Knowledge (XXG)

Steam-Generating Heavy Water Reactor

Source đź“ť

1204: 1194: 1174: 1184: 142:
plant builds. In 1976 this decision was reversed due to the combination of a predicted sharp drop in electricity demand, higher than expected costs, and the lack of obvious export potential in a shrinking nuclear market. Given the limited number of new reactors expected in the future, modified versions of the AGR were selected over SGHWR as no further development effort was needed.
141:
This contest ultimately selected the AGR design, and several AGRs began construction in the late 1960s. These quickly ran into problems, and by the early 1970s the design was considered a failure. In 1974, a larger version of the SGHWR with a design power of 650 MWe was selected for future power
186:
to the point where natural uranium can no longer be used as fuel. The ability to run on natural uranium was considered a major benefit in the 1960s as it appeared the demand for enrichment would outstrip the supply. By the 1970s it was clear that fuel supplies were not going to be a problem, and the
51:
A single prototype of the design, the 100 MWe "Winfrith Reactor", was connected to the grid in 1967 and ran until 1990. A larger commercial design with a 650 MWe power rating was selected in 1974 as the basis for future reactor builds in the UK, but declining electricity use led to this
178:
designs in that it uses a low-pressure reactor vessel containing the moderator and high-pressure piping for the coolant. This both reduces the total amount of expensive heavy water required, as well as reducing the complexity of the reactor vessel, which in turn reduces construction costs and
145:
The Winfrith Reactor reactor remained operational and was used for a wide variety of purposes until it ceased operation in October 1990 after 23 years of operations. As of 2019 it is in the process of being decommissioned by Magnox Ltd on behalf of the
114:
Although Magnox was technically successful it was expensive. For future orders, several alternative reactor designs concepts were studied during the early 1960s. As part of this program, a 100 
304: 1207: 338: 1238: 1002: 122:
in the 1960s and was connected to the grid in 1967. It is often known simply as the "Winfrith Reactor". The other designs produced similar sub-scale prototypes of the
397: 231: 331: 194:
The idea of using heavy water for the moderator and light water for the coolant was explored by a number of designs during this period. The
1233: 643: 560: 636: 195: 60: 842: 182:
It differs in that it uses ordinary "light" water as a coolant, whereas CANDU uses heavy water here as well. Light water reduces the
324: 299: 147: 1177: 1152: 1017: 253: 1095: 929: 767: 531: 409: 1085: 934: 392: 310: 275: 1243: 859: 692: 939: 648: 402: 83:. These designs differ with the baseline CANDU design, which uses heavy water as the coolant as well as the moderator. 1197: 1159: 997: 824: 762: 587: 491: 377: 108: 1045: 724: 207: 155: 697: 1228: 1022: 631: 414: 199: 68: 239: 1187: 1112: 1012: 924: 159: 891: 1142: 1117: 731: 508: 1007: 211: 131: 1037: 992: 454: 382: 198:
in Quebec used the same solution, but this was not successful and shut down after a short lifetime. The
41: 987: 972: 1147: 1122: 907: 501: 369: 187:
use of unenriched fuel was no longer a major design goal. Using slight enrichment leads to higher
1027: 864: 791: 602: 359: 151: 37: 210:, was built but never commissioned. The last attempt to use this basic design was the modern 847: 687: 626: 1105: 1065: 592: 519: 348: 183: 163: 104: 29: 597: 1080: 1060: 1055: 1050: 800: 707: 676: 658: 123: 96: 25: 1222: 536: 175: 45: 811: 316: 111:(AGR) abandoned this for a variety of reasons, using low-enriched uranium instead. 40:
and normal "light" water as the coolant. The coolant boils in the reactor, like a
869: 459: 33: 191:
and more economical fuel cycles, offsetting the now-low costs of enrichment.
580: 570: 127: 1075: 214:
of the early 2000s, but development ended without an example being built.
52:
decision being reversed in 1976 and no production models were ever built.
