Knowledge

Calkin–Wilf tree

Source 📝

48: 36: 624: 209: 267: 1215: 1420: 487:. Thus, in either case, the parent is a fraction with a smaller sum of numerator and denominator, so repeated reduction of this type must eventually reach the number 1. As a graph with one outgoing edge per vertex and one root reachable by all other vertices, the Calkin–Wilf tree must indeed be a tree. 1673:
The description here is dual to the original definition by Calkin and Wilf, which begins by defining the child relationship and derives the parent relationship as part of a proof that every rational appears once in the tree. As defined here, every rational appears once by definition, and instead the
1598:
in that both are binary trees with each positive rational number appearing exactly once. Additionally, the top levels of the two trees appear very similar, and in both trees, the same numbers appear at the same levels. One tree can be obtained from the other by performing a
866:
Because the Calkin–Wilf tree contains every positive rational number exactly once, so does this sequence. The denominator of each fraction equals the numerator of the next fraction in the sequence. The Calkin–Wilf sequence can also be generated directly by the formula
1283: 1603:
on the numbers at each level of the trees. Alternatively, the number at a given node of the Calkin–Wilf tree can be converted into the number at the same position in the Stern–Brocot tree, and vice versa, by a process involving the reversal of the
1020:: the number of consecutive 1s starting from the least significant bit, then the number of consecutive 0s starting from the first block of 1s, and so on. The sequence of numbers generated in this way gives the 951: 1288: 1415:{\displaystyle {\begin{aligned}\operatorname {fusc} (2n)&=\operatorname {fusc} (n)\\\operatorname {fusc} (2n+1)&=\operatorname {fusc} (n)+\operatorname {fusc} (n+1),\end{aligned}}} 1206:; however, in the Calkin–Wilf tree the binary numbers are integers (positions in the breadth-first traversal) while in the question mark function they are real numbers between 0 and 1. 1717:, then the fractions on the level just below the top of the tree, reading from left to right, then the fractions on the next level down, reading from left to right, etc." 607:: its inorder does not coincide with the sorted order of its vertices. However, it is closely related to a different binary search tree on the same set of vertices, the 1969: 1612:: the left-to-right traversal order of the tree is the same as the numerical order of the numbers in it. This property is not true of the Calkin–Wilf tree. 1527:
in which each power occurs at most twice. This can be seen from the recurrence defining fusc: the expressions as a sum of powers of two for an even number
1245: 1468:. Thus, the diatomic sequence forms both the sequence of numerators and the sequence of denominators of the numbers in the Calkin–Wilf sequence. 304:
occurs as a vertex and has one outgoing edge to another vertex, its parent, except for the root of the tree, the number 1, which has no parent.
1892: 1847: 1203: 873: 1936: 490:
The children of any vertex in the Calkin–Wilf tree may be computed by inverting the formula for the parents of a vertex. Each vertex
2079: 2074: 2020: 1608:
representations of these numbers. However, in other ways, they have different properties: for instance, the Stern–Brocot tree is a
2249: 1787:
and to uncited work of Lind. However, Carlitz's paper describes a more restricted class of sums of powers of two, counted by
1927: 241:, since they drew some ideas from a 1973 paper by George N. Raney. Stern's diatomic series was formulated much earlier by 993: 1202:
