. 452:square root 419:dark energy 415:dark matter 326:light-years 191:fundamental 5860:Astrometry 5854:Categories 5812:gigaparsec 5806:megaparsec 5800:kiloparsec 5788:light-year 5305:Welch, D. 5207:(4): 289. 5170:(2): 121. 5027:(4): 403. 4974:(1): 102. 4867:(1): L29. 4511:80 pc 4389:28 pc 4325:2015-10-18 4296:2019-10-23 4206:1710.05835 4094:2019-08-04 3722:2302.06621 3632:30 January 3599:2020-11-02 3358:1804.09365 3285:(2): 161. 3260:17 October 3109:References 2064:), of its 2046:supernovae 2017:Supernovae 1738:using the 1669:> 1000 1341:See also: 1204:extinction 1008:chirp mass 683:extinction 523:luminosity 196:astrometry 147:luminosity 5782:terametre 5770:gigametre 5707:Astronomy 5498:1002.3359 5468:0004-637X 5366:119096479 5341:1411.3596 5292:119263173 5267:1004.1856 5214:0806.3018 5177:1006.2458 5130:0903.4088 5071:0902.3747 5034:0909.0181 4981:0805.1592 4647:121612286 4569:CiteSeerX 4549:: 79–87. 4482:1408.1697 4424:0811.2943 4391:to RS Pup 4360:0802.1501 4267:0710.0759 4156:0004-637X 4123:0904.1017 4059:CiteSeerX 4013:0028-0836 3980:1307.2638 3940:0031-9007 3894:0031-9228 3763:256846834 3747:1476-4687 3664:0907.4495 3575:0004-6280 3458:April 12, 3292:1401.0484 3090:Footnotes 3024:evolution 3020:formation 2957:Σ 2951:⁡ 2930:⁡ 2836:− 2831:∗ 2812:− 2790:∝ 2732:July 2022 2703:does not 2638:σ 2606:− 2577:Φ 2523:July 2022 2494:does not 2452:˙ 2419:˙ 2410:⁡ 2394:− 2388:− 2301:± 2295:− 2292:≈ 2279:≈ 2238:⊙ 2163:ω 2095:Δ 2090:θ 2087:Δ 2078:ω 1967:− 1949:− 1941:⁡ 1905:⁡ 1855:− 1837:− 1829:⁡ 1793:⁡ 1655:> 100 1497:Redshifts 1491:SN 2003fg 1236:hypernova 1224:redshifts 843:π 638:− 592:− 580:⁡ 567:⋅ 550:bolometer 443:Milky Way 423:neutrinos 343:Hipparcos 339:precision 322:arcsecond 316:, with 2 300:astronomy 250:asteroids 179:Questacon 102:galaxies. 57:summarize 5825:See also 5764:☉ 5705:used in 5583:(2013). 5523:20164924 5420:17628238 5239:18463474 5096:16325249 4952:15728812 4899:17860528 4778:Archived 4753:Archived 4736:40679907 4591:18827791 4319:Archived 4290:Archived 4233:29094696 4164:14028891 4085:Archived 3830:10017261 3755:36792736 3689:15178494 3626:Archived 3593:Archived 3452:Archived 3422:Archived 3317:55928992 3254:Archived 3126:Archived 3047:See also 2678:universe 2325:method ( 2030:NGC 4526 2026:SN 1994D 1462:Cepheids 1270:GW170817 1232:kilonova 747:kilonova 693:Problems 498:velocity 402:and the 400:Cepheids 304:parallax 264:Parallax 216:and the 183:Canberra 5531:4389201 5503:Bibcode 5446:Bibcode 5400:Bibcode 5346:Bibcode 5272:Bibcode 5219:Bibcode 5182:Bibcode 5135:Bibcode 5076:Bibcode 5039:Bibcode 5006:6275274 4986:Bibcode 4932:Bibcode 4879:Bibcode 4842:Bibcode 4830:: 221. 