1100: 949: 944: 884: 553: 481: 464: 449: 424: 135: 119: 115: 92: 1090: 1070: 469: 444: 879: 874: 854: 834: 819: 702: 439: 419: 387: 203: 188: 100: 76: 64: 429: 916: 772: 575: 565: 80: 72: 56: 777: 666: 476: 434: 305:
Steam Generating Heavy Water Reactor – SGHWR – The final chapter
320: 91:
SGHWR was a departure from previous UK designs, which had used
55:
SGHWR was among a number of similar designs, which include the
750: 614: 311:
Heavy Water Reactors: Status and Projected Development
254:"Rail transfer landmark for UK waste disposal project" 1135: 1036: 966: 915: 906: 833: 799: 790: 749: 742: 722: 675: 657: 613: 518: 500: 368: 276:"UK completes transfer of Winfrith waste drums" 202:in Japan suffered a similar fate. The Italian 1003:Small sealed transportable autonomous (SSTAR) 332: 8: 126:also at Winfrith, the Magnox-derived AGR at 1183: 980: 912: 796: 746: 739: 515: 339: 325: 317: 118:(MWe) prototype of the SGHWR was built at 1239:Nuclear technology in the United Kingdom 223: 150:. Between 2022 and 2024, 1068 drums of 930:Liquid-fluoride thorium reactor (LFTR) 935:Molten-Salt Reactor Experiment (MSRE) 196:Gentilly-1 Nuclear Generating Station 7: 18:Steam Generating Heavy Water Reactor 940:Integral Molten Salt Reactor (IMSR) 256:. World Nuclear News. 28 March 2022 61:Gentilly Nuclear Generating Station 44:, and drives the power-extraction 14: 174:SGHWR is similar to the Canadian 154:were transported by train to the 148:Nuclear Decommissioning Authority 99:gas as the coolant. The original 1203: 1202: 1193: 1192: 1182: 1173: 1172: 1023:Fast Breeder Test Reactor (FBTR) 166:while being stored at Winfrith. 1013:Energy Multiplier Module (EM2) 1: 300:RSRL Winfrith Site Operations 75:, and the never-commissioned 813:Uranium Naturel Graphite Gaz 1234:Nuclear power reactor types 1160:Aircraft Reactor Experiment 200:Fugen Advanced Test Reactor 109:Advanced Gas-cooled Reactor 69:Fugen Advanced Test Reactor 1260: 998:Liquid-metal-cooled (LMFR) 208:Latina Nuclear Power Plant 156:Low Level Waste Repository 1168: 1123:Stable Salt Reactor (SSR) 1018:Reduced-moderation (RMWR) 983: 825:Advanced gas-cooled (AGR) 355: 1188:List of nuclear reactors 1028:Dual fluid reactor (DFR) 644:Steam-generating (SGHWR) 162:but had decayed down to 160:intermediate-level waste 158:. The material was once 124:High Temperature Reactor 1178:Nuclear fusion reactors 1143:Organic nuclear reactor 349:nuclear fission reactor 103:was designed to run on 212:Advanced CANDU Reactor 132:Prototype Fast Reactor 28:design for commercial 95:as the moderator and 42:boiling water reactor 1244:Heavy water reactors 1008:Traveling-wave (TWR) 492:Supercritical (SCWR) 378:Aqueous homogeneous 116:megawatt electrical 107:but the subsequent 1198:Nuclear technology 280:World Nuclear News 242:on 7 October 2008. 