A similar conversion between run-length-encoded binary numbers and continued fractions can also be used to evaluate
2244: 307:
The parent of any rational number can be determined after placing the number into simplest terms, as a fraction
1600: 612: 330: 1701:: "a list of all positive rational numbers, each appearing once and only once, can be made by writing down 1540:) or two 1s (in which case the rest of the expression is formed by doubling each term in an expression for 47: 1722: 88: 1595: 608: 246: 2112: 1013: 73: 2150: 1838: 1833: 1657: 1480: 1253: 242: 185: 1534:
either have no 1s in them (in which case they are formed by doubling each term in an expression for
635:
is the sequence of rational numbers generated by a breadth-first traversal of the Calkin–Wilf tree,
2218: 2159: 1275: 1009: 69: 2139: 2098: 2059: 2000: 1948: 1747: 1609: 1605: 1578:
6 = 4 + 2 = 4 + 1 + 1 = 2 + 2 + 1 + 1
1183: 1144: 1021: 604: 87:. The tree is rooted at the number 1, and any rational number expressed in simplest terms as the 2200: 2181: 2016: 1843: 1582:
has three representations as a sum of powers of two with at most two copies of each power, so
17: 2154: 1274:, named according to the obfuscating appearance of the sequence of values and defined by the 603:
As each vertex has two children, the Calkin–Wilf tree is a binary tree. However, it is not a
2129: 2121: 2088: 2051: 1978: 1964: 1940: 1901: 1869: 1232: 254: 217: 177: 1992: 1883: 611:: the vertices at each level of the two trees coincide, and are related to each other by a 2204: 2012: 1988: 1960: 1879: 1653: 250: 213: 173: 84: 81: 35: 1919: 627:
The Calkin–Wilf sequence, depicted as the red spiral tracing through the Calkin–Wilf tree
249:. Even earlier, a similar tree (including only the fractions between 0 and 1) appears in 2031: 2027: 2070: 2005: 279: 1906: 1442:
th rational number in a breadth-first traversal of the Calkin–Wilf tree is the number
2238: 2185: 2143: 1829: 164:. Every positive rational number appears exactly once in the tree. It is named after 61: 2102: 1983: 1547:), so the number of representations is the sum of the number of representations for 208: 2228: 1915: 1524: 1218: 234: 230: 169: 623: 226: 165: 1890:
Berstel, Jean; de Luca, Aldo (1997), "Sturmian words, Lyndon words and trees",
266: 2222: 2134: 2093: 1874: 1187: 1186:
is . But to use this method, the length of the continued fraction must be an
2209: 2190: 1560:, matching the recurrence. Similarly, each representation for an odd number 1214: 245:, a 19th-century German mathematician who also invented the closely related 77: 1857: 2125: 2110:
Raney, George N. (1973), "On continued fractions and finite automata",
2063: 2039: 1952: 1190:. So should be replaced by the equivalent continued fraction . Hence 271: 2055: 2038:
Knuth, Donald E.; Rupert, C.P.; Smith, Alex; Stong, Richard (2003),
1944: 946:{\displaystyle q_{i+1}={\frac {1}{2\lfloor q_{i}\rfloor -q_{i}+1}}} 1213: 622: 265: 207: 192:. Its sequence of numerators (or, offset by one, denominators) is 2034:, pp. 230–232, reprints of notes originally written in 1976. 1682: 1680: 1238:
0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, … (sequence
1674:
fact that the resulting structure is a tree requires a proof.
2032:
EWD 578: More about the function "fusc" (A sequel to EWD570)
1842:(3rd ed.), Berlin; New York: Springer, pp. 94–97, 1102:
In the other direction, using the continued fraction of any
1574:
and adding 1, again matching the recurrence. For instance,
1240: 1111:
as the run-length encoding of a binary number gives back
2077:(2006), "Functional pearl: Enumerating the rationals", 1725:
techniques for performing this breadth first traversal.
