Knowledge (XXG)

Strongly chordal graph

Source 📝

278:, by repeatedly searching for and removing a simple vertex. If this process eliminates all vertices in the graph, the graph must be strongly chordal; otherwise, if this process finds a subgraph without any more simple vertices, the original graph cannot be strongly chordal. For a strongly chordal graph, the order in which the vertices are removed by this process is a strong perfect elimination ordering. 365:, various NP-complete problems such as Independent Set, Clique, Coloring, Clique Cover, Dominating Set, and Steiner Tree can be solved efficiently for strongly chordal graphs. Graph isomorphism is isomorphism-complete for strongly chordal graphs. Hamiltonian Circuit remains NP-complete for strongly chordal 251:
A graph is strongly chordal if and only if every one of its induced subgraphs has a simple vertex, a vertex whose neighbors have neighborhoods that are linearly ordered by inclusion. Also, a graph is strongly chordal if and only if it is chordal and every cycle of length five or more has a 2-chord
341:. Since powers of strongly chordal graphs are strongly chordal and trees are strongly chordal, it follows that leaf powers are strongly chordal. They form a proper subclass of strongly chordal graphs, which in turn includes the 199:
Strongly chordal graphs may also be characterized as the graphs having a strong perfect elimination ordering, an ordering of the vertices such that the neighbors of any vertex that come later in the ordering form a
281:
Alternative algorithms are now known that can determine whether a graph is strongly chordal and, if so, construct a strong perfect elimination ordering more efficiently, in time
579: 704: 71: 992:
Uehara, R.; Toda, S.; Nagoya, T. (2005), "Graph isomorphism completeness for chordal bipartite and strongly chordal graphs",
971: 946: 863: 838: 787: 729: 659: 633: 605: 329:, the graphs formed from the leaves of a tree by connecting two leaves by an edge when their distance in the tree is at most 994: 915: 815: 1031: 1026: 603:; Hundt, Christian; Mancini, Federico; Wagner, Peter (2010), "Rooted directed path graphs are leaf powers", 349:. In it is shown that interval graphs and the larger class of rooted directed path graphs are leaf powers. 59: 752:
De Caria, P.; McKee, T.A. (2014), "Maxclique and unit disk characterizations of strongly chordal graphs",
888: 263: 201: 55: 688: 654: 628: 600: 574: 362: 256: 43: 932: 727:
Dahlhaus, E.; Manuel, P. D.; Miller, M. (1998), "A characterization of strongly chordal graphs",
676: 657:; Le, Van Bang; Sritharan, R. (2008), "Structure and linear time recognition of 4-leaf powers", 700: 1003: 980: 955: 924: 897: 872: 847: 824: 796: 771: 761: 738: 668: 642: 614: 588: 86: 28: 886:
Nishimura, N.; Ragde, P.; Thilikos, D.M. (2002), "On graph powers for leaf-labeled trees",
75: 275: 693: 346: 852: 743: 74:
as the graphs that do not contain an induced cycle of length greater than three or an
1020: 984: 910: 877: 801: 358: 342: 39: 936: 577:; Dragan, Feodor; Chepoi, Victor; Voloshin, Vitaly (1998), "Dually Chordal Graphs", 680: 24: 631:; Le, Van Bang (2006), "Structure and linear time recognition of 3-leaf powers", 366: 345:
as the 2-leaf powers. Another important subclass of strongly chordal graphs are
20: 960: 619: 1008: 810: 646: 592: 326: 255:
A graph is strongly chordal if and only if each of its induced subgraphs is a
672: 318: 262:
Strongly chordal graphs may also be characterized in terms of the number of
901: 836:
McKee, T. A. (1999), "A new characterization of strongly chordal graphs",
861:
Müller, H. (1996), "Hamiltonian Circuits in Chordal Bipartite Graphs",
776: 766: 969:
Spinrad, J. (1993), "Doubly lexical ordering of dense 0–1 matrices",
266:
each edge participates in. Yet another characterization is given in.
928: 828: 252:
triangle, a triangle formed by two chords and an edge of the cycle.