232:"SGHWR Fuel Ponds" 206:design, hosted at 1216: 1215: 1208:Nuclear accidents 1131: 1130: 962: 961: 958: 957: 902: 901: 786: 785: 718: 717: 152:radioactive waste 38:neutron moderator 1251: 1229:Nuclear reactors 1206: 1205: 1196: 1195: 1186: 1185: 1176: 1175: 1118:Helium gas (GFR) 981: 976: 913: 797: 747: 740: 735: 734: 516: 512: 511: 341: 334: 327: 318: 292: 291: 289: 287: 272: 266: 265: 263: 261: 250: 244: 243: 238:. Archived from 228: 30:nuclear reactors 1259: 1258: 1254: 1253: 1252: 1250: 1249: 1248: 1219: 1218: 1217: 1212: 1164: 1127: 1032: 977: 970: 969: 954: 898: 829: 804: 782: 754: 736: 729: 728: 727: 714: 680: 671: 653: 618: 609: 523: 506: 505: 504: 496: 410:Natural fission 364: 363: 351: 345: 296: 295: 285: 283: 282:. 13 March 2024 274: 273: 269: 259: 257: 252: 251: 247: 230: 229: 225: 220: 184:neutron economy 172: 164:low-level waste 105:natural uranium 89: 12: 11: 5: 1257: 1255: 1247: 1246: 1241: 1236: 1231: 1221: 1220: 1214: 1213: 1211: 1210: 1200: 1190: 1180: 1169: 1166: 1165: 1163: 1162: 1157: 1156: 1155: 1150: 1139: 1137: 1133: 1132: 1129: 1128: 1126: 1125: 1120: 1115: 1110: 1109: 1108: 1103: 1098: 1093: 1088: 1083: 1078: 1073: 1068: 1063: 1058: 1053: 1042: 1040: 1034: 1033: 1031: 1030: 1025: 1020: 1015: 1010: 1005: 1000: 995: 993:Integral (IFR) 990: 984: 978: 967: 964: 963: 960: 959: 956: 955: 953: 952: 947: 942: 937: 932: 927: 921: 919: 910: 904: 903: 900: 899: 897: 896: 895: 894: 889: 888: 887: 882: 877: 872: 857: 852: 851: 850: 839: 837: 831: 830: 828: 827: 822: 817: 808: 806: 802: 794: 788: 787: 784: 783: 781: 780: 775: 770: 765: 759: 757: 752: 744: 737: 723: 720: 719: 716: 715: 713: 712: 711: 710: 705: 700: 695: 684: 682: 678: 673: 672: 670: 669: 663: 661: 655: 654: 652: 651: 646: 641: 640: 639: 634: 623: 621: 616: 611: 610: 608: 607: 606: 605: 600: 595: 590: 585: 584: 583: 578: 573: 563: 558: 557: 556: 551: 548: 545: 542: 528: 526: 521: 513: 498: 497: 495: 494: 489: 488: 487: 484: 479: 474: 473: 472: 467: 457: 452: 447: 442: 437: 432: 427: 422: 412: 407: 406: 405: 400: 395: 390: 380: 374: 372: 366: 365: 357: 356: 353: 352: 346: 344: 343: 336: 329: 321: 315: 314: 308: 307:, Magnox, 2015 302: 294: 293: 267: 245: 222: 221: 219: 216: 171: 168: 97:carbon dioxide 88: 85: 46:steam turbines 26:United Kingdom 13: 10: 9: 6: 4: 3: 2: 1256: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1226: 1224: 1209: 1201: 1199: 1191: 1189: 1181: 1179: 1171: 1170: 1167: 1161: 1158: 1154: 1151: 1149: 1146: 1145: 1144: 1141: 1140: 1138: 1134: 1124: 1121: 1119: 1116: 1114: 1111: 1107: 1104: 1102: 1099: 1097: 1094: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1048: 1047: 1044: 1043: 1041: 1039: 1038:Generation IV 1035: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 988:Breeder (FBR) 986: 985: 982: 979: 974: 965: 951: 948: 946: 943: 941: 938: 936: 933: 931: 928: 926: 923: 922: 920: 918: 914: 911: 909: 905: 893: 890: 886: 883: 881: 878: 876: 873: 871: 868: 867: 866: 863: 862: 861: 858: 856: 853: 849: 846: 845: 844: 841: 840: 838: 836: 832: 826: 823: 821: 818: 816: 814: 810: 809: 807: 805: 798: 795: 793: 789: 779: 776: 774: 771: 769: 766: 764: 761: 760: 758: 756: 748: 745: 741: 738: 733: 726: 721: 709: 706: 704: 701: 699: 696: 694: 691: 690: 689: 686: 685: 683: 681: 674: 668: 665: 664: 662: 660: 656: 650: 647: 645: 642: 638: 635: 633: 630: 629: 628: 625: 624: 622: 620: 612: 604: 601: 599: 596: 594: 591: 589: 586: 582: 579: 577: 574: 572: 569: 568: 567: 564: 562: 559: 555: 552: 549: 546: 543: 540: 539: 