4714:Bibcode 4672:Bibcode 4627:Bibcode 4561:Bibcode 4487:Bibcode 4429:Bibcode 4365:Bibcode 4272:Bibcode 4211:Bibcode 4128:Bibcode 4081:8926158 4051:Bibcode 4021:4327285 3985:Bibcode 3920:Bibcode 3872:Bibcode 3838:5808548 3810:Bibcode 3727:Bibcode 3669:Bibcode 3553:Bibcode 3526:4316734 3506:Bibcode 3363:Bibcode 3297:Bibcode 3227:Bibcode 3188:Bibcode 3186:: 338. 3041:quasars 2724:removed 2709:sources 2515:removed 2500:sources 2195:equals 1724:spectra 1686:nebulae 1554:Method 1380:(SMC), 1376:(LMC), 978:is the 954:is the 331:parsecs 143:parsecs 5794:parsec 5620:  5593:  5559:  5529:  5521:  5484:Nature 5466:  5418:  5364:  5290:  5237:  5094:  5004:  4950:  4897:  4734:  4645:  4589:  4571:  4513:(4.2%) 4231:  4192:Nature 4181:& 4162:  4154:  4079:  4061:  4019:  4011:  3967:Nature 3938:  3892:  3836:  3828:  3761:  3753:  3745:  3709:Nature 3687:  3622:Caglow 3573:  3524:  3497:Nature 3428:3 June 3400:  3351:. A1. 3315:  3157:13 May 3008:errors 2775:  2659:where 2574:  2549:, the 2438:Where 2367:  2266:  2139:  2117:where 1714:, the 1590:Novae 1582:15–25 1538:Hyades 1425:(GCLF) 1419:(PNLF) 1398:galaxy 982:, and 934:where 781:, the 672:where 489:visual 466:Hyades 226:ratios 139:direct 5814:(Gpc) 5808:(Mpc) 5802:(kpc) 5527:S2CID 5493:arXiv 5444:: 1. 5416:S2CID 5390:arXiv 5362:S2CID 5336:arXiv 5288:S2CID 5262:arXiv 5235:S2CID 5209:arXiv 5172:arXiv 5125:arXiv 5092:S2CID 5066:arXiv 5029:arXiv 5002:S2CID 4976:arXiv 4948:S2CID 4922:arXiv 4895:S2CID 4869:arXiv 4832:arXiv 4800:arXiv 4732:JSTOR 4643:S2CID 4617:arXiv 4587:S2CID 4551:arXiv 4477:arXiv 4419:arXiv 4355:arXiv 4262:arXiv 4201:arXiv 4160:S2CID 4118:arXiv 4088:(PDF) 4077:S2CID 4039:(PDF) 4017:S2CID 3975:arXiv 3834:S2CID 3800:arXiv 3759:S2CID 3717:arXiv 3685:S2CID 3659:arXiv 3522:S2CID 3475:arXiv 3353:arXiv 3313:S2CID 3287:arXiv 3152:(PDF) 3132:9 May 2945:1.333 2798:0.307 2354:Novae 1678:stars 1663:0.10 1579:0.16 1466:novae 1431:(SBF) 1181:power 735:metal 359:micro 254:radar 230:Radar 214:Earth 177:; at 5796:(pc) 5790:(ly) 5784:(Tm) 5778:(au) 5772:(Gm) 5753:(ls) 5618:ISBN 5591:ISBN 5557:ISBN 5519:PMID 5464:ISSN 4526:link 4507:1910 4385:1992 4229:PMID 4152:ISSN 4009:ISSN 3936:ISSN 3890:ISSN 3826:PMID 3751:PMID 3743:ISSN 3634:2012 3571:ISSN 3460:2014 3430:2016 3398:ISBN 3337:Gaia 3262:2014 3250:NASA 3159:2023 3134:2021 3022:and 2900:The 2883:The 2707:any 2705:cite 2498:any 2496:cite 2397:2.31 2391:9.96 2327:MLCS 2298:19.3 2034:NASA 1979:7.48 1955:2.55 1925:3.37 1867:7.52 1843:2.45 1813:3.34 1710:and 1649:0.5 1635:0.3 1621:0.4 1607:0.3 1593:0.4 1499:and 1476:The 1470:The 1464:and 1384:and 491:and 421:and 364:Gaia 129:The 5740:or 5511:doi 5489:463 5454:doi 5442:317 5408:doi 5386:546 