2007:
Selected Writings on Computing: A Personal Perspective
1856:
Bates, Bruce; Bunder, Martin; Tognetti, Keith (2010),
233:, who considered it in a 2000 paper. In a 1997 paper, 1734: 1286: 876: 1812: 2004: 1414: 945: 1718: 1686: 1963:(1964), "A problem in partitions related to the 1858:"Linking the Calkin-Wilf and Stern-Brocot trees" 1517:, and also counts the number of ways of writing 2160:Journal für die reine und angewandte Mathematik 1628: 1970:Bulletin of the American Mathematical Society 574:has one child whose value is greater than 1, 8: 2040:"Recounting the Rationals, Continued: 10906" 918: 905: 1568:is formed by doubling a representation for 1759: 1698: 512:has one child whose value is less than 1, 237:and Aldo de Luca called the same tree the 2133: 2092: 1982: 1905: 1873: 1287: 1285: 971:th number in the sequence, starting from 928: 912: 896: 881: 875: 278:The Calkin–Wilf tree may be defined as a 2155:"Ueber eine zahlentheoretische Funktion" 2028:EWD 570: An exercise for Dr.R.M.Burstall 188:of the Calkin–Wilf tree is known as the 53:How values are derived from their parent 1784: 1771: 1621: 282:in which each positive rational number 172:, but appears in other works including 1262:th value in the sequence is the value 184:The sequence of rational numbers in a 1640: 270:The Calkin–Wilf tree, drawn using an 7: 1783:The OEIS entry credits this fact to 1737:credit this formula to Moshe Newman. 225:The Calkin–Wilf tree is named after 112:has as its two children the numbers 1937:Mathematical Association of America 1813:Bates, Bunder & Tognetti (2010) 1746:The fusc name was given in 1976 by 1594:The Calkin–Wilf tree resembles the 1073:: The continued fraction is hence 1041:: The continued fraction is hence 1204:Minkowski's question mark function 25: 2080:Journal of Functional Programming 2044:The American Mathematical Monthly 1862:European Journal of Combinatorics 1719:Gibbons, Lester & Bird (2006) 1687:Gibbons, Lester & Bird (2006) 1209: 999:It's also possible to calculate 46: 34: 1984:10.1090/S0002-9904-1964-11118-6 27:Binary tree of rational numbers 1402: 1390: 1378: 1372: 1356: 1341: 1328: 1322: 1306: 1297: 18:Stern's diatomic sequence 1: 2224:Fractions on a Binary Tree II 1928:American Mathematical Monthly 1907:10.1016/S0304-3975(96)00101-6 1590:Relation to Stern–Brocot tree 196:, and can be computed by the 1893:Theoretical Computer Science 1629:Berstel & de Luca (1997) 1662:, vol. III, p. 27 2266: 1920:"Recounting the rationals" 2205:"Stern's Diatomic Series" 2094:10.1017/S0956796806005880 1875:10.1016/j.ejc.2010.04.002 1229:Stern's diatomic sequence 1210:Stern's diatomic sequence 552:. Similarly, each vertex 2030:, pp. 215–216, and 1760:Calkin & Wilf (2000) 1750:; see EWD570 and EWD578. 