Knowledge

Stable principal bundle

Source đź“ť

79:
The essential definition of stability for principal bundles was made by Ramanathan, but applies only to the case of Riemann surfaces. In this section we state the definition as appearing in the work of Anchouche and Biswas which is valid over any Kähler manifold, and indeed makes sense more generally
2258:-Higgs bundle. The above definition of stability for principal bundles generalises to these objects by requiring the reductions of structure group are compatible with the Higgs field of the principal Higgs bundle. It was shown by Anchouche and Biswas that the analogue of the 534: 1362: 813: 1840: 2355:
Ramanathan, A., 1996, November. Moduli for principal bundles over algebraic curves: II. In Proceedings of the Indian Academy of Sciences-Mathematical Sciences (Vol. 106, No. 4, pp. 421-449). Springer India.
2346:
Ramanathan, A., 1996, August. Moduli for principal bundles over algebraic curves: I. In Proceedings of the Indian Academy of Sciences-Mathematical Sciences (Vol. 106, No. 3, pp. 301-328). Springer India.
1452: 450: 2164: 1916: 1218: 1262: 1493: 575: 1628: 629: 2380:
Anchouche, B. and Biswas, I., 2001. Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold. American Journal of Mathematics, 123(2), pp.207-228.
686: 67:
if and only if it is polystable, was shown to be true in the case of projective manifolds by Subramanian and Ramanathan, and for arbitrary compact Kähler manifolds by Anchouche and
2104: 2058: 1965: 1291: 1121: 350: 2212: 1992: 1667: 137: 2312: 169: 2130: 1713: 406: 376: 991: 852: 724: 215: 458: 1863: 1061: 2280: 2256: 2188: 2078: 2032: 2012: 1936: 1753: 1733: 1687: 1593: 1573: 1553: 1533: 1513: 1406: 1386: 1169: 1149: 1081: 1035: 1011: 956: 936: 916: 896: 876: 299: 275: 255: 235: 189: 105: 55:
Many statements about the stability of vector bundles can be translated into the language of stable principal bundles. For example, the analogue of the
1299: 732: 1761: 2226:
of the adjoint bundle (because a representation that splits as a direct sum would lead to the associated bundle splitting as a direct sum).
56: 1411: 411: 64: 2259: 632: 2406: 2135: 1875: 1177: 1227: 1457: 2334:
Ramanathan, A., 1975. Stable principal bundles on a compact Riemann surface. Mathematische Annalen, 213(2), pp.129-152.
2401: 2219: 1365: 542: 310: 1598: 584: 638: 2364:
Subramanian, S. and Ramanathan, A., 1988. Einstein-Hermitian connections on principal bundles and stability.
2215: 2396: 2167: 2083: 2037: 1944: 21: 1267: 1086: 315: 2193: 1973: 1866: 1633: 1221: 41: 33: 1388:, and the above definition of stability of the principal bundle is equivalent to slope stability of 81: 120: 2315: 2285: 142: 25: 2109: 1692: 385: 355: 60: 1294: 964: 821: 529:{\displaystyle \deg \sigma ^{*}T_{\operatorname {rel} }P/Q>0\quad ({\text{resp. }}\geq 0).} 278: 703: 194: 37: 1848: 1014: 114: 111: 108: 68: 45: 1040: 84:. This reduces to Ramanathan's definition in the case the manifold is a Riemann surface. 2166:
and can take the associated subbundle. In this case more care must be taken because the
2265: 2241: 2173: 2063: 2017: 1997: 1939: 1921: 1738: 1718: 1672: 1578: 1558: 1538: 1518: 1498: 1391: 1371: 1154: 1134: 1066: 1020: 996: 941: 921: 901: 881: 861: 697: 578: 379: 284: 260: 240: 220: 174: 90: 2222:, the latter condition hinting at why stability of the principal bundle only leads to 2390: 693: 49: 2235: 1715:
on which the reduction of structure group is defined, and therefore a subsheaf of
1063:, so it is enough to consider reductions of structure group over the entirety of 1968: 1357:{\displaystyle E=P\times _{\operatorname {GL} (n,\mathbb {C} )}\mathbb {C} ^{n}} 855: 17: 2106:
is slope polystable. Again the key point here is that for a parabolic subgroup
938:
is bigger than two, the value of the integral will agree with that over all of
808:{\displaystyle \operatorname {deg} (F):=\int _{X}c_{1}(F)\wedge \omega ^{n-1},} 1835:{\displaystyle \deg \sigma ^{*}T_{\operatorname {rel} }P/Q=\mu (E)-\mu (F)} 44:
for the purpose of defining the moduli space of G-principal bundles over a
59:
for principal bundles, that a holomorphic principal bundle over a compact
878:. In the above setting the degree is computed for a bundle defined over 277:
vary holomorphically, which makes sense as the structure group is a
1171:
there are several natural vector bundles one may associate to it.