5354:doi 5280:doi 5227:doi 5143:doi 5121:396 5084:doi 5062:696 4994:doi 4972:684 4940:doi 4918:652 4887:doi 4865:642 4722:doi 4710:104 4680:doi 4668:232 4635:doi 4613:128 4579:doi 4547:240 4495:doi 4473:572 4437:doi 4415:495 4373:doi 4351:480 4280:doi 4258:478 4219:doi 4197:551 4144:hdl 4136:doi 4114:725 4069:doi 4001:hdl 3993:doi 3971:323 3928:doi 3880:doi 3818:doi 3735:doi 3713:614 3677:doi 3655:506 3561:doi 3514:doi 3502:368 3373:doi 3349:616 3305:doi 3283:785 3223:323 3196:doi 2948:log 2927:log 2889:CCD 2718:by 2509:by 2401:log 2380:max 2304:0.3 2230:1.4 2222:of 2038:ESA 2007:M31 1932:log 1896:log 1820:log 1784:log 1641:50 1627:50 1613:50 1599:20 1585:29 1566:Mpc 1208:are 769:or 613:or 571:log 475:or 353:'s 298:in 241:). 218:Sun 5856:: 5738:🜹 5606:, 5579:; 5555:. 5525:. 5517:. 5509:. 5501:. 5487:. 5462:. 5452:. 5440:. 5436:. 5414:, 5406:, 5398:, 5384:, 5360:. 5352:. 5344:. 5332:36 5330:. 5309:. 5286:. 5278:. 5270:. 5258:48 5256:. 5233:. 5225:. 5217:. 5205:15 5203:. 5180:. 5168:60 5166:. 5141:. 5133:. 5119:. 5113:. 5090:. 5082:. 5074:. 5060:. 5037:. 5025:59 5023:. 5000:. 4992:. 4984:. 4970:. 4946:. 4938:. 4930:. 4916:. 4893:. 4885:. 4877:. 4863:. 4840:. 4828:51 4826:. 4784:, 4759:, 4730:. 4720:. 4708:. 4702:. 4678:. 4666:. 4641:. 4633:. 4625:. 4611:. 4585:. 4577:. 4567:. 4559:. 4545:. 4522:}} 4518:{{ 4503:. 4493:. 4485:. 4471:. 4465:. 4445:. 4435:. 4427:. 4413:. 4407:. 4381:. 4371:. 4363:. 4349:. 4343:. 4288:. 4278:. 4270:. 4256:. 4250:. 4227:. 4217:. 4209:. 4195:. 4189:. 4158:. 4150:. 4142:. 4134:. 4126:. 4112:. 4083:. 4075:. 4067:. 4057:. 4047:48 4045:. 4041:. 4015:. 4007:. 3999:. 3991:. 3983:. 3969:. 3965:. 3948:^ 3934:. 3926:. 3916:18 3914:. 3888:. 3878:. 3868:71 3866:. 3862:. 3846:^ 3832:. 3824:. 3816:. 3808:. 3796:49 3794:. 3757:. 3749:. 3741:. 3733:. 3725:. 3711:. 3707:. 3683:. 3675:. 3667:. 3653:. 3624:. 3620:. 3616:. 3569:. 3559:. 3549:81 3547:. 3543:. 3520:. 3512:. 3500:. 3450:. 3446:. 3420:. 3371:. 3361:. 3347:. 3341:. 3311:. 3303:. 3295:. 3281:. 3252:. 3248:. 3221:. 3194:. 3184:72 3182:. 3176:. 2405:10 2252:. 2192:ej 2185:ej 2036:, 1936:10 1900:10 1824:10 1788:10 1742:. 1692:. 1684:, 1680:, 1568:) 1299:. 1199:. 958:, 894:11 839:96 717:. 628:10 575:10 537:. 447:AU 417:, 406:. 318:AU 260:. 239:10 220:. 181:, 149:. 5766:) 5761:R 5759:( 5747:) 5744:E 5742:R 5735:R 5733:( 5695:e 5688:t 5681:v 5624:. 5599:. 5565:. 5533:. 5513:: 5505:: 5495:: 5470:. 5456:: 5448:: 5410:: 5402:: 5392:: 5368:. 5356:: 5348:: 5338:: 5315:. 5294:. 5282:: 5274:: 5264:: 5241:. 5229:: 5221:: 5211:: 5188:. 5184:: 5174:: 5151:. 5145:: 5137:: 5127:: 5098:. 5086:: 5078:: 5068:: 5045:. 5041:: 5031:: 5008:. 4996:: 4988:: 4978:: 4954:. 