1699:Calkin & Wilf (2000) 1601:bit-reversal permutation 613:bit-reversal permutation 262:Definition and structure 2250:Trees (data structures) 619:Breadth first traversal 331:greatest common divisor 194:Stern's diatomic series 186:breadth-first traversal 1723:functional programming 1416: 1225: 1069:i = 1990 = 11111000110 1037:i = 1081 = 10000111001 947: 628: 275: 222: 2113:Mathematische Annalen 1481:binomial coefficients 1479:is the number of odd 1417: 1217: 1014:binary representation 948: 626: 269: 211: 2219:Bogomolny, Alexander 1839:Proofs from THE BOOK 1425:with the base cases 1284: 1276:recurrence relations 1254:zero-based numbering 874: 633:Calkin–Wilf sequence 538:, because of course 243:Moritz Abraham Stern 190:Calkin–Wilf sequence 41:The Calkin–Wilf tree 2001:Dijkstra, Edsger W. 1735:Knuth et al. (2003) 1010:run-length encoding 2201:Weisstein, Eric W. 2186:"Calkin–Wilf Tree" 2182:Weisstein, Eric W. 2135:10338.dmlcz/128216 2126:10.1007/BF01355980 1834:Ziegler, Günter M. 1748:Edsger W. Dijkstra 1721:discuss efficient 1610:binary search tree 1606:continued fraction 1412: 1410: 1226: 1184:continued fraction 1145:continued fraction 1024:representation of 1022:continued fraction 1008:directly from the 943: 629: 605:binary search tree 276: 223: 2245:Integer sequences 2073:; Lester, David; 1849:978-3-540-40460-6 1596:Stern–Brocot tree 1115:itself. Example: 941: 609:Stern–Brocot tree 247:Stern–Brocot tree 16:(Redirected from 2257: 2231: 2214: 2213: 2195: 2194: 2168: 2151:Stern, Moritz A. 2146: 2137: 2105: 2096: 2066: 2025: 2010: 1995: 1986: 1965:Stirling numbers 1955: 1924: 1910: 1909: 1900:(1–2): 171–203, 1886: 1877: 1868:(7): 1637–1661, 1852: 1816: 1810: 1804: 1802: 1794: 1781: 1775: 1769: 1763: 1757: 1751: 1744: 1738: 1732: 1726: 1716: 1714: 1713: 1710: 1707: 1696: 1690: 1684: 1675: 1671: 1665: 1663: 1659:Harmonices Mundi 1650: 1644: 1638: 1632: 1626: 1585: 1573: 1567: 1559: 1552: 1546: 1539: 1533: 1522: 1516: 1505: 1499: 1498: 1478: 1467: 1466: 1464: 1463: 1456: 1453: 1441: 1432: 1428: 1421: 1419: 1418: 1413: 1411: 1269: 1261: 1243: 1233:integer sequence 1224: 1193: 1181: 1180: 1178: 1177: 1174: 1171: 1150: 1142: 1141: 1139: 1138: 1135: 1132: 1114: 1110: 1097: 1096: 1094: 1093: 1090: 1087: 1065: 1064: 1062: 1061: 1058: 1055: 1032: 1019: 1007: 991: 980: 970: 964: 952: 950: 949: 944: 942: 940: 933: 932: 917: 916: 897: 892: 891: 861: 859: 858: 855: 852: 845: 843: 842: 839: 836: 829: 827: 826: 823: 820: 813: 811: 810: 807: 804: 797: 795: 794: 791: 788: 781: 779: 778: 775: 772: 765: 763: 762: 759: 756: 749: 747: 746: 743: 740: 733: 731: 730: 727: 724: 717: 715: 714: 711: 708: 701: 699: 698: 695: 692: 685: 683: 682: 679: 676: 669: 667: 666: 663: 660: 653: 651: 650: 647: 644: 599: 598: 596: 595: 590: 587: 573: 572: 570: 569: 564: 561: 551: 537: 536: 534: 533: 524: 521: 511: 510: 508: 507: 502: 499: 486: 