40:. The concept of stability for principal bundles was introduced by 2234:
Just as one can generalise a vector bundle to the notion of a
1447:{\displaystyle Q\subset \operatorname {GL} (n,\mathbb {C} )} 427: 1408:. The essential point is that a maximal parabolic subgroup 650: 590: 445:{\displaystyle \operatorname {codim} (X\backslash U)\geq 2} 257:. Holomorphic here means that the transition functions for 2238:, it is possible to formulate a definition of a principal 2159:{\displaystyle {\mathfrak {q}}\subset {\mathfrak {g}}} 2288: 2268: 2244: 2196: 2176: 2138: 2112: 2086: 2066: 2040: 2020: 2000: 1976: 1947: 1924: 1918:
there is still a natural associated vector bundle to
1911:{\displaystyle G=\operatorname {GL} (n,\mathbb {C} )} 1878: 1851: 1764: 1741: 1721: 1695: 1675: 1636: 1601: 1581: 1561: 1541: 1521: 1501: 1460: 1414: 1394: 1374: 1302: 1270: 1230: 1213:{\displaystyle G=\operatorname {GL} (n,\mathbb {C} )} 1180: 1157: 1137: 1089: 1069: 1043: 1023: 999: 967: 944: 924: 904: 884: 864: 824: 735: 706: 641: 587: 545: 461: 414: 388: 358: 318: 287: 263: 243: 223: 197: 177: 145: 123: 93: 2282:-Higgs bundles in the case where the base manifold 1257:{\displaystyle \operatorname {GL} (n,\mathbb {C} )} 52:and others on the moduli spaces of vector bundles. 2306: 2274: 2250: 2206: 2182: 2158: 2124: 2098: 2072: 2052: 2026: 2006: 1986: 1959: 1930: 1910: 1857: 1834: 1747: 1727: 1707: 1681: 1661: 1622: 1587: 1567: 1547: 1527: 1507: 1488:{\displaystyle 0\subset W\subset \mathbb {C} ^{n}} 1487: 1446: 1400: 1380: 1356: 1285: 1256: 1212: 1163: 1143: 1115: 1075: 1055: 1029: 1005: 985: 950: 930: 910: 890: 870: 846: 807: 718: 680: 623: 569: 528: 444: 400: 370: 344: 293: 269: 249: 229: 209: 183: 171:be a compact Kähler manifold of complex dimension 163: 131: 99: 918:, but since the codimension of the complement of 2034:is semistable if and only if the adjoint bundle 2262:for Higgs vector bundles is true for principal 8: 570:{\displaystyle T_{\operatorname {rel} }P/Q} 2287: 2267: 2243: 2198: 2197: 2195: 2175: 2150: 2149: 2140: 2139: 2137: 2111: 2085: 2065: 2039: 2019: 1999: 1978: 1977: 1975: 1946: 1923: 1901: 1900: 1877: 1850: 1794: 1785: 1775: 1763: 1740: 1720: 1694: 1674: 1650: 1635: 1623:{\displaystyle W\subset \mathbb {C} ^{n}} 1614: 1610: 1609: 1600: 1580: 1560: 1540: 1520: 1500: 1479: 1475: 1474: 1459: 1437: 1436: 1413: 1393: 1373: 1348: 1344: 1343: 1333: 1332: 1316: 1301: 1277: 1273: 1272: 1269: 1247: 1246: 1229: 1203: 1202: 1179: 1156: 1136: 1105: 1088: 1068: 1042: 1022: 998: 