4942:: 4934:: 4924:: 4901:. 4889:: 4881:: 4871:: 4848:. 4844:: 4834:: 4808:. 4802:: 4738:. 4724:: 4716:: 4686:. 4682:: 4674:: 4649:. 4637:: 4629:: 4619:: 4593:. 4581:: 4563:: 4553:: 4528:) 4509:± 4497:: 4489:: 4479:: 4439:: 4431:: 4421:: 4387:± 4375:: 4367:: 4357:: 4328:. 4299:. 4282:: 4274:: 4264:: 4235:. 4221:: 4213:: 4203:: 4166:. 4146:: 4138:: 4130:: 4120:: 4097:. 4071:: 4053:: 4023:. 4003:: 3995:: 3987:: 3977:: 3942:. 3930:: 3922:: 3896:. 3882:: 3874:: 3840:. 3820:: 3812:: 3802:: 3765:. 3737:: 3729:: 3719:: 3691:. 3679:: 3671:: 3661:: 3636:. 3602:. 3577:. 3563:: 3555:: 3528:. 3516:: 3508:: 3483:. 3477:: 3462:. 3432:. 3406:. 3381:. 3375:: 3365:: 3355:: 3335:" 3319:. 3307:: 3299:: 3289:: 3264:. 3233:. 3229:: 3204:. 3198:: 3190:: 3161:. 3136:. 2966:C 2963:+ 2960:) 2954:( 2942:= 2939:) 2936:D 2933:( 2851:. 2847:) 2842:) 2839:M 2827:M 2823:( 2820:3 2816:e 2809:1 2806:( 2801:M 2794:e 2787:) 2784:M 2781:( 2778:N 2745:) 2739:( 2734:) 2730:( 2726:. 2712:. 2671:0 2668:M 2664:0 2661:m 2642:2 2634:2 2630:/ 2624:2 2620:) 2614:0 2610:m 2603:m 2600:( 2596:e 2592:A 2589:= 2586:) 2583:m 2580:( 2536:) 2530:( 2525:) 2521:( 2517:. 2503:. 2449:x 2426:. 2416:x 2385:= 2375:V 2371:M 2308:. 2287:V 2283:M 2274:B 2270:M 2234:M 2199:Ξ 2197:V 2190:V 2183:V 2169:, 2158:j 2155:e 2151:V 2145:= 2142:d 2127:t 2123:Ξ 2119:ω 2105:, 2098:t 2081:= 2062:t 2060:( 2058:Ξ 1983:. 1976:+ 1973:) 1970:I 1964:V 1961:( 1958:) 1952:( 1945:P 1928:) 1922:( 1919:+ 1916:V 1913:= 1909:d 1892:5 1871:. 1864:+ 1861:) 1858:I 1852:V 1849:( 1846:) 1840:( 1833:P 1816:) 1810:( 1807:+ 1804:V 1801:= 1797:d 1780:5 1564:( 1404:. 1285:0 1281:H 1254:0 1250:H 1234:/ 1167:. 1159:5 1155:/ 1151:1 1147:) 1141:2 1137:m 1133:+ 1128:1 1124:m 1120:( 1113:5 1109:/ 1105:3 1101:) 1095:2 1091:m 1085:1 1081:m 1077:( 1071:= 1066:M 1044:) 1039:2 1035:m 1031:, 1026:1 1022:m 1018:( 992:M 966:c 942:G 922:, 914:5 910:c 905:5 897:3 889:f 882:3 879:5 874:) 868:M 863:G 860:( 855:3 851:/ 847:8 833:= 827:t 824:d 819:f 816:d 793:f 678:M 674:m 658:5 654:/ 650:) 647:5 644:+ 641:M 635:m 632:( 624:= 621:d 601:5 598:+ 595:M 589:m 586:= 583:d 564:5 554:d 425:. 273:. 237:× 235:1 185:. 116:. 95:. 75:) 71:( 61:. 34:. 20:)

Index

Standard sirens
Distance measures (cosmology)

lead section
summarize
provide an accessible overview

star-forming galaxies
population II
planetary nebula luminosity function
Virgo Supercluster
parsecs
luminosity

2003 Canberra bushfires
Mount Stromlo Observatory
Questacon
Canberra
astrometry
Astronomical unit
Earth
Sun
Kepler's laws
ratios
Radar
Venus transits
asteroids
radar
Solar System
Parallax in astronomy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