485: 483: 482: 477: 474: 460: 459: 457: 456: 451: 448: 439:, the parent of 438: 436: 434: 433: 428: 425: 415: 414: 412: 411: 402: 399: 389: 388: 386: 385: 380: 377: 368:, the parent of 367: 365: 363: 362: 357: 354: 344: 338: 328: 327: 325: 324: 319: 316: 303: 302: 300: 299: 294: 291: 255:Harmonices Mundi 218:Harmonices Mundi 178:Harmonices Mundi 163: 162: 160: 159: 154: 151: 137: 136: 134: 133: 124: 121: 111: 110: 108: 107: 102: 99: 85:rational numbers 66:Calkin–Wilf tree 50: 38: 21: 2265: 2264: 2260: 2259: 2258: 2256: 2255: 2254: 2235: 2234: 2217: 2199: 2198: 2180: 2179: 2176: 2149: 2109: 2071:Gibbons, Jeremy 2069: 2056:10.2307/3647762 2037: 2023: 2013:Springer-Verlag 1999: 1959: 1945:10.2307/2589182 1922: 1913: 1889: 1855: 1850: 1828: 1825: 1820: 1819: 1811: 1807: 1796: 1788: 1782: 1778: 1770: 1766: 1758: 1754: 1745: 1741: 1733: 1729: 1711: 1708: 1705: 1704: 1702: 1697: 1693: 1685: 1678: 1672: 1668: 1652: 1651: 1647: 1639: 1635: 1627: 1623: 1618: 1592: 1584:fusc(6 + 1) = 3 1583: 1569: 1561: 1554: 1548: 1541: 1535: 1528: 1518: 1507: 1504: 1503: 1497: 1492: 1491: 1490: 1489: 1488: 1484: 1472: 1457: 1454: 1447: 1446: 1444: 1443: 1437: 1430: 1426: 1409: 1408: 1359: 1332: 1331: 1309: 1282: 1281: 1263: 1257: 1239: 1222: 1212: 1197: 1191: 1175: 1172: 1169: 1168: 1166: 1163: 1158: 1154: 1148: 1136: 1133: 1130: 1129: 1127: 1124: 1119: 1112: 1108: 1103: 1091: 1088: 1085: 1084: 1082: 1080: 1074: 1072: 1059: 1056: 1053: 1052: 1050: 1048: 1042: 1040: 1030: 1025: 1017: 1005: 1000: 992:represents the 988: 982: 978: 972: 966: 962: 957: 924: 908: 901: 877: 872: 871: 856: 853: 850: 849: 847: 840: 837: 834: 833: 831: 824: 821: 818: 817: 815: 808: 805: 802: 801: 799: 792: 789: 786: 785: 783: 776: 773: 770: 769: 767: 760: 757: 754: 753: 751: 744: 741: 738: 737: 735: 728: 725: 722: 721: 719: 712: 709: 706: 705: 703: 696: 693: 690: 689: 687: 680: 677: 674: 673: 671: 664: 661: 658: 657: 655: 648: 645: 642: 641: 639: 621: 591: 588: 579: 578: 576: 575: 565: 562: 557: 556: 554: 553: 539: 525: 522: 517: 516: 514: 513: 503: 500: 495: 494: 492: 491: 478: 475: 466: 465: 463: 462: 452: 449: 444: 443: 441: 440: 429: 426: 421: 420: 418: 417: 403: 400: 395: 394: 392: 391: 381: 378: 373: 372: 370: 369: 358: 355: 350: 349: 347: 346: 340: 334: 320: 317: 312: 311: 309: 308: 295: 292: 287: 286: 284: 283: 264: 206: 155: 152: 143: 142: 140: 139: 125: 122: 117: 116: 114: 113: 103: 100: 95: 94: 92: 91: 58: 57: 56: 55: 54: 51: 43: 42: 39: 28: 23: 22: 15: 12: 11: 5: 2263: 2261: 2253: 2252: 2247: 2237: 2236: 2233: 2232: 2215: 2196: 2175: 2174:External links 2172: 2171: 2170: 2147: 2120:(4): 265–283, 2107: 2087:(3): 281–291, 2067: 2050:(7): 642–643, 2035: 2021: 1997: 1977:(2): 275–278, 1957: 1914:Calkin, Neil; 1911: 1887: 1853: 1848: 1830:Aigner, Martin 1824: 1821: 1818: 1817: 1805: 1795:instead