966: 943: 923: 903: 883: 863: 829: 823: 790: 768: 758: 734: 705: 669: 656: 640: 624:{\displaystyle \left.P/Q\right|_{U}\to U} 609: 596: 586: 559: 550: 544: 509: 491: 482: 472: 460: 413: 408:is some open subset with the codimension 387: 357: 334: 317: 286: 262: 242: 222: 196: 176: 144: 125: 124: 122: 92: 2376: 2374: 2372: 2370: 2060:is slope semistable, and furthermore if 2327: 1127:Relation to stability of vector bundles 681:{\displaystyle T(\left.P/Q\right|_{U})} 32:is a generalisation of the notion of a 2342: 2340: 1224:, then the standard representation of 1017:, by assumption on the codimension of 48:, a generalisation of earlier work by 2132:, one obtains a parabolic subalgebra 1630:, one may take the associated bundle 7: 2099:{\displaystyle \operatorname {ad} P} 2053:{\displaystyle \operatorname {ad} P} 1960:{\displaystyle \operatorname {ad} P} 2199: 2151: 2141: 1979: 14: 1872:When the structure group is not 1515:is invariant under the subgroup 1454:corresponds to a choice of flag 1286:{\displaystyle \mathbb {C} ^{n}} 1151:-bundle for a complex Lie group 1116:{\displaystyle \sigma :X\to P/Q} 345:{\displaystyle \sigma :U\to P/Q} 57:Kobayashi–Hitchin correspondence 2260:nonabelian Hodge correspondence 2207:{\displaystyle {\mathfrak {g}}} 1987:{\displaystyle {\mathfrak {g}}} 1755:. It can then be computed that 1662:{\displaystyle F=P\times _{Q}W} 1535:. Since the structure group of 505: 2301: 2289: 1905: 1891: 1829: 1823: 1814: 1808: 1595:preserves the vector subspace 1441: 1427: 1337: 1323: 1251: 1237: 1207: 1193: 1099: 961:Notice that in the case where 841: 835: 780: 774: 748: 742: 710: 675: 645: 615: 520: 506: 433: 421: 328: 201: 158: 146: 1: 1293:allows one to construct the 311:reduction of structure group 132:{\displaystyle \mathbb {C} } 2307:{\displaystyle (X,\omega )} 1669:, which is a sub-bundle of 217:is a holomorphic principal 164:{\displaystyle (X,\omega )} 65:Hermite–Einstein connection 2423: 2316:complex projective variety 2125:{\displaystyle Q\subset G} 1967:, with fibre given by the 1708:{\displaystyle U\subset X} 401:{\displaystyle U\subset X} 371:{\displaystyle Q\subset G} 1366:holomorphic vector bundle 117:over the complex numbers 986:{\displaystyle \dim X=1} 847:{\displaystyle c_{1}(F)} 2014:. The principal bundle 1869:of the vector bundles. 