785:
Farber, M. (1983), "Characterizations of strongly chordal graphs",
274:
It is possible to determine whether a graph is strongly chordal in
460: 16:
Chordal graph where all cycles of even length have odd chords
699:, SIAM Monographs on Discrete Mathematics and Applications, 537: 944:
Rautenbach, D. (2006), "Some remarks about leaf roots",
526: 448: 436: 420: 404: 384: 171:-sun cannot be strongly chordal, because the cycle 692: 913:(1987), "Three partition refinement algorithms", 813:(1987), "Doubly lexical orderings of matrices", 548: 483: 224:th vertex in the ordering is adjacent to the 8: 62:(>1) apart from each other in the cycle. 510: 1007: 959: 876: 851: 800: 775: 765: 742: 618: 691:; Le, Van Bang; Spinrad, Jeremy (1999), 719:-domination and Graph Covering Problems 514: 377: 357:Since strongly chordal graphs are both 97:vertices, partitioned into two subsets 754:Discussiones Mathematicae Graph Theory 559: 527:Nishimura, Ragde & Thilikos (2002) 494: 432: 416: 400: 506: 472: 396: 7: 580:SIAM Journal on Discrete Mathematics 449:Dahlhaus, Manuel & Miller (1998) 333:. A leaf power is a graph that is a 437:Brandstädt, Le & Spinrad (1999) 421:Brandstädt, Le & Spinrad (1999) 405:Brandstädt, Le & Spinrad (1999) 385:Brandstädt, Le & Spinrad (1999) 248:th vertices must also be adjacent. 240:th vertices are adjacent, then the 72:forbidden subgraph characterization 721:, Ph.D. thesis, Cornell University 54:, i.e., an edge that connects two 14: 549:Uehara, Toda & Nagoya (2005) 317:An important subclass (based on 70:Strongly chordal graphs have a 972:Information Processing Letters 660:ACM Transactions on Algorithms 634:Information Processing Letters 162: + 1) mod  93:-sun is a chordal graph with 2 1: 853:10.1016/S0012-365X(99)00107-7 744:10.1016/S0012-365X(97)00268-9 133:,...}, such that each vertex 995:Discrete Applied Mathematics 985:10.1016/0020-0190(93)90209-R 878:10.1016/0012-365x(95)00057-4 802:10.1016/0012-365X(83)90154-1 484:De Caria & McKee (2014) 144:has exactly two neighbors, 1048: 961:10.1016/j.disc.2006.03.030 620:10.1016/j.disc.2009.10.006 387:, Definition 3.4.1, p. 43. 1009:10.1016/j.dam.2004.06.008 916:SIAM Journal on Computing 816:SIAM Journal on Computing 647:10.1016/j.ipl.2006.01.004 593:10.1137/s0895480193253415 511:Paige & Tarjan (1987) 538:Brandstädt et al. (2010) 461:Brandstädt et al. (1998) 407:, Theorem 7.2.1, p. 112. 204:and such that, for each 46:of even length (≥ 6) in 695:Graph Classes: A Survey 673:10.1145/1435375.1435386 439:, Theorem 5.5.2, p. 78. 423:, Theorem 5.5.1, p. 77. 902:10.1006/jagm.2001.1195 196:... has no odd chord. 