of by 1785:Carlitz (1964) 1776: 1772:Carlitz (1964) 1764: 1752: 1739: 1727: 1691: 1676: 1666: 1645: 1633: 1620: 1619: 1617: 1614: 1591: 1588: 1580: 1579: 1501: 1500: 1493: 1486: 1485: 1423: 1422: 1407: 1404: 1401: 1398: 1395: 1392: 1389: 1386: 1383: 1380: 1377: 1374: 1371: 1368: 1365: 1362: 1360: 1358: 1355: 1352: 1349: 1346: 1343: 1340: 1337: 1334: 1333: 1330: 1327: 1324: 1321: 1318: 1315: 1312: 1310: 1308: 1305: 1302: 1299: 1296: 1293: 1290: 1289: 1250: 1249: 1223:fusc(0...4096) 1211: 1208: 1200: 1199: 1195: 1161: 1156: 1152: 1122: 1106: 1100: 1099: 1078: 1070: 1067: 1046: 1038: 1028: 1003: 986: 976: 960: 954: 953: 939: 936: 931: 927: 923: 920: 915: 911: 907: 904: 900: 895: 890: 887: 884: 880: 864: 863: 620: 617: 280:directed graph 263: 260: 212:The tree from 205: 202: 52: 45: 44: 40: 33: 32: 31: 30: 29: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2262: 2251: 2248: 2246: 2243: 2242: 2240: 2230: 2226: 2225: 2220: 2216: 2212: 2211: 2206: 2202: 2197: 2193: 2192: 2187: 2183: 2178: 2177: 2173: 2166: 2162: 2161: 2156: 2152: 2148: 2145: 2141: 2136: 2131: 2127: 2123: 2119: 2115: 2114: 2108: 2104: 2100: 2095: 2090: 2086: 2082: 2081: 2076: 2075:Bird, Richard 2072: 2068: 2065: 2061: 2057: 2053: 2049: 2045: 2041: 2036: 2033: 2029: 2024: 2022:0-387-90652-5 2018: 2014: 2009: 2008: 2002: 1998: 1994: 1990: 1985: 1980: 1976: 1972: 1971: 1966: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1934: 1930: 1929: 1921: 1917: 1916:Wilf, Herbert 1912: 1908: 1903: 1899: 1895: 1894: 1888: 1885: 1881: 1876: 1871: 1867: 1863: 1859: 1854: 1851: 1845: 1841: 1840: 1835: 1831: 1827: 1826: 1822: 1814: 1809: 1806: 1800: 1792: 1786: 1780: 1777: 1773: 1768: 1765: 1761: 1756: 1753: 1749: 1743: 1740: 1736: 1731: 1728: 1724: 1720: 1700: 1695: 1692: 1688: 1683: 1681: 1677: 1670: 1667: 1661: 1660: 1655: 1649: 1646: 1642: 1637: 1634: 1630: 1625: 1622: 1615: 1613: 1611: 1607: 1602: 1597: 1589: 1587: 1577: 1576: 1575: 1572: 1565: 1557: 1551: 1544: 1538: 1532: 1526: 1525:powers of two 1521: 1515: 1511: 1496: 1482: 1476: 1471:The function 1469: 1461: 1451: 1440: 1434: 1405: 1399: 1396: 1393: 1387: 1384: 1381: 1375: 1369: 1366: 1363: 1361: 1353: 1350: 1347: 1344: 1338: 1335: 1325: 1319: 1316: 1313: 1311: 1303: 1300: 1294: 1291: 1280: 1279: 1278: 1277: 1273: 1272:fusc function 1267: 1260: 1255: 1247: 1242: 1237: 1236: 1235: 1234: 1230: 1220: 1216: 1207: 1205: 1189: 1185: 1164: 1157: 1146: 1125: 1118: 1117: 1116: 1109: 1077: 1068: 1045: 1036: 1035: 1034: 1031: 1023: 1015: 1011: 1006: 997: 995: 994:integral part 989: 975: 969: 963: 937: 934: 929: 925: 921: 913: 909: 902: 898: 893: 888: 885: 882: 878: 870: 869: 868: 638: 637: 636: 634: 625: 618: 616: 614: 610: 606: 601: 594: 586: 582: 568: 560: 550: 546: 542: 532: 528: 520: 506: 498: 488: 481: 473: 469: 455: 447: 432: 424: 410: 