631:otherwise known as the 281:. The principal bundle 30:stable principal bundle 2308: 2276: 2252: 2208: 2184: 2168:adjoint representation 2160: 2126: 2100: 2074: 2054: 2028: 2008: 1988: 1961: 1932: 1912: 1859: 1836: 1749: 1729: 1709: 1683: 1663: 1624: 1589: 1569: 1549: 1529: 1509: 1489: 1448: 1402: 1382: 1358: 1287: 1258: 1214: 1165: 1145: 1117: 1077: 1057: 1031: 1007: 987: 952: 932: 912: 892: 872: 848: 809: 720: 719:{\displaystyle F\to X} 682: 625: 571: 530: 446: 402: 372: 346: 295: 271: 251: 231: 211: 210:{\displaystyle P\to X} 185: 165: 133: 101: 2407:Differential geometry 2309: 2277: 2253: 2209: 2185: 2161: 2127: 2101: 2075: 2055: 2029: 2009: 1989: 1962: 1933: 1913: 1860: 1837: 1750: 1730: 1710: 1684: 1664: 1625: 1590: 1570: 1550: 1530: 1510: 1490: 1449: 1403: 1383: 1359: 1288: 1259: 1215: 1166: 1146: 1118: 1078: 1058: 1032: 1008: 988: 953: 933: 913: 893: 873: 849: 810: 721: 683: 626: 572: 531: 447: 403: 373: 347: 296: 272: 252: 232: 212: 186: 166: 134: 102: 22:differential geometry 2286: 2266: 2242: 2194: 2174: 2136: 2110: 2084: 2064: 2038: 2018: 1998: 1974: 1945: 1922: 1876: 1858:{\displaystyle \mu } 1849: 1762: 1739: 1719: 1693: 1673: 1634: 1599: 1579: 1559: 1555:has been reduced to 1539: 1519: 1499: 1458: 1412: 1392: 1372: 1300: 1268: 1228: 1222:general linear group 1178: 1155: 1135: 1087: 1067: 1041: 1021: 997: 965: 942: 922: 902: 882: 862: 822: 733: 704: 639: 585: 581:of the fibre bundle 543: 459: 412: 386: 356: 316: 285: 261: 241: 221: 195: 175: 143: 121: 91: 42:Annamalai Ramanathan 34:stable vector bundle 1056:{\displaystyle U=X} 82:algebraic varieties 2402:Algebraic geometry 2304: 2272: 2248: 2204: 2180: 2156: 2122: 2096: 2070: 2050: 2024: 2004: 1984: 1957: 1928: 1908: 1855: 1832: 1745: 1725: 1705: 1679: 1659: 1620: 1585: 1565: 1545: 1525: 1505: 1485: 1444: 1398: 1378: 1354: 1283: 1254: 1210: 1161: 1141: 1131:Given a principal 1113: 1073: 1053: 1037:we must have that 1027: 1003: 983: 948: 928: 908: 888: 868: 844: 805: 726:is defined to be 716: 688:. Recall that the 678: 621: 567: 526: 442: 398: 380:parabolic subgroup 368: 342: 291: 267: 247: 227: 207: 181: 161: 129: 97: 36:to the setting of 26:algebraic geometry 2275:{\displaystyle G} 2251:{\displaystyle G} 2183:{\displaystyle G} 2073:{\displaystyle P} 2027:{\displaystyle P} 2007:{\displaystyle G} 1931:{\displaystyle P} 1748:{\displaystyle X} 1728:{\displaystyle E} 1682:{\displaystyle E} 1588:{\displaystyle Q} 1568:{\displaystyle Q} 1548:{\displaystyle P} 1528:{\displaystyle Q} 1508:{\displaystyle W} 1401:{\displaystyle E} 1381:{\displaystyle X} 1295:associated bundle 1164:{\displaystyle G} 1144:{\displaystyle G} 1076:{\displaystyle X} 1030:{\displaystyle U} 1006:{\displaystyle X} 951:{\displaystyle