85: ≥ 3) as an 889:Journal of Algorithms 714:Chang, G. J. (1982), 463:, Corollary 3, p. 444 363:dually chordal graphs 337:-leaf power for some 232:th vertices, and the 947:Discrete Mathematics 864:Discrete Mathematics 839:Discrete Mathematics 788:Discrete Mathematics 730:Discrete Mathematics 606:Discrete Mathematics 353:Algorithmic problems 257:dually chordal graph 689:Brandstädt, Andreas 655:Brandstädt, Andreas 629:Brandstädt, Andreas 601:Brandstädt, Andreas 575:Brandstädt, Andreas 321:) is the class of 264:complete subgraphs 954:(13): 1456–1461, 767:10.7151/dmgt.1757 301:for a graph with 66:Characterizations 1039: 1012: 1011: 987: 964: 963: 939: 904: 881: 880: 871:(1–3): 291–298, 856: 855: 846:(1–3): 245–247, 831: 805: 804: 795:(2–3): 173–189, 780: 779: 769: 747: 746: 737:(1–3): 269–271, 722: 709: 698: 683: 649: 623: 622: 595: 562: 557: 551: 546: 540: 535: 529: 524: 518: 504: 498: 492: 486: 481: 475: 470: 464: 458: 452: 446: 440: 430: 424: 414: 408: 394: 388: 382: 340: 336: 332: 324: 300: 216: <  212: <  208: <  87:induced subgraph 58:that are an odd 49: 36:strongly chordal 33: 29:undirected graph 1047: 1046: 1042: 1041: 1040: 1038: 1037: 1036: 1017: 1016: 991: 968: 943: 929:10.1137/0216062 908: 885: 860: 835: 829:10.1137/0216057 809: 784: 751: 726: 713: 707: 687: 653: 627: 599: 573: 570: 565: 558: 554: 547: 543: 536: 532: 525: 521: 505: 501: 493: 489: 482: 478: 471: 467: 459: 455: 447: 443: 431: 427: 415: 411: 395: 391: 383: 379: 375: 355: 347:interval graphs 338: 334: 330: 322: 315: 282: 276:polynomial time 272: 195: 189: 183: 177: 166: 152: 138: 132: 125: 114: 107: 68: 47: 31: 17: 12: 11: 5: 1045: 1043: 1035: 1034: 1032:Perfect graphs 1029: 1027:Graph families 1019: 1018: 1015: 1014: 1002:(3): 479–482, 989: 979:(2): 229–235, 966: 941: 923:(6): 973–989, 906: 883: 858: 833: 823:(5): 854–879, 807: 782: 760:(3): 593–602, 749: 724: 711: 705: 685: 667:: Article 11, 651: 641:(4): 133–138, 625: 613:(4): 897–910, 597: 587:(3): 437–455, 569: 566: 564: 563: 552: 541: 530: 519: 515:Spinrad (1993) 499: 487: 476: 465: 453: 441: 425: 409: 389: 376: 374: 371: 359:chordal graphs 354: 351: 343:cluster graphs 314: 311: 271: 268: 193: 187: 181: 175: 157: 148: 136: 130: 123: 119: = { 112: 105: 101: = { 67: 64: 15: 13: 10: 9: 6: 4: 3: 2: 1044: 1033: 1030: 1028: 1025: 1024: 1022: 1010: 1005: 1001: 997: 996: 990: 986: 982: 978: 974: 973: 967: 962: 957: 953: 949: 948: 942: 938: 934: 930: 926: 922: 918: 917: 912: 911:Tarjan, R. E. 907: 903: 899: 895: 891: 890: 884: 879: 874: 870: 866: 865: 859: 854: 849: 845: 841: 840: 834: 830: 826: 822: 818: 817: 812: 808: 803: 798: 794: 790: 789: 783: 778: 773: 768: 763: 759: 755: 750: 745: 740: 736: 732: 731: 725: 720: 716: 712: 708: 706:0-89871-432-X 702: 697: 696: 690: 686: 682: 678: 674: 670: 666: 662: 661: 656: 652: 648: 644: 640: 636: 635: 630: 626: 621: 616: 612: 608: 607: 602: 598: 594: 590: 586: 582: 581: 576: 572: 571: 567: 561: 560:Müller (1996) 556: 553: 550: 545: 542: 539: 534: 531: 528: 523: 520: 516: 512: 508: 503: 500: 496: 495:Farber (1983) 491: 488: 485: 480: 477: 474: 469: 466: 462: 457: 454: 450: 445: 442: 438: 434: 433:Farber (1983) 429: 426: 422: 418: 417:Farber (1983) 413: 410: 406: 402: 401:Farber (1983) 398: 393: 390: 386: 381: 378: 372: 370: 368: 364: 360: 352: 350: 348: 344: 328: 320: 312: 310: 308: 305:vertices and 304: 298: 294: 