406: 398: 384: 376: 361: 353: 343: 337: 332: 323: 315: 305: 298: 290: 281: 273: 268: 261: 259: 257: 256: 252: 248: 244: 240: 236: 232: 228: 220: 219: 215: 210: 203: 201: 199: 198:fusc function 195: 191: 187: 182: 180: 179: 175: 171: 167: 158: 150: 146: 132: 128: 120: 106: 98: 90: 86: 83: 79: 75: 72:in which the 71: 67: 63: 62:number theory 49: 37: 19: 2229:Cut-the-knot 2223: 2208: 2189: 2164: 2158: 2117: 2111: 2084: 2078: 2047: 2043: 2006: 1974: 1968: 1932: 1926: 1897: 1891: 1865: 1861: 1837: 1808: 1798: 1790: 1779: 1767: 1762:, Theorem 1. 1755: 1742: 1730: 1694: 1669: 1658: 1648: 1641:Raney (1973) 1636: 1631:, Section 6. 1624: 1593: 1581: 1570: 1563: 1555: 1549: 1542: 1536: 1530: 1523:as a sum of 1519: 1513: 1509: 1494: 1483:of the form 1474: 1470: 1459: 1449: 1438: 1435: 1424: 1271: 1265: 1258: 1251: 1228: 1227: 1201: 1159: 1120: 1104: 1101: 1075: 1043: 1026: 1001: 998: 984: 973: 967: 965:denotes the 958: 955: 865: 632: 630: 602: 592: 584: 580: 566: 558: 548: 544: 540: 530: 526: 518: 504: 496: 489: 479: 471: 467: 453: 445: 430: 422: 408: 404: 396: 382: 374: 359: 351: 341: 335: 321: 313: 306: 296: 288: 277: 253: 238: 235:Jean Berstel 231:Herbert Wilf 224: 216: 197: 193: 189: 183: 176: 170:Herbert Wilf 156: 148: 144: 130: 126: 118: 104: 96: 65: 59: 1961:Carlitz, L. 1939:: 360–363, 1431:fusc(1) = 1 1427:fusc(0) = 0 1219:Scatterplot 227:Neil Calkin 166:Neil Calkin 76:correspond 2239:Categories 1823:References 1654:Kepler, J. 1188:odd number 1147:is hence 1033:.Example: 329:for which 239:Raney tree 78:one-to-one 2210:MathWorld 2191:MathWorld 2167:: 193–220 2144:120933574 1388:⁡ 1370:⁡ 1339:⁡ 1320:⁡ 1295:⁡ 922:− 919:⌋ 906:⌊ 345:is 1. If 2153:(1858), 2103:14237968 2003:(1982), 1918:(2000), 1836:(2004), 1656:(1619), 1553:and for 258:(1619). 251:Kepler's 214:Kepler's 174:Kepler's 89:fraction 82:positive 74:vertices 2064:3647762 1993:0157907 1953:2589182 1884:2673006 1715:⁠ 1703:⁠ 1465:⁠ 1445:⁠ 1270:of the 1244:in the 1241:A002487 1231:is the 1179:⁠ 1167:⁠ 1140:⁠ 1128:⁠ 1095:⁠ 1083:⁠ 1063:⁠ 1051:⁠ 1012:of the 860:⁠ 848:⁠ 844:⁠ 832:⁠ 828:⁠ 816:⁠ 812:⁠ 800:⁠ 796:⁠ 784:⁠ 780:⁠ 768:⁠ 764:⁠ 752:⁠ 748:⁠ 736:⁠ 732:⁠ 720:⁠ 716:⁠ 704:⁠ 700:⁠ 688:⁠ 684:⁠ 672:⁠ 668:⁠ 656:⁠ 652:⁠ 640:⁠ 597:⁠ 577:⁠ 571:⁠ 555:⁠ 535:⁠ 515:⁠ 509:⁠ 493:⁠ 484:⁠ 464:⁠ 458:⁠ 442:⁠ 435:⁠ 419:⁠ 413:⁠ 393:⁠ 387:⁠ 371:⁠ 364:⁠ 348:⁠ 326:⁠ 310:⁠ 301:⁠ 285:⁠ 274:layout. 204:History 161:⁠ 141:⁠ 135:⁠ 115:⁠ 109:⁠ 93:⁠ 80:to the 2142:  2101:  2062:  2019:  1991:  1951:  1882:  1846:  1256:, the 1252:Using 1194:= 1001 1182:: The 1151:= 1110 1143:: The 981:, and 956:where 437:> 1 366:< 1 272:H tree 221:(1619) 64:, the 2140:S2CID 2099:S2CID 2060:JSTOR 1949:JSTOR 1935:(4), 1923:(PDF) 1797:fusc( 1789:fusc( 1616:Notes 1512:< 1508:0 ≤ 2 1473:fusc( 1458:fusc( 1448:fusc( 1264:fusc( 1155:= 14. 