X} 931:{\displaystyle U} 911:{\displaystyle X} 891:{\displaystyle U} 871:{\displaystyle F} 512: 294:{\displaystyle P} 279:complex Lie group 270:{\displaystyle P} 250:{\displaystyle X} 230:{\displaystyle G} 184:{\displaystyle n} 100:{\displaystyle G} 38:principal bundles 20:, and especially 2414: 2381: 2378: 2365: 2362: 2356: 2353: 2347: 2344: 2335: 2332: 2313: 2311: 2310: 2305: 2281: 2279: 2278: 2273: 2257: 2255: 2254: 2249: 2213: 2211: 2210: 2205: 2203: 2202: 2189: 2187: 2186: 2181: 2165: 2163: 2162: 2157: 2155: 2154: 2145: 2144: 2131: 2129: 2128: 2123: 2105: 2103: 2102: 2097: 2080:is stable, then 2079: 2077: 2076: 2071: 2059: 2057: 2056: 2051: 2033: 2031: 2030: 2025: 2013: 2011: 2010: 2005: 1993: 1991: 1990: 1985: 1983: 1982: 1966: 1964: 1963: 1958: 1937: 1935: 1934: 1929: 1917: 1915: 1914: 1909: 1904: 1864: 1862: 1861: 1856: 1841: 1839: 1838: 1833: 1798: 1790: 1789: 1780: 1779: 1754: 1752: 1751: 1746: 1734: 1732: 1731: 1726: 1714: 1712: 1711: 1706: 1689:over the subset 1688: 1686: 1685: 1680: 1668: 1666: 1665: 1660: 1655: 1654: 1629: 1627: 1626: 1621: 1619: 1618: 1613: 1594: 1592: 1591: 1586: 1574: 1572: 1571: 1566: 1554: 1552: 1551: 1546: 1534: 1532: 1531: 1526: 1514: 1512: 1511: 1506: 1494: 1492: 1491: 1486: 1484: 1483: 1478: 1453: 1451: 1450: 1445: 1440: 1407: 1405: 1404: 1399: 1387: 1385: 1384: 1379: 1363: 1361: 1360: 1355: 1353: 1352: 1347: 1341: 1340: 1336: 1292: 1290: 1289: 1284: 1282: 1281: 1276: 1263: 1261: 1260: 1255: 1250: 1219: 1217: 1216: 1211: 1206: 1170: 1168: 1167: 1162: 1150: 1148: 1147: 1142: 1122: 1120: 1119: 1114: 1109: 1082: 1080: 1079: 1074: 1062: 1060: 1059: 1054: 1036: 1034: 1033: 1028: 1012: 1010: 1009: 1004: 993:, that is where 992: 990: 989: 984: 957: 955: 954: 949: 937: 935: 934: 929: 917: 915: 914: 909: 897: 895: 894: 889: 877: 875: 874: 869: 853: 851: 850: 845: 834: 833: 814: 812: 811: 806: 801: 800: 773: 772: 763: 762: 725: 723: 722: 717: 687: 685: 684: 679: 674: 673: 668: 664: 660: 630: 628: 627: 622: 614: 613: 608: 604: 600: 577:is the relative 576: 574: 573: 568: 563: 555: 554: 535: 533: 532: 527: 513: 510: 495: 487: 486: 477: 476: 451: 449: 448: 443: 407: 405: 404: 399: 377: 375: 374: 369: 351: 349: 348: 343: 338: 300: 298: 297: 292: 276: 274: 273: 268: 256: 254: 253: 248: 236: 234: 233: 228: 216: 214: 213: 208: 190: 188: 187: 182: 170: 168: 167: 162: 138: 136: 135: 130: 128: 106: 104: 103: 98: 2422: 2421: 2417: 2416: 2415: 2413: 2412: 2411: 2387: 2386: 2385: 2384: 2379: 2368: 2363: 2359: 2354: 2350: 2345: 2338: 2333: 2329: 