290: 286: 279: 277: 269: 267: 265: 260: 258: 253: 249: 247: 243: 239: 235: 231: 227: 223: 219: 215: 211: 207: 203: 197: 192: 186: 180: 174: 170: 165: 161: 156: 151: 147: 143: 139: 129: 122: 118: 111: 104: 100: 96: 92: 88: 84: 80: 78: 73: 65: 63: 61: 57: 53: 45: 41: 40:chordal graph 37: 30: 26: 22: 999: 993: 976: 970: 951: 945: 920: 914: 893: 887: 868: 862: 843: 837: 820: 814: 792: 786: 757: 753: 734: 728: 718: 715: 694: 664: 658: 638: 632: 610: 604: 584: 578: 555: 544: 533: 522: 507:Lubiw (1987) 502: 490: 479: 473:McKee (1999) 468: 456: 444: 428: 412: 397:Chang (1982) 392: 380: 367:split graphs 356: 316: 306: 302: 296: 292: 288: 284: 280: 273: 261: 254: 250: 245: 241: 237: 233: 229: 225: 221: 217: 213: 209: 205: 198: 190: 184: 178: 172: 168: 163: 159: 154: 149: 145: 141: 134: 127: 120: 116: 109: 102: 98: 94: 90: 82: 76: 69: 51: 35: 25:graph theory 21:mathematical 18: 909:Paige, R.; 777:11336/32705 327:leaf powers 270:Recognition 228:th and the 38:if it is a 1021:Categories 896:: 69–108, 568:References 313:Subclasses 115:,...} and 42:and every 811:Lubiw, A. 319:phylogeny 220:, if the 52:odd chord 937:33265037 60:distance 56:vertices 23:area of 681:6114466 309:edges. 244:th and 236:th and 126:,  108:,  50:has an 19:In the 935:  703:  679:  295:) log 283:O(min( 202:clique 933:S2CID 677:S2CID 373:Notes 167:. An 89:. An 44:cycle 27:, an 701:ISBN 361:and 153:and 79:-sun 1004:doi 1000:145 981:doi 956:doi 952:306 925:doi 898:doi 873:doi 869:156 848:doi 844:205 825:doi 797:doi 772:hdl 762:doi 739:doi 735:187 669:doi 643:doi 615:doi 611:310 589:doi 287:, ( 140:in 34:is 1023:: 998:, 977:45 975:, 950:, 931:, 921:16 919:, 894:42 892:, 867:, 842:, 821:16 819:, 793:43 791:, 770:, 758:34 756:, 733:, 675:, 663:, 639:98 637:, 609:, 585:11 583:, 513:; 509:; 435:; 419:; 403:; 399:; 369:. 299:)) 291:+ 259:. 1013:. 1006:: 988:. 983:: 965:. 958:: 940:. 927:: 905:. 900:: 882:. 875:: 857:. 850:: 832:. 827:: 806:. 799:: 781:. 774:: 764:: 748:. 741:: 723:. 717:K 710:. 684:. 671:: 665:5 650:. 645:: 624:. 617:: 596:. 591:: 517:. 497:. 451:. 339:k 335:k 331:k 325:- 323:k 307:m 303:n 297:n 293:m 289:n 285:n 246:l 242:j 238:k 234:j 230:l 226:k 222:i 218:l 214:k 210:j 206:i 194:2 191:w 188:2 185:u 182:1 179:w 176:1 173:u 169:n 164:n 160:i 158:( 155:u 150:i 146:u 142:W 137:i 135:w 131:2 128:w 124:1 121:w 117:W 113:2 110:u 106:1 103:u 99:U 95:n 91:n 83:n 81:( 77:n 48:G 32:G

Index

mathematical
graph theory
undirected graph
chordal graph
cycle
vertices
distance
forbidden subgraph characterization
n-sun
induced subgraph
clique
dually chordal graph
complete subgraphs
polynomial time
phylogeny
leaf powers
cluster graphs
interval graphs
chordal graphs
dually chordal graphs
split graphs
Brandstädt, Le & Spinrad (1999)
Chang (1982)
Farber (1983)
Brandstädt, Le & Spinrad (1999)
Farber (1983)
Brandstädt, Le & Spinrad (1999)
Farber (1983)
Brandstädt, Le & Spinrad (1999)
Dahlhaus, Manuel & Miller (1998)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.