538: 535: 534: 533: 530: 529: 527: 525: 517: 514: 510: 503: 499: 493: 490: 485: 483: 480: 478: 475: 471: 468: 466: 463: 462: 461: 458: 456: 453: 451: 448: 446: 443: 441: 438: 436: 433: 431: 428: 426: 423: 421: 418: 417: 416: 413: 411: 408: 404: 401: 399: 396: 394: 391: 389: 386: 385: 384: 381: 379: 376: 375: 373: 371: 367: 362: 361: 354: 350: 342: 337: 335: 330: 328: 323: 322: 319: 312: 309: 306: 303: 301: 298: 297: 281: 277: 271: 268: 255: 249: 246: 241: 237: 233: 227: 224: 217: 215: 213: 209: 205: 201: 197: 192: 190: 185: 180: 177: 176:CANDU reactor 169: 167: 165: 161: 157: 153: 149: 143: 139: 137: 133: 129: 125: 121: 117: 112: 110: 106: 102: 98: 94: 86: 84: 82: 78: 74: 70: 66: 62: 58: 53: 49: 47: 43: 39: 35: 31: 27: 23: 19: 1046:Sodium (SFR) 973:fast-neutron 812: 358: 313:, IAEA, 2002 284:. Retrieved 279: 270: 258:. Retrieved 248: 240:the original 235: 226: 193: 181: 179:complexity. 173: 144: 140: 113: 90: 54: 50: 21: 17: 15: 1081:Superphénix 908:Molten-salt 860:VHTR (HTGR) 637:HW BLWR 250 603:R4 Marviken 532:Pressurized 502:Heavy water 486:many others 415:Pressurized 370:Light water 79:reactor in 34:heavy water 1223:Categories 865:PBR (PBMR) 218:References 130:, and the 32:. It uses 917:Fluorides 581:IPHWR-700 576:IPHWR-540 571:IPHWR-220 360:Moderator 347:Types of 128:Windscale 59:-derived 950:TMSR-LF1 945:TMSR-500 925:Fuji MSR 885:THTR-300 725:Graphite 588:PHWR KWU 554:ACR-1000 482:IPWR-900 465:ACPR1000 460:HPR-1000 450:CPR-1000 425:APR-1400 286:15 March 260:28 March 136:Dounreay 120:Winfrith 93:graphite 24:) was a 1091:FBR-600 1071:CFR-600 1066:BN-1200 732:coolant 659:Organic 544:CANDU 9 541:CANDU 6 509:coolant 470:ACP1000 445:CAP1400 383:Boiling 87:History 36:as the 1136:Others 1076:Phénix 1061:BN-800 1056:BN-600 1051:BN-350 880:HTR-PM 875:HTR-10 855:UHTREX 820:Magnox 815:(UNGG) 708:Lucens 703:KS 150 440:ATMEA1 420:AP1000 403:Kerena 204:CIRENE 189:burnup 170:Design 101:Magnox 77:CIRENE 67:, the 65:Quebec 1153:Piqua 1148:Arbus 1106:PRISM 848:MHR-T 843:GTMHR 773:EGP-6 768:AMB-X 743:Water 688:HWGCR 627:HWLWR 566:IPHWR 537:CANDU 398:ESBWR 236:UKAEA 81:Italy 73:Japan 57:CANDU 22:SGHWR 1113:Lead 1096:CEFR 1086:PFBR 968:None 778:RBMK 763:AM-1 693:EL-4 667:WR-1 649:AHWR 593:MZFR 561:CVTR 550:AFCR 477:VVER 435:APWR 430:APR+ 393:ABWR 288:2024 262:2022 16:The 1101:PFR 892:PMR 870:AVR 792:Gas 730:by 698:KKN 632:ATR 547:EC6 507:by 455:EPR 388:BWR 134:at 71:in 63:in 1225:: 835:He 801:CO 677:CO 598:R3 278:. 234:. 138:. 48:. 975:) 971:( 803:2 755:O 753:2 751:H 679:2 619:O 617:2 615:H 524:O 522:2 520:D 340:e 333:t 326:v 290:. 264:. 20:(

Index

United Kingdom
nuclear reactors
heavy water
neutron moderator
boiling water reactor
steam turbines
CANDU
Gentilly Nuclear Generating Station
Quebec
Fugen Advanced Test Reactor
Japan
CIRENE
Italy
graphite
carbon dioxide
Magnox
natural uranium
Advanced Gas-cooled Reactor
megawatt electrical
Winfrith
High Temperature Reactor
Windscale
Prototype Fast Reactor
Dounreay
Nuclear Decommissioning Authority
radioactive waste
Low Level Waste Repository
intermediate-level waste
low-level waste
CANDU reactor

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