2324: 2284: 2283: 2264: 2263: 2240: 2239: 2232: 2230:Generalisations 2192: 2191: 2172: 2171: 2134: 2133: 2108: 2107: 2082: 2081: 2062: 2061: 2036: 2035: 2016: 2015: 1996: 1995: 1972: 1971: 1943: 1942: 1920: 1919: 1874: 1873: 1847: 1846: 1781: 1771: 1760: 1759: 1737: 1736: 1717: 1716: 1691: 1690: 1671: 1670: 1646: 1632: 1631: 1608: 1597: 1596: 1577: 1576: 1557: 1556: 1537: 1536: 1517: 1516: 1497: 1496: 1473: 1456: 1455: 1410: 1409: 1390: 1389: 1370: 1369: 1342: 1312: 1298: 1297: 1271: 1266: 1265: 1226: 1225: 1176: 1175: 1153: 1152: 1133: 1132: 1129: 1085: 1084: 1065: 1064: 1039: 1038: 1019: 1018: 1015:Riemann surface 995: 994: 963: 962: 940: 939: 920: 919: 900: 899: 880: 879: 860: 859: 825: 820: 819: 786: 764: 754: 731: 730: 702: 701: 652: 649: 648: 637: 636: 633:vertical bundle 592: 589: 588: 583: 582: 546: 541: 540: 478: 468: 457: 456: 410: 409: 384: 383: 354: 353: 314: 313: 309:) if for every 283: 282: 259: 258: 239: 238: 219: 218: 193: 192: 173: 172: 141: 140: 119: 118: 115:algebraic group 89: 88: 77: 61:Kähler manifold 46:Riemann surface 12: 11: 5: 2420: 2418: 2410: 2409: 2404: 2399: 2389: 2388: 2383: 2382: 2366: 2357: 2348: 2336: 2326: 2325: 2323: 2320: 2303: 2300: 2297: 2294: 2291: 2271: 2247: 2231: 2228: 2214:is not always 2201: 2179: 2153: 2148: 2143: 2121: 2118: 2115: 2095: 2092: 2089: 2069: 2049: 2046: 2043: 2023: 2003: 1981: 1956: 1953: 1950: 1940:adjoint bundle 1927: 1907: 1903: 1899: 1896: 1893: 1890: 1887: 1884: 1881: 1854: 1843: 1842: 1831: 1828: 1825: 1822: 1819: 1816: 1813: 1810: 1807: 1804: 1801: 1797: 1793: 1788: 1784: 1778: 1774: 1770: 1767: 1744: 1724: 1704: 1701: 1698: 1678: 1658: 1653: 1649: 1645: 1642: 1639: 1617: 1612: 1607: 1604: 1584: 1564: 1544: 1524: 1504: 1482: 1477: 1472: 1469: 1466: 1463: 1443: 1439: 1435: 1432: 1429: 1426: 1423: 1420: 1417: 1397: 1377: 1351: 1346: 1339: 1335: 1331: 1328: 1325: 1322: 1319: 1315: 1311: 1308: 1305: 1280: 1275: 1253: 1249: 1245: 1242: 1239: 1236: 1233: 1209: 1205: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1160: 1140: 1128: 1125: 1112: 1108: 1104: 1101: 1098: 1095: 1092: 1072: 1052: 1049: 1046: 1026: 1002: 982: 979: 976: 973: 970: 947: 927: 907: 887: 867: 843: 840: 837: 832: 828: 816: 815: 804: 799: 796: 793: 789: 785: 782: 779: 776: 771: 767: 761: 757: 753: 750: 747: 744: 741: 738: 715: 712: 709: 698:coherent sheaf 677: 672: 667: 663: 659: 655: 651: 647: 644: 620: 617: 612: 607: 603: 599: 595: 591: 579:tangent bundle 566: 562: 558: 553: 549: 537: 536: 525: 522: 519: 516: 508: 504: 501: 498: 494: 