547:> 416:; if 68:is a 2017:ISBN 1844:ISBN 1801:+ 1) 1477:+ 1) 1462:+ 1) 1436:The 1429:and 1385:fusc 1367:fusc 1336:fusc 1317:fusc 1292:fusc 1246:OEIS 1198:= 9. 1079:1990 1047:1081 862:, …. 631:The 339:and 229:and 168:and 138:and 70:tree 2130:hdl 2122:doi 2118:206 2089:doi 2052:doi 2048:110 1979:doi 1967:", 1941:doi 1933:107 1902:doi 1898:178 1870:doi 1566:+ 1 1558:− 1 1545:− 1 1221:of 1016:of 979:= 1 461:is 390:is 333:of 60:In 2241:: 2227:, 2221:, 2207:, 2203:, 2188:, 2184:, 2165:55 2163:, 2157:, 2138:, 2128:, 2116:, 2097:, 2085:16 2083:, 2058:, 2046:, 2042:, 2026:. 2015:, 2011:, 1989:MR 1987:, 1975:70 1973:, 1947:, 1931:, 1925:, 1896:, 1880:MR 1878:, 1866:31 1864:, 1860:, 1832:; 1679:^ 1586:. 1506:, 1433:. 1248:). 1165:= 1126:= 1092:53 1086:37 1081:= 1060:37 1054:53 1049:= 996:. 983:⌊ 846:, 830:, 814:, 798:, 782:, 766:, 750:, 734:, 718:, 702:, 686:, 670:, 654:, 615:. 600:. 583:+ 543:+ 529:+ 470:− 407:− 200:. 181:. 147:+ 129:+ 2169:. 2132:: 2124:: 2106:. 2091:: 2054:: 1996:. 1981:: 1956:. 1943:: 1904:: 1872:: 1815:. 1803:. 1799:n 1793:) 1791:n 1774:. 1712:1 1709:/ 1706:1 1689:. 1664:. 1643:. 1571:n 1564:n 1562:2 1556:n 1550:n 1543:n 1537:n 1531:n 1529:2 1520:n 1514:n 1510:r 1502:) 1495:r 1487:( 1475:n 1460:n 1455:/ 1452:) 1450:n 1439:n 1406:, 1403:) 1400:1 1397:+ 1394:n 1391:( 1382:+ 1379:) 1376:n 1373:( 1364:= 1357:) 1354:1 1351:+ 1348:n 1345:2 1342:( 1329:) 1326:n 1323:( 1314:= 1307:) 1304:n 1301:2 1298:( 1268:) 1266:n 1259:n 1196:2 1192:i 1176:3 1173:/ 1170:4 1162:i 1160:q 1153:2 1149:i 1137:4 1134:/ 1131:3 1123:i 1121:q 1113:i 1107:i 1105:q 1098:. 1089:/ 1076:q 1071:2 1066:. 1057:/ 1044:q 1039:2 1029:i 1027:q 1018:i 1004:i 1002:q 990:⌋ 987:i 985:q 977:1 974:q 968:i 961:i 959:q 938:1 935:+ 930:i 926:q 914:i 910:q 903:2 899:1 894:= 889:1 886:+ 883:i 879:q 857:4 854:/ 851:3 841:3 838:/ 835:5 825:5 822:/ 819:2 809:2 806:/ 803:5 793:5 790:/ 787:3 777:3 774:/ 771:4 761:4 758:/ 755:1 745:1 742:/ 739:3 729:3 726:/ 723:2 713:2 710:/ 707:3 697:3 694:/ 691:1 681:1 678:/ 675:2 665:2 662:/ 659:1 649:1 646:/ 643:1 593:b 589:/ 585:b 581:a 567:b 563:/ 559:a 549:a 545:b 541:a 531:b 527:a 523:/ 519:a 505:b 501:/ 497:a 480:b 476:/ 472:b 468:a 454:b 450:/ 446:a 431:b 427:/ 423:a 409:a 405:b 401:/ 397:a 383:b 379:/ 375:a 360:b 356:/ 352:a 342:b 336:a 322:b 318:/ 314:a 297:b 293:/ 289:a 157:b 153:/ 149:b 145:a 131:b 127:a 123:/ 119:a 105:b 101:/ 97:a 20:)

Index

Stern's diatomic sequence


number theory
tree
vertices
one-to-one
positive
rational numbers
fraction
Neil Calkin
Herbert Wilf
Kepler's
Harmonices Mundi
breadth-first traversal

Kepler's
Harmonices Mundi
Neil Calkin
Herbert Wilf
Jean Berstel
Moritz Abraham Stern
Stern–Brocot tree
Kepler's
Harmonices Mundi

H tree
directed graph
greatest common divisor
binary search tree

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.