490: 485: 481: 475: 471: 467: 464: 441: 438: 435: 432: 429: 426: 423: 420: 417: 397: 394: 391: 367: 364: 361: 341: 337: 333: 330: 327: 324: 321: 290: 266: 246: 226: 206: 203: 200: 180: 160: 157: 154: 151: 148: 127: 96: 76: 73: 13: 10: 9: 6: 4: 3: 2: 2419: 2408: 2405: 2403: 2400: 2398: 2397:Fiber bundles 2395: 2394: 2392: 2377: 2375: 2373: 2371: 2367: 2361: 2358: 2352: 2349: 2343: 2341: 2337: 2331: 2328: 2321: 2319: 2317: 2298: 2295: 2292: 2269: 2261: 2245: 2237: 2229: 2227: 2225: 2224:polystability 2221: 2217: 2177: 2169: 2146: 2119: 2116: 2113: 2093: 2090: 2087: 2067: 2047: 2044: 2041: 2021: 2001: 1970: 1954: 1951: 1948: 1941: 1925: 1897: 1894: 1888: 1885: 1882: 1879: 1870: 1868: 1852: 1826: 1820: 1817: 1811: 1805: 1802: 1799: 1795: 1791: 1786: 1782: 1776: 1772: 1768: 1765: 1758: 1757: 1756: 1742: 1722: 1702: 1699: 1696: 1676: 1656: 1651: 1647: 1643: 1640: 1637: 1615: 1605: 1602: 1582: 1562: 1542: 1522: 1502: 1480: 1470: 1467: 1464: 1461: 1433: 1430: 1424: 1421: 1418: 1415: 1395: 1375: 1367: 1349: 1329: 1326: 1320: 1317: 1313: 1309: 1306: 1303: 1296: 1278: 1243: 1240: 1234: 1231: 1223: 1199: 1196: 1190: 1187: 1184: 1181: 1172: 1158: 1138: 1126: 1124: 1110: 1106: 1102: 1096: 1093: 1090: 1070: 1050: 1047: 1044: 1024: 1016: 1000: 980: 977: 974: 971: 968: 959: 945: 925: 905: 885: 865: 857: 854:is the first 838: 830: 826: 802: 797: 794: 791: 787: 783: 777: 769: 765: 759: 755: 751: 745: 739: 736: 729: 728: 727: 713: 707: 699: 695: 694:vector bundle 691: 670: 665: 661: 657: 653: 642: 634: 618: 610: 605: 601: 597: 593: 580: 564: 560: 556: 551: 547: 523: 517: 514: 502: 499: 496: 492: 488: 483: 479: 473: 469: 465: 462: 455: 454: 453: 439: 436: 430: 424: 418: 415: 395: 392: 389: 381: 365: 362: 359: 339: 335: 331: 325: 322: 319: 312: 308: 304: 288: 280: 264: 244: 237:-bundle over 224: 204: 198: 178: 155: 152: 149: 116: 113: 110: 94: 85: 83: 74: 72: 70: 66: 62: 58: 53: 51: 50:David Mumford 47: 43: 39: 35: 31: 27: 23: 19: 2360: 2351: 2330: 2236:Higgs bundle 2233: 2223: 1871: 1865:denotes the 1844: 1735:over all of 1364:. This is a 1173: 1130: 960: 817: 689: 538: 306: 302: 86: 78: 54: 29: 15: 2220:irreducible 1969:Lie algebra 1174:Firstly if 856:Chern class 511:resp.  452:, we have 307:semi-stable 18:mathematics 2391:Categories 2322:References 378:a maximal 301:is called 191:. Suppose 75:Definition 2299:ω 2147:⊂ 2117:⊂ 2091:⁡ 2045:⁡ 1952:⁡ 1889:⁡ 1853:μ 1821:μ 1818:− 1806:μ 1777:∗ 1773:σ 1769:⁡ 1700:⊂ 1648:× 1606:⊂ 1471:⊂ 1465:⊂ 1425:⁡ 1419:⊂ 1321:⁡ 1314:× 1235:⁡ 1191:⁡ 1100:→ 1091:σ 972:⁡ 795:− 788:ω 784:∧ 756:∫ 740:⁡ 711:→ 616:→ 515:≥ 474:∗ 470:σ 466:⁡ 437:≥ 428:∖ 419:⁡ 393:⊂ 363:⊂ 329:→ 320:σ 202:→ 156:ω 112:reductive 109:connected 63:admits a 2216:faithful 1495:, where 898:inside 305:(resp. 1938:, the 1845:where 1575:, and 1220:, the 818:where 690:degree 382:where 303:stable 139:. Let 69:Biswas 2314:is a 1867:slope 1368:over 1013:is a 692:of a 539:Here 416:codim 107:be a 696:(or 500:> 352:for 87:Let 80:for 28:, a 24:and 2218:or 2190:on 2170:of 1994:of 1787:rel 1766:deg 1264:on 969:dim 858:of 737:deg 635:of 552:rel 484:rel 463:deg 16:In 2393:: 2369:^ 2339:^ 2318:. 2088:ad 2042:ad 1949:ad 1886:GL 1422:GL 1318:GL 1232:GL 1188:GL 1123:. 1083:, 958:. 752::= 700:) 71:. 2302:) 2296:, 2293:X 2290:( 2270:G 2246:G 2200:g 2178:G 2152:g 2142:q 2120:G 2114:Q 2094:P 2068:P 2048:P 2022:P 2002:G 1980:g 1955:P 1926:P 1906:) 1902:C 1898:, 1895:n 1892:( 1883:= 1880:G 1830:) 1827:F 1824:( 1815:) 1812:E 1809:( 1803:= 1800:Q 1796:/ 1792:P 1783:T 1743:X 1723:E 1703:X 1697:U 1677:E 1657:W 1652:Q 1644:P 1641:= 1638:F 1616:n 1611:C 1603:W 1583:Q 1563:Q 1543:P 1523:Q 1503:W 1481:n 1476:C 1468:W 1462:0 1442:) 1438:C 1434:, 1431:n 1428:( 1416:Q 1396:E 1376:X 1350:n 1345:C 1338:) 1334:C 1330:, 1327:n 1324:( 1310:P 1307:= 1304:E 1279:n 1274:C 1252:) 1248:C 1244:, 1241:n 1238:( 1208:) 1204:C 1200:, 1197:n 1194:( 1185:= 1182:G 1159:G 1139:G 1111:Q 1107:/ 1103:P 1097:X 1094:: 1071:X 1051:X 1048:= 1045:U 1025:U 1001:X 981:1 978:= 975:X 946:X 926:U 906:X 886:U 866:F 842:) 839:F 836:( 831:1 827:c 803:, 798:1 792:n 781:) 778:F 775:( 770:1 766:c 760:X 749:) 746:F 743:( 714:X 708:F 676:) 671:U 666:| 662:Q 658:/ 654:P 646:( 643:T 619:U 611:U 606:| 602:Q 598:/ 594:P 565:Q 561:/ 557:P 548:T 524:. 521:) 518:0 507:( 503:0 497:Q 493:/ 489:P 480:T 440:2 434:) 431:U 425:X 422:( 396:X 390:U 366:G 360:Q 340:Q 336:/ 332:P 326:U 323:: 289:P 265:P 245:X 225:G 205:X 199:P 179:n 159:) 153:, 150:X 147:( 126:C 95:G

Index

mathematics
differential geometry
algebraic geometry
stable vector bundle
principal bundles
Annamalai Ramanathan
Riemann surface
David Mumford
Kobayashi–Hitchin correspondence
Kähler manifold
Hermite–Einstein connection
Biswas
algebraic varieties
connected
reductive
algebraic group
complex Lie group
reduction of structure group
parabolic subgroup
tangent bundle
vertical bundle
vector bundle
coherent sheaf
Chern class
Riemann surface
general linear group
associated bundle
holomorphic